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Abstract 

 

The downstream development in both space and time of baroclinic instability is 

studied in a nonlinear channel model on the f – plane. The model allows the development 

of the instability to be expressed on space and time scales that are long compared to the 

growth rates and wavelengths of the most unstable wave. The unstable system is forced 

by time varying boundary conditions at the origin of the channel and so serves as a 

conceptual model for the development of fluctuations in currents like the Gulf Stream 

and Kuroshio downstream of their separation points from their respective western 

boundaries. 

The theory is developed for both substantially dissipative systems as well as weakly 

dissipative systems for which the viscous decay time is of the order of the advective time 

in the former case and the growth time in the latter case. In the first case a first order 

equation in time leads to a hyperbolic system for which exact solutions are found in the 

case of monochromatic forcing. For a finite bandwidth the governing equations are 

nonlinear and parabolic and could be put in the form of the Real Ginzburg Landau 

equation first developed by Newell and Whitehead (1969) and Segel ( 1969) although we 

show the equation is not pertinent to the downstream development problem. 

When the dissipation is small a third order system of partial differential equations is 

obtained. For steady states a the system supports chaotic behavior along the 

characteristics. This produces for the  time dependent problem new features, principally a 

strong focusing of amplitude in the regions behind the advancing front and the 

appearance of what might be called “chaotic shocks”. 
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1. Introduction 

The problem of the downstream development of linear and nonlinear instabilities 

has a long history in fluid mechanics. The subject was first developed in the context of 

the classical shear flow instability problem. Both linear and weakly nonlinear theoretical 

approaches to the problem were developed in that context (e.g.  Stewartson and Stuart, 

1971, and Hocking et al., 1972). In the area of oceanographic and geophysical fluid 

dynamic interest, studies such as Pedlosky (1976)  and Polvani and Pedlosky( 1988) have 

considered both the linear and weakly nonlinear aspects of the problem of the spatial 

development of perturbations in a baroclinic current. The subject has been developed 

considerably since those studies and a recent paper by Waterman and Jayne (2010) 

examines the spatial structure of growing instabilities and their interaction with the mean 

flow in a realistic oceanic setting involving the Kuroshio extension and its meandering 

path in the Pacific. The reader is also directed there for further references to the 

expanding literature on this subject. An excellent general review of baroclinic instability 

and the role of spatial instability and its connection to the question of local and global 

instabilities can be found in Pierrehumbert and Swanson (1995). The pioneering paper in 

this subject dates back to Briggs (1964) where the connection between the phenomenon 

of temporal growth and that of spatial growth was first discussed fully. 

The focus of the present paper is on the development of our understanding through 

simple models with a sharp focus on the role of time dependent upstream boundary 
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conditions on the further evolution, both spatial and temporal of growing disturbances. In 

an oceanographic context such a model can be considered an idealized representation of 

the response of an unstable zonal extension of a western boundary current to naturally 

produced fluctuations at the separation latitude of the boundary current. 

We consider two simple models, both without the presence of the beta-effect. The 

model is a two layer model with a baroclinic current with no horizontal shear as in the 

early models of Pedlosky (1976) and Pedlosky and Polvani (1988). In contrast to those 

models the domain of the flow is semi-infinite 0 ! x ! " , where x is the downstream 

coordinate. Time dependent boundary conditions are applied at the origin x = 0 and the 

propagation of the resulting disturbance through the region of the unstable current is the 

focus of the discussion.  The two models considered differ only in the degree of the 

dissipation in the system. The first model is sufficiently dissipative so that the marginal 

curve for instability is determined by friction while the second model, otherwise 

identical, is nearly inviscid. 

Section 2 describes the formulation of the model. Section 3 treats the linear and 

nonlinear analysis of the frictional problem and describes the solution to the nonlinear 

problem in closed form along with a representation of the response. In particular a 

discussion of the large space scale response of the interface and vertical velocity are 

given. Section 4 takes up the problem of the nearly inviscid problem. The resulting 

equations in characteristic coordinates are presented and are one to one with the well-

known Lorenz equations, Lorenz( 1963), and so the solutions along the characteristic 

curves can be chaotic. The problem of connecting the solutions far from the origin to the 

forcing at the origin is described and the behavior of the solution is discussed. The 
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chaotic behavior along characteristics with its sensitivity to initial data implies that 

neighboring characteristics with similar but slightly different initial conditions can lead to 

regions of rapid variation in space at times when the solutions trajectories along 

neighboring characteristics strongly diverge. Section 5 concludes our study with a 

summary and discussion of the results. 

