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Abstract

Low frequency, large scale baroclinic Rossby basin modes, resistant to scale

dependent dissipation, have been recently theoretically analyzed and  discussed as possible

efficient coupling agents with the atmosphere for interactions on decadal time scales. Such

modes are also consistent with evidence of the westward phase  propagation in satellite

altimetry data. In both the theory and the observations the scale of the waves is large

compared to the Rossby radius of deformation and the orientation of  fluid motion in the

waves is predominantly meridional. These two facts suggest that the waves are vulnerable  to

baroclinic instability on the scale of the deformation radius.

The key dynamical parameter is the ratio, Z, of the transit  time of the long Rossby

wave to the e-folding time of the instability. When this parameter is small the wave easily

crosses the basin largely undisturbed by the instability while if Z is large the wave

succumbs to the instability and is largely destroyed before making a complete transit of the

basin. For small Z the instability is shown to be a triad instability while for large Z the

instability is fundamentally similar to the  Eady instability mechanism. For all Z the growth

rate is of the order of the vertical shear of the basic  wave divided by the deformation radius.

If the parametric dependence of Z on latitude is examined, the condition of unit Z separates

latitudes south of which the Rossby wave may successfully cross the basin while north of

which the  wave will break down into small scale eddies with a barotropic component. The

boundary between the two  corresponds to the domain boundary found in satellite

measurements. Furthermore, the resulting barotropic wave field is shown to propagate at

speeds about twice as large as the baroclinic speed and this is offered as a consistent

explanation of the observed discrepancy between the satellite observations of Chelton and

Schlax and simple linear wave theory.
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We suggest that Rossby basin modes, if they exist, would be limited to tropical

domains and that a considerable part of the observed mid-latitude eddy field north of that

boundary is due to the instability of wind-forced, long Rossby waves.
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1. Introduction

Evidence  of westward phase propagation in satellite altimetry data  as described by

Chelton and Schlax, (1996) has revived interest in oceanic Rossby waves. The

observations of Chelton and Schlax would  seem to confirm  earlier suggestions of the

existence  of long Rossby waves from the analysis of hydrographic data,  e.g., White,

(1977) and Kessler, (1990). The waves clearly emanate from the eastern boundary of the

North Pacific  and traverse the entire basin. The satellite data, though,  are  particularly

intriguing  since  they appear  to show the unambiguous propagation of the long waves in a

basin-wide region  only south of about 250 N while in mid-latitudes the altimetry data

seems rather to suggest an eddy rather than a wave field. Qiu et. al. (1997) have suggested

that the apparent  confinement of the Rossby waves to the eastern boundary of the  ocean

in the North Pacific may be related  to the dissipation of the relatively slow moving

Rossby wave whose long wave speed decreases with increasing latitude. Qiu et. al.

explored that process in a model in which the dissipation mechanism is specified a priori

as a  diffusion of momentum with a specified mixing coefficient. In the present study we

examine the issue in a mechanistic manner by describing the dissipation process directly in

terms of the baroclinic instability of the Rossby wave itself and describe the dissipation

and confinement  of the Rossby wave as the breakdown of the wave as it transfers energy

to a small scale eddy field..

Recent theoretical work on the  problem of Rossby basin modes (LaCasce,  2000,

Cessi and Primeau, 2001, and LaCasce and Pedlosky, 2002) have isolated a new class of

basin modes particularly resistant to dissipation mechanisms that preferentially damp small

scales, such  as the type employed by Qiu (1997). While  basin modes typically require the

synthesis of long  Rossby waves with westward propagating group velocity and short

Rossby waves with eastward group velocity, these new modes closely resemble free, long

Rossby waves with zonal wavelengths that are integral multiples  of the basin width. Such
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wave satisfy the boundary condition of constant streamfunction on eastern and western

boundaries without the need for small scale reflected Rossby waves. Relatively  minor

corrections  to the free Rossby wave pattern are required in narrow  boundary layer regions

on the northern and southern boundaries of the idealized basins employed in the theory.