 

 

 

2. The model 

We consider the standard, two layer, quasi-geostrophic model (Pedlosky, 1987). 

The layer thicknesses are taken to be equal in their rest state. In non-dimensional units the 

equations for the barotropic and baroclinic perturbation streamfunctions, !B ,!T , 

respectively are 
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(2.1a,b) 

 

where the barotropic and baroclinic streamfunctions are defined in terms of their layer 

equivalents !B =
1
2
!1 +!2( ),!!!!T = !1 "!2 . The parameter F =

f 2L2

g 'H
 where L is the 

width of the channel in which the flow is contained, and H is the rest thickness of each 
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layer. The parameter r is a measure of the spin-down time due to Ekman layers with 

respect to the advection time of the flow. The coordinate down the channel in the 

direction of flow is x while y is the cross channel coordinate, 0 ! y ! 1 . The barotropic 

part of the basic flow is UB while the shear of the basic flow is  Us =U1 !U2 . It is 

important to recall that the departure from the rest state of the interface is proportional to 

!"T . 

Standard linear stability analysis yields a marginal condition for the shear that must 

be exceeded for instability to occur. For example, for r = O(1) the condition for 

instability is that the shear of the basic flow must exceed the value, 

  

  Us =
2rK / k
2F ! K 2( )1/2

  (2.2) 

where k is the x wavenumber and K is the total wavenumber, K = k2 + l2( )1/2 and where l, 

the cross stream wavenumber, is quantized in integer multiples of π. We will consider 

shears that are greater than the critical shear by an amount Δ  and examine the dynamics 

of disturbances in the channel forced by inhomogeneous conditions on the streamfunction 

at the origin, x = 0 and examine the behavior of the resulting perturbation as function of 

time and position downstream of the origin. The boundary conditions in y for (2.1 a, b) 

are that the velocity in the y direction vanish at y = 0,1 or that  

  !
!x

"B

"T

#
$
%

&
'
(
= 0,!!y = 0,1  (2.3 a,b) 

 3. The theory for r  = O(1) 



 7 

When r is order one, the minimum critical shear,  i.e. the minimum of US as a 

function of k, occurs at K 2 = l 2F( )1/2 .  

The corresponding minimum critical shear is Uso =
r

(2F)1/2 ! l
,!!k = K 2 ! l2( )1/2 at 

which k, the real frequency of the disturbance is simply ! = kUB . The theory will be 

developed in the neighborhood of this parameter setting but for the time being one can 

think of the forcing at x=0  being at a single frequency ω  corresponding to the most 

unstable wave.  In the standard fashion we can introduce “slow” time and space 

coordinates 

 

 T = ! t,!!X = !x ,!!Us =Uso + !   (3.1 a, b, c) 

We also  introduce a scaling for the geostrophic stream functions. We choose the 

nondimensional amplitude of the streamfunction to be ε and consider the expansion of 

both the barotropic and baroclinic perturbations in an asymptotic series in ε, i.e. 

 

 ! = " ! (0) + "! (1) + " 2! (2) + ...#$ %&   (3.2) 

and where each function is a function of x,t,X,T .  We shall note later that intermediate 

time and space scales are possible but will for the time being consider disturbances with 

just these scales. In order to carry out a well ordered expansion, a relation between Δ and 

ε is required. As in earlier studies, the proper relation is ! = O("1/2 )  and that relation 

allows a straightforward expansion of (2.1 a, b) in powers of ε in which the ratio !1/2 / "  

will enter as a parameter as an (inverse) measure of nonlinearity. 
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At lowest order the solution can be written, 

  

 

!B =
1
2
ABe

i(kx"# t ) sin ly + *,

!T =
1
2
ATe

i(kx"# t ) sin ly + *,

  (3.3 a,b) 

where k and ω are the wavenumber and frequency of the marginal stable solution at the 

minimum critical shear. The asterisks in (3.3) denote the complex conjugate of the 

preceding term. The solution at the marginal curve determines a relation between the 

amplitudes of the barotropic and baroclinic streamfunction, namely, 

 

 AT = i
4r
kUso

AB   (3.4) 

It is important to note that the amplitudes are both functions, as yet unknown, of both T 

and X. 

At the next order the self interaction of the lowest order solution forces a correction 

to the basic flow. The correction satisfies, 

 

 !2

!y2
"T

(1) =
4K 2l
Uso

F sin2ly AB
2   (3.5) 

Two interesting features of (3.5) are that although the forcing is due to the phase shift in 

the marginal wave between the barotropic and baroclinic parts of the wave, and that the 

phase shift is due to the presence of friction,  (3.4), the correction to the mean flow is 

independent  of the friction except as it manifests itself in the behavior of the barotropic 
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amplitude. Second, the forcing of the mean flow correction depends on the cross stream 

mode number. For an infinite region the most unstable mode would have l = 0 and there 

would be in that singular case no nonlinear mean flow correction. 

The solution to (3.5) is 

 

 !T
(1) " #T = $

F
lUso

sin2ly AB
2 + CT y + DT   (3.6) 

where all the “constants” in (3.6) are, in fact, functions of X. The derivative of the mean 

flow correction depends only on the variation in the slow space variable X and hence is 

order Δ. The ageostrophic velocity proportional to the acceleration of this geostrophic 

mean flow correction and is of order Ro!  where Ro is the Rossby number. At the same 

time, the frictional contribution to the  zonal momentum equation and, hence, the 

ageostrophic meridional velocity, is order RO r  and it is the dominant ageostrophic term. 

Hence as  long as the ordering relationship  1 >> ! ! Ro holds, to have no meridional 

velocity at the channel boundaries,  the solution (3.6) must satisfy the condition that 

 !
!X

"T = 0,!!y = 0,1    (3.7) 

and so both CT   and DT must vanish in distinction to the case of a mean flow correction in 

an infinitely long channel with a purely zonal mean flow correction. Thus  

 

 !T = "
F
lUs

sin2ly AB
2    (3.8) 
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and note that the solution has zero average across the channel for all X. Since !"T  is 

proportional to the large scale deformation of the interface due to the instability, the 

overall rise or fall of the interface must be zero at each value of X. 

At the next order, i.e. O(!) = O(" 2 )  the expansion first recognizes the excess shear 

above the critical value as well as the variations of the lowest order streamfunctions on 

the slow space and time scales as well as the interaction of the lowest order solutions with 

the correction to the mean flow. Some of these terms would force a resonant response in 

the order ε2 solutions. The condition to eliminate these resonant terms yields as a 

condition to maintain the validity of our original expansion a equation for the behavior of 

AB and hence AT on the slow space and time scales, namely, 

  

 

!
!T

+UB
!
!X

"
#$

%
&'
AB ( )AB + NA AB

2 = 0,

) =
*
*
kK
2

2F ( K 2( )1/2
F + K 2 ,

N =
+ 2

*
Fk
8r

2K 2 2F ( K 2{ } ( 8l2 (F ( K 2( ) / 2F ( K 2( )

(3.9 a,b,c) 

It is easy to show that at the minimum critical shear, where this analysis is valid, the 

nonlinear Landau coefficient, N, is positive. 

Equation (3.9a) can be easily solved using the method of characteristics. The 

characteristic curves, shown in Figure 1 are the straight lines X !UBT = const.  and the 

line for which X =UBT  separates those characteristics that intersect the  X axis from 

those that intersect the T axis. It also represents the wave front carrying information of 
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the forcing at X = 0. The solution can be found in closed form. For X <UBT , i.e. behind 

the advancing front (region II in Figure 1), the solution for Z = AB
2 can be written 

X <UBT  

Z =
Zo(To )e

2! X /UB

1+ N
!
Zo(To ) e

2! X /UB "1( )
=

Zo(T " X /UB )e
2! X /UB

1+ N
!
Zo(T " X /UB ) e

2! X /UB "1( )
  (3.10) 

where Zo(To )  is the square of the barotropic wave amplitude at the origin X  = 0, as a 

function of the time To = T ! XUB
. The solution ahead of the front X >UBT  (region I in 

Figure 1) is determined by the initial data, ZI (Xo ) given as a function of X at T =0. 