The modes are dynamically completed by either boundary Kelvin waves in primitive

equation models (e.g. Cessi, 2001) or by an equivalent integral mass conservation

condition if quasi-geostrophic  dynamics  are used, (e.g. Flierl 1977, Kamenkovich and

Kamenkovich, 1993).  As shown by LaCasce and Pedlosky (2002) the modes are easily

excited by an oscillating wind stress and are fairly robust even to changes in basin

geometry. The absence of small scale Rossby  waves  as a component of these modes

leads to their weak dissipation and the suggestion has been advanced in the theoretical

papers cited above that these weakly damped modes are capable of providing efficient

coupling  mechanisms to the atmosphere since the signal so imposed on the ocean by, say,

the wind  forcing, can endure long enough to  propagate such  imposed anomalies

throughout the oceanic basin and react back on the atmosphere.

The similarity of the basin mode structure to a free Rossby wave makes the

observational evidence of long Rossby wave propagation particularly encouraging as to the

possibility of the existence of such basin modes. However, as is evident in the theory, the

constraint that the geostrophic streamfunction be constant  on the eastern boundary of the

basin imposes as structure on the westward propagating waves such that the crest lines

mimic strongly the  shape of the eastern boundary of the basin. For basins whose

boundaries are mainly north-south this leads to advancing wave crests that are themselves

oriented in the meridional direction. In quasi-geostrophic theory that orientation is

maintained as the wave propagates while in primitive  equation models maintaining  the full

variation of the Coriolis parameter the  waves do bend with latitude reflecting the faster

wave speed at  low latitudes. In either theory the north-south scale is large compared to a

deformation radius as is the zonal wavelength of the wave. This implies that the fluid
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motion in the propagating Rossby wave is largely in the meridional direction. Such broad

flows are expected to be particularly vulnerable  to baroclinic  instability since the

meridional shear is  a manifestation of available potential energy in a zonal density

gradient. That energy can be released by perturbation motions which are zonal and hence

largely immune to the stabilizing effect of b, the planetary vorticity gradient.

We describe in this paper the basic instability process as a function of the amplitude

of the basic Rossby mode. We show that since the free mode is always unstable the

important parameter for this problem is the ratio of the time, TR, taken to traverse the basin

by the Rossby wave  compared to the e-folding growth time of the instability , s-1 where s

is the growth rate of the instability. Thus the  critical parameter of our analysis  is

† 

Z =  s TR (1.1)

When Z <1 the wave traverses the basin before its instability can substantially degrade the

wave. When Z > 1 the wave will be shown to break up into  deformation scale eddies. Our

analysis addresses the instability of both a plane, westward propagating Rossby wave as

well as the basin mode.

In section 2 we define the quasi-geostrophic model we will  use to describe the

instability. Scaling of the problem exposes the centrality of Z. Section 3 is a description of

the instability of the free, long Rossby wave over the whole range of Z.  Both analytical and

numerical methods are used. In section 4 we describe the instability of the basin modes and

show  how the existence of the basin mode depends on the value of Z. Finally, in section 5

we apply our results in a heuristic manner  to delimit  the latitude regions where the long

Rossby wave can succeed in crossing the basin and use those results to explain the

observations of Chelton and Schlax (1996).
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2. The model

To simplify the analysis we will consider the problem in the context of the standard,

quasi-geostrophic two-layer model. It is certainly true that a more realistic multi-layer

model  would be advantageous in describing the structure of the basic baroclinic  Rossby

wave and its instability but in this first approach to the problem the advantages of

simplicity are compelling. The model consists of two layers on the beta plane with resting

depths H1 and H2. The characteristic horizontal scale of the basin and of the zonal

wavelength of the Rossby wave is L and its characteristic velocity is U. In terms of these

scales the geostrophic streamfunction is non-dimensionalized with UL while lengths are

scaled with L and time with the advective time L/U. It is convenient to write the equations in

terms of the barotropic and baroclinic streamfunctions. Thus, if 

† 

fn , n = 1,2 are the

(nondimensional) streamfunctions of the upper and lower layers respectively, the

barotropic and baroclinic streamfunctions are:

† 

fb = h1f1 + h2f2,

fT = f1 - f2

(2.1 a,b)

where the hn are the rest-layer thicknesses divided by the total thickness of the two layers.

The equations of motion then become,

† 

∂

∂t
qb + bfbx + J (fb,qb) + h1h2J (fT ,qT ) = 0.