 

X >UBT

Z =
ZI (X !UBT )e

2"T

1+ ZI
N
"

e2"T !1( )

  (3.11) 

Note that the solution will be continuous across the front as long as Zo(0) = ZI (0) . For 

large T ahead of the front or for large X/UB behind the front there is a tendency for the 

solution to reach its equilibrium value ! / N  ( assuming, as in our case that N > 0). It also 

follows from the fact that the coefficients of (3.9a) are real, that the phase of AB remains 

constant along a characteristic and is completely determined by the starting conditions, 

for example, if we writeAB = Z
1/2ei! , then in region II, ! = !o(T " X /UB ).  Henceforth I 

will consider solutions to (3.9) that are real without essential loss of generality. In fact by 

scaling T with σ  and X with σ/UB  and the amplitude with the square root of σ/N all 

parameters are eliminated from (3.9) and we can consider the coefficients in (3.9) to be 
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unity. The only remaining parameters will be the parameters measuring the properties of 

the initial and boundary conditions.  

Figure 2 shows the solution for the conditions (in our scaled units) 

 
AB = Yo(1+ ao cos(!T )) / (1+ ao ),!!X = 0.

= Yoe
"2qX ,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!T = 0

 (3.12 a,b) 

Thus, at the origin (X = 0, T =0) the amplitude is YO and so the solution will be 

continuous across the characteristic emanating from the origin. Recall that this amplitude 

is with respect to the equilibrium amplitude !
N( )1/2  which is unity in our scaled units. It 

also oscillates at X  = 0  with a period 2! /" , whose time scale is measured in e-folding 

growth times of the linear problem. As an initial condition a disturbance exponentially 

decreasing from the origin is specified with a decay scale q -1. The solution for AB is 

shown in Figure 2a. The front, i.e. the position X =UBT is, in the scaled units described 

above, at X = 4. Ahead of the front the small initial disturbance grows rapidly, initially 

according to linear theory,  such that when the front arrives the disturbance has reached 

finite amplitude and has already reached it equilibrium amplitude, unity in our scaled 

units. Behind the front the oscillations imposed at the origin are evident and the spatial 

growth of the amplitude as the disturbance moves downstream follows the result in (3.10) 

as it tends towards the equilibrium amplitude that is independent of the boundary data. 

The smaller the amplitude is at X = 0 ( it is 0.2 in the example), the larger the space 

occupied by the region behind the front reflecting the behavior at the origin. Thus, even 

though the amplitude equation is first order in time and space the oscillations imposed at 
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the boundary remain a significant part of the spatial structure of the downstream 

development. 

Figure 2b shows the correction to the mean streamfunction given by (3.5) for the 

amplitude shown in panel (a). This baroclinic streamfunction is zero in the mid latitude of 

the channel so that the stream field represents two counter rotating circulations. At the 

same time it also, with a change in sign, represents the response on the slow time and 

space scales of the interface between the two layers. The response is antisymmetric about 

the mid line of the channel so that as the disturbance advances a depression of the 

interface at y is balanced by an elevation at 1-y. Hence there is no net change in the cross 

channel averaged depth and no net vertical motion. Although the growing baroclinic 

instability reduces the shear in the middle of the channel, and so increasing the flow in 

the lower layer there; the opposite occurs on the flanks of this region so there is no net 

increase or decrease in the zonal transport at any zonal position. Of course, this must be 

the case since we have allowed no cross interface transport in our model. 

There is one further important consideration to discuss in this parameter regime. 

The critical curve of US as a function of k is parabolic at its minimum. Thus, for a 

supercriticality of order !  a range of wavenumbers of order !1/2 could be unstable. That 

suggests new “slow” space and time scales 

 ! = "1/2 t,!!# = "1/2 x   (3.13) 

in addition to the slower space and time scales T and X.  A development similar to what 

we have already outlined leads to a new equation for the amplitude AB,  
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!
!T

+UB
!
!X

"
#$

%
&'
AB ( )AB + NA AB

2 = µ !2AB

!*2
,

µ =
2rK 2

(K 2 + F)(2F ( K 2 )

 (3.14a) 

.Note that µ is positive in the unstable region. There is necessary side condition required 

for the validity of (3.14a), 

 

 !AB

!"
+UB

!AB

!#
= 0.   (3.14b) 

The details of the derivation are straight forward but cumbersome and as a consequence 

of the discussion below, are largely irrelevant to our purpose as will be seen. 

If we had a channel that was infinite in both positive and negative x directions, i.e. 

in the absence of a fixed, physically significant origin, we could place ourselves in a 

frame moving with the speed UB and the advective term in (3.14a) would vanish. This 

would also be true if UB were zero. Note that neither of these cases is appropriate for the 

physical problem under consideration since we are interested in the downstream 

development from a particular, fixed origin and if  UB were zero we would have no 

downstream development at all. However in that case, i.e. UB = 0, (3.14a) would be the 

so-called Ginzburg-Landau equation, independently derived and first introduced into the 

English language literature by Newell and Whitehead (1969) and Segel (1969). The 

behavior of solutions in the unbounded domain can be quite interesting but in our 

situation the constraint (3.14b) renders the equation problematic. If, say, UB is not zero, 

and this is the case we are concerned with, then (3.14b) implies that behind the front 

moving with UB the behavior  of the amplitude as a function of τ and ξ is completely 
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determined by the behavior of the amplitude as a function of τ  at ξ  = 0, i.e. the origin. 

As we have seen from the linear problem the natural time scale for the instability is on 

the time scale T and if the amplitude is independent of τ at the origin it will remain so in 

the entire region behind the front and will also, therefore, be independent of ξ. Thus for 

our problem driven by weakly unstable fluctuations at the origin, i.e. x = 0, the Ginzburg 

– Landau equation is irrelevant and our governing equation is just (3.9). 

 

4. The theory for r = (Δ) 

We now consider the problem of downstream development when the friction is very 

small, i.e. when r = O(Δ). In this limit the critical curve does not involve the shear and 

can most simply be written in terms of the parameter F , the square of the channel width 

to the deformation radius, namely, 

  

  F = FC =
l2 + k2

2
  (4.1) 

which is parabolic and reaches a minimum as a function of k  at k = 0. The theory to be 

developed will be a long wave theory for the instability. According to linear theory, in the 

absence of friction, the complex frequency satisfies, 

   

 ! " kUB = ±i 2F " K 2

2F + K 2

#
$%

&
'(

1/2

   (4.2) 

Suppose that the x wavenumber is small and we will expand it as 

 k = !1/2ko + !k1 + ...    (4.3a) 
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while also,  

 

F =
l2

2
+ !,

" = !1/2"o + !"1 + ...
   (4.3b,c) 

For simplicity we will consider Δ always positive. Inserting these expansions in (4.2) 

yields, 

 

 
!o = koUB ,

!1 " k1UB = i
ko
21/2 l

2 " ko
2( )1/2

   (4.4 a,b) 

Hence we can anticipate a development in which there can be an oscillation in space and 

time on the time scale !1/2 and a development on both the slower time and space scales 

! . Note that according to linear theory, the maximum growth rate occurs for ko = 1 . This 

suggests considering the streamfunction fields functions of  

 ! = "1/2x,!!# = "1/2t,!X = "x,!T = "t.!   (4.5) 

 With these new variables the governing equations (2.1) can be rewritten and 

expanded again, under the assumption verified a posteriori that the amplitude of the wave 

perturbation ε  is order !1/2 . 