∂
∂t

qT + bfT x + J (fT ,qb) + J (fb ,qT ) + (h2 - h1)J(fT ,qT ) = 0

(2.2 a,b)

where
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† 

qb = —2fb, qT = — 2fT - FfT . (2.3 a,b)

while the nondimensional parameters F and b  are defined in terms of the scales already

described as well as the reduced  gravity g’ and the Coriolis parameter fO,

† 

F =
fo2L2

g'H1H2
(H1 + H2) =  L2

Ld
2 ,      b =

bdimL2

U
(2.4 a,b).

where Ld is the deformation radius.

Note that for unequal layer thicknesses the self interaction of the baroclinic streamfunction

will  generate  changes in the baroclinic motion.

It is convenient to anticipate certain aspects of the analysis. For a large  scale

baroclinic Rossby wave the transit time  TR,  for the wave to cross a basin of width L will be

of the order of 

† 

L /cR  where  

† 

cR = bdimLd
2 . Thus,

† 

TR =
L

bdimLd
2 (2.5)

which is also the characteristic period of the Rossby wave with wavelength L. Also, since the

motion in the wave is largely meridional, energy releasing instabilities can be anticipated for

which the stabilizing effects of b will be weak and so the expected characteristic growth rate

for an instability will be the baroclinic shear times the wavenumber of the instability which

in turn can be expected to be of the order of the deformation radius. Hence, an additional

natural  time scale is the growth time,

† 

Tg =
Ld
U

(2.6).
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It is useful to rewrite the problem in terms of those two time scales. We expect the

streamfunction to be a function of time on each time scales and we exploit that explicitly by

writing the streamfunction as a function of the two times,

† 

tr =
tdim
TR

=
L
U

t /TR =
bdimLd

2

U
t ≡ bt,

tg =
tdim
Tg

=
L
U

t /Tg =
L
Ld

t ≡ F1/2t

(2.7 a,b)

Since the instabilities will be expected to have meridional  scales on the order of the

deformation radius it  is also helpful to introduce a new meridional variable,

† 

s = y F1/2 (.2.8)

For all realistic parameter setting the ratio of the basin scale to the deformation radius is

large, i.e. F >>1, so that 

† 

e = F -1/2  is small. The parameter b which is a measure of the

amplitude of the baroclinic wave may be large or small depending on the wave amplitude.

The ratio

† 

Z =
F1/2

b
=

TR
Tg

(2.9)

is the same parameter as defined in (1.1). With the above definitions the equations of

motion become,
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† 

∂

∂tr
+ Z ∂

∂tg

Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ qb + fbx + Z{J (fb,qb) + h1h2J (fT ,qT )} = 0,

∂

∂tr
+ Z ∂

∂tg

Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ qT + fT x + Z{J (fb,qT ) + J (fT ,qb) + (h2 - h1)J(fT ,qT )}= 0

(2.10 a,b)

where now,

† 

qb = fbss +e2fbxx ,

qT = fTss -fT + e2fTxx

(2.11 a,b)

and where the Jacobian operators in (2.10 a,b) are in terms of the variables x and s instead

of x and y. Each streamfunction is thus a function of x,s,tt and tr..

It is immediately evident that the nature of the instability problem, assuming our a

prior presumptions are correct, is governed  by two  parameters Z,  and the small parameter

e . Z, which may be large or small can be interpreted either as the ratio of the transit time of

the baroclinic wave to the growth time of parasitic baroclinic instabilities or the ratio of its

period to that growth time. The parameter e is always small so that the problem in the limit

of small e  really depends primarily on Z.

In the following sections we  shall examine the instability of a free, long  baroclinic

Rossby wave as an elementary model of the essential structure of the basin mode and then

turn our attention to the instability of the basin mode itself. The analytical theory is

supplemented by a direct numerical integration of (2.2 a,b) which serves to test our a priori

scaling assumptions and describes aspects of the problem inaccessible to analytical

analysis.
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Two numerical models are used, one for examining plane waves and the second for

basin modes. The former is a two-layer spectral model, written by G. Flierl, with periodic

boundary conditions in x and y. The latter is a two-layer basin model, derived from the

barotropic model of LaCasce (2002). This uses finite differences to calculate spatial

derivatives and sine transforms to invert the barotropic and baroclinic vorticities, as well as a

third-order QUICK scheme (Leonard, 1979) for advection. The basin model uses third-

order Adams-Bashforth time stepping, whereas the spectral model employs a leap-frog time

step, stabilized by an occasional Euler step.