 At lowest order this yields for the wave amplitudes, 
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!B
(0) =

1
2
ABe

i(ko"#$o% ) sin ly + *,

!T
(0) = 0.

ko =
$o

UB

  (4.5 a,b,c) 

So, we can think of the wavelength being determined by the frequency of the dominant 

fluctuation at the origin. Note that AB = AB (X,T ) . At the next order, O(!1/2 ), we obtain, 

 

 

!B =
AB (X,T )

2
ei" + *#

$%
&
'(
sin ly,

!T = )1/2
4i
koUS

*
*T

+UB
*
*X

+
r
)

+
,-

.
/0
AB

2
ei" + *

#
$%

&
'(
sin ly + )1/21(y,X,T )

(4.6 a,b) 

At next order, O(Δ), the equation governing the correction to the mean flow is 

determined, 

 

!
!T

+UB
!
!X

"
#$

%
&'

!2(
!y2

) 2Fc(
"
#$

%
&'
+
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!2(
!y2

=
+
*1/2

2FC
US

l sin2ly !
!T

+UB
!
!X

+
2r
*

,
-.

/
01
AB

2 (4.7) 

 

while the same order determines the evolution equation for the wave amplitude. First, 

though, we note that as before we can search for solutions for the mean flow correction in 

the form,  

 

 ! = P(X,T )sin2ly   (4.8)  

so that our system of equations becomes the set of partial differential equations 
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                (4.9 a,b,c) 

 

We can remove the parameters from (4.9 a, b) by the following rescalings, 

 

 T ' = !T ,!X ' = !X /UB ,!!AB = AoA ',!P = PoP ',!" =
r
#!

 (4.10) 

where 

 

 ! = "1/2 ,Po =
# 2

ko
2Usl

,!Ao =!
#
kol

  (4.10) 

so, that after dropping primes on T and X, our final amplitude equations become, 
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 (4.11 a,b) 
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As was the case for the r = O(1) problem there is a single set of characteristics. Defining 

the characteristic coordinate s by the differential relations 

 

 dT
ds

= 1,!!dX
ds

= 1,   (4.12) 

(4.11 a, b) can be written as the set of first order ordinary differential equations 

 

dAB

ds
= !" AB + B,

dB
ds

= !
"
2
B + (1+ " 2 / 2)AB ! AB AB

2 ! RAB ,

dR
ds

= !
4
5
" R +

6
5
" AB

2

where

P = ! AB
2 ! R

 (4.13 a, b, c, d) 

 

This set of ordinary differential equations written along the characteristics, i.e. the same 

lines as shown in Figure 1, are of the form of the well known Lorenz equations. For a 

range of moderately small γ the solutions have a chaotic behavior as a function of s. 

Figure 3 shows the behavior of the amplitude along four characteristics that are closely 

spaced at s = 0. In the region behind the advancing front this corresponds to slightly 

different specified amplitudes at X = 0, i.e. values with only slightly different starting 

values at the physical origin. The great sensitivity of chaotic systems like the one 

described by (4.13) means that as the distance along closely neighboring characteristics 
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increases the chaotic divergence of the solution trajectories implies that the solutions will 

change by order one from one characteristic to its neighbor. Indeed, the solution of (4.13) 

can most easily and reliably be found by integrating those equations along each 

characteristic and, to find the solution for fixed time, it is only necessary to label the 

characteristic by its initial intersection with the T axis as shown in Figure 4. In the region 

behind the front the solution to the characteristic equations, in our scaled units, 

 

 dX
ds

= 1,!!dT
ds

= 1,!!!X = s,!!!T = s + To   (4.14 a, b, c, d) 

where To is the intersection of the characteristic with the T axis at X  = 0. For a given X 

and T, the solution is found for the value of the amplitude at fixed T by evaluating the 

amplitude on each characteristic intersecting the level line T = constant whose starting 

value is simply TO = s – T. This is easily done by integrating along each characteristic on 

a gridded line in s (or X)  and evaluating the intersection point, s-T . Even if the starting 

values of To are close the chaotic character of the solutions along each characteristic will 

introduce very rapid changes of the solution at fixed T from one characteristic to its 

neighbor and hence from one value of X  to the next. That is, the sensitivity of the 

solutions along the characteristics to very small changes in the starting values can lead to 

very large changes in the solution as a function of  X if the solution is carried far enough 

in s, i.e. in X, for the chaotic behavior to manifest itself. Figure 5 shows the response in X 

of the wave amplitude at three times, T = 3, 6, and10 for the region behind the front. In 

the example we have chosen there is no perturbation ahead of the front, i.e. at T = 0 the 

perturbation is zero everywhere and the solution is forced by the condition at the origin, 
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 AB (0,T ) = 1! e
!T   (4.15) 

This forcing has been chosen since it is monotonic and so the oscillations seen in the 

solution are internally generated. For short times the solution is very smooth but at time 

goes on and the characteristics lengthen the chaotic behavior begins to manifest itself and 

rapid variations of the solution are clearly seen behind the front. At T =10 a second 

region of increasing gradient is emerging. For large time the forcing approaches a 

constant and the behavior along each characteristic will be nearly identical which is why 

the rapid behavior seems to be restricted to the region near the front. If instead of the 

condition (4.15) we impose the condition 

 

 AB (0,T ) = asin(2!T /Tperiod )   (4.16) 

The solution for the forcing in (4.16) is shown in Figure 6 where the Tperiod  is 5 and a = 

0.5. The solution forcing is never monotonic and the manifestation of chaotic behavior is 

the appearance of rapid variations of amplitude which occur well behind the front 

demonstrating that it is not the front that excites the rapid variation but the sensitivity to 

slightly varying initial conditions from one characteristic to its neighbor. 

These regions of rapid variations in amplitude with X are thus regions that have 

relatively large meridional (i.e. y) velocities and rapid changes in those velocities. 

Normally in hyperbolic systems shocks occur when the characteristics of the problem 

overlap because of nonlinear bending of the characteristic curves. Instead, here the 

characteristics remain simple, indeed, they remain straight parallel lines. It is the chaotic 

character of the solutions along those characteristics and the divergence of the solutions 

on neighboring characteristics that provides the shrinking scales in the behavior of the 
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solution. It is tempting to call such behavior “chaotic shocks” although they are not 

shocks in the traditional gas dynamics sense. 

Of course, this rapid behavior is rapid on the “slow” scales. When the solution in 

(X, T), becomes too rapid the dynamics on the original deformation radius scale of the 

carrier wave will become intrinsically mixed with the long wave dynamics and one can 

speculate that this limits the scale collapse. It suggests a future study allowing the 

interaction of the two-scale dynamics in that limit. 

 

5. Conclusions and discussion. 

Although heavily idealized, the model nevertheless exhibits a rich catalogue of 

behavior in its downstream development. The spatial development of the  baroclinic 

instabilities in this simple model depends on the level of the intrinsic dissipation in the 

system. When the frictional time scale, i.e. the spin-down time,  is of the same order as 

the advective time scale, so that the parameter r  is order one, the governing equation of 

long time and space scales is first order in both time and space. For slightly supercritical 

states the motion is also weakly nonlinear and analytic solutions are easily found by the 

method of characteristics. The spatial structure consists of a front propagating with the 

barotropic mean flow. The disturbance ahead of the front reflects the spatial distribution 

of the perturbation pre-existing at the initial instant. Behind the front the spatial structure 

reflects the temporal structure of the perturbation prescribed at the spatial origin of the 

flow until the amplitude reaches its finite amplitude equilibrium value. In the simple 

model presented here, in which the basic flow is uniform in the downstream direction, 

this equilibrium amplitude is independent of x and the perturbation assumes the form of a 
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zonal perturbation of the original basic flow. That is evident in Figure 2b in the region 

between X ~ 3.5 and  4.5. In all cases the alteration of the interface has no net cross 

stream average so the reduction in the vertical shear that produces the equilibration does 

not imply a transfer of fluid between the layers, impossible in this adiabatic model. 

When the frictional time scale is long, i.e. of the same order as the e-folding time of 

the slightly supercritical instability, the governing partial differential equation is second 

order although, again, the characteristics of the flow are determined by the barotropic 

advective velocity. The amplitude equations along each characteristic are essentially the 

equations of the Lorenz (1963) model and for a range of the friction parameter γ  show 

chaotic behavior along the characteristics. Since each characteristic has a slightly 

different initial condition if the amplitude at the spatial origin is a function of time, the 

solutions along the characteristics will diverge by an order one amount even if the 

starting conditions are nearly equal. This implies that smoothly varying conditions at the 

origin will give amplitude values at later fixed times, at some distance from the origin, 

that can change very rapidly from one characteristic to another, i.e. very rapidly in space. 

The rapidity is so great that it suggests a shock phenomenon even though the classical 

shock behavior of hyperbolic systems is impossible here since the characteristics are 

always straight parallel lines. The brusque change is due entirely to the chaotic behavior 

along the characteristics and chaotic shock seems an appropriate terminology for the 

phenomenon.  

The model described here is very simple and it is obvious that more complex 

physics needs to be added to be able to adequately describe the behavior of real oceanic 

systems, like the Gulf Stream or Kuroshio extension regions which have suggested this 
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study. The presence of horizontal shear, non rigid lateral boundaries, more complex 

potential vorticity structure of the basic state, may all affect the ideas described here. It 

will be of interest to examine them in the future. Nevertheless, the transformation of 

chaotic behavior in the time domain to abrupt spatial change in the downstream direction 

would seem to be a general and robust property of hyperbolic systems with chaotic 

behavior along the characteristics applicable in many situations. 
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Figure Captions 

 

Figure 1 The characteristics in the X, T plane. Each characteristic has a slope UB
!1 . The 

characteristics in region II intersect the T axis at points labeled To while they 

intersect the X axis at points Xoin region I. Boundary and initial data are given at 

those points. 

Figure 2. a) The amplitude of the barotropic mode as a function of X. The front is at X = 4 

(in the scaled units described in the text). b) The correction to the mean baroclinic 

streamfunction !T which also yields the form of the large scale interface 

perturbation. 

Figure 3 The solution for AB along four characteristics that, at X = 0 are originally closely 

spaced. The chaotic nature of the dynamics along the characteristics shows that at 

moderately large values of s the solutions diverge by an order one amount.  

Figure 4 The solution at time T  is obtained from the solution along each of the 

characteristics intersecting the characteristics emanating from s = X = 0. Even for 

small differences T2 – T1 the variation along the line T = constant can vary rapidly 

due to the chaotic behavior of the solution along the characteristics, e.g. the 

sensitivity to the initial conditions at the origin. 

Figure 5 The amplitude behind the advancing front at three times a) T =3, b) T= 6 , c) 

T=10. The rapid variation occurs when the length of the characteristic is large 

enough to manifest chaotic behavior. 

Figure 6. The solution for the amplitude as a function of X when the amplitude at X = 0 

oscillates with T. 
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Figure 1 The characteristics in the X, T plane. Each characteristic has a slope UB
!1 . The characteristics in 

region II intersect the T axis at points labeled To while they intersect the X axis at points Xoin region I. 

Boundary and initial data are given at those points. 
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a) 

 
 

b) 

 
 

Figure 2. a) The amplitude of the barotropic mode as a function of X. The front is at X = 4 (in the scaled 

units described in the text). b) The correction to the mean baroclinic streamfunction !T which also yields 

the form of the large scale interface perturbation. 
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Figure 3 The solution for AB along four characteristics that, at X = 0 are originally closely spaced. The 

chaotic nature of the dynamics along the characteristics shows that at moderately large values of s the 

solutions diverge by an order one amount.  
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Figure 4 The solution at time T  is obtained from the solution along each of the characteristics intersecting 

the characteristics emanating from s = X = 0. Even for small differences T2 – T1 the variation along the line 

T = constant can vary rapidly due to the chaotic behavior of the solution along the characteristics, e.g. the 

sensitivity to the initial conditions at the origin. 
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a) 

 

b) 

 

 

c) 

 

Figure 5 The amplitude behind the advancing front at three times a) T =3, b) T= 6 , c) T=10. 

The rapid variation occurs when the length of the characteristic is large enough to manifest chaotic 

behavior.  
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Figure 6. The solution for the amplitude as a function of X when the amplitude at X =0 oscillates with T. 

 

 

 

 

 

 