We used either 1282 or 2562 Fourier modes in the spectral runs, and 2562 grid points in the

basin. In all cases the resolution was more than sufficient to resolve the evolution.

3. Rossby wave instability in the infinite domain

a. Triad instability for small Z

It is clear from (2.10 a,b) that for small Z the lowest order  problem is simply the

problem for linear, free barotropic and baroclinic Rossby waves. The instability that follows

is a type of resonant triad instability first discussed in the barotropic context by Gill (1974).

We extend that analysis to the long baroclinic Rossby wave.

We expand the streamfunction in a series,

† 

fT = fT
(o) + Z fT

(1) + ...

fb = fb
(o) + Z fb

(1) + ...

(3.1 a,b)

In the infinite domain, one solution at lowest order, which we identify with the basic

baroclinic wave whose stability is under investigation, is

† 

fT
(o) = Aei (k x-w t r ) +* (3.2)
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where the asterisk denotes the complex conjugate of preceding function.

The solution of the linear equation yields the simple dispersion relation

† 

w = -k (3.3)

corresponding to the Rossby wave traveling westward with the long wave speed. Since the

lowest  order problem is linear, two further solutions may be added, corresponding to a

second  baroclinic and a barotropic wave, each with an s wavenumber lo. Thus the total

solution at O(1) is,

† 

fT
(o) = Aei (kx  -w t r ) + Aoei (kox+los-wot r ) +*

fb
(o) = A1ei (k1x+los-w1tr ) +*

(3.3a,b)

Each wave satisfies the linear dispersion relation so that,

† 

wo = -
ko

lo
2 +1

,

w1 = -
k1
lo2 .

(3.4a,b)

It is important to note that each amplitude, A, A1 and A2 is an unknown function of the

growth time tg which for small Z is a slow time compared with tr. At the next order in Z the

nonlinear interactions of the two baroclinic waves will resonate with the barotropic wave and

the barotropic wave will interact with each baroclinic wave to resonantly force the other

baroclinic wave. This will occur only under the conditions of resonance,
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† 

k + ko = k1,

k +
ko

ko
2 +1

=
(k + ko)

lo2

(3.5 a,b)

by which the wavenumbers and frequencies form a closed resonant triad set. Such

resonance would render the expansion in (3.1 a,b) invalid unless the resonant forcing terms

are balanced. That balance yields the evolution equations for the amplitudes on the growth

time, i.e.

† 

∂A1
∂tg

= h1h2kloAAo,

∂Ao
∂tg

= klo
(1- lo2)
(1+ lo

2)
A1A*,

∂A
∂tg

= -kloA1Ao * .

(3.6 a,b,c)

The instability for small Z of the basic wave can be easily deduced by linearizing the set

(3.6) around the basic wave, Thus if

† 

A = A + a,
Ao =     ao,
A1 =       a1

(3.7 a,b,c)

where the little a’s  are small with respect to the amplitude of the basic wave 

† 

A . The

resulting linear equations yield exponential growth for 

† 

ao  and 

† 

a1  with growth rate,
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† 

l = lo h1h2
(1- lo2)
(1+ lo

2)

Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô 

1/2

k A (3.8)

Thus instability is assured if the s wavenumber is less than 1. Since the growth rate vanishes

for zero  s wavenumber there is an intermediate wavenumber,

† 

lo = 21/2 -1( )
1/2

ª 0.644 (3.9a)

that maximizes the growth rate. The growth rate also depends linearly on 

† 

k A  which is

related to the amplitude of the meridional velocity in the basic wave. If the basic baroclinic

wave has the form 

† 

fT = (Vo / k)cos(k[x - tr])  then 

† 

k A = Vo /2 . This leads to a maximum

growth rate

† 

lmax = 0.207(h1h2)1/2Vo /2 (3.9b)

The growth rate is a maximum when the two layers have equal  depth but the variation in

growth rate with other realistic values changes only  slightly (Figure 5). The growth rate

must be multiplied by 

† 

F1/2when the growth on the advective time, t, is considered.

The resonance conditions (3.5 a, b) imply a relation between the x and s

wavenumbers. In particular, for a given x wavenumber, k, of the basic wave,

† 

ko / k = lo
4 -1,

k1 = ko + k
(3.10)

so that for the most  unstable perturbation,

† 

ko = -0.8284k,
k1 = 0.17156 k

(3.11 a,b)
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Hence the parasitic baroclinic wave will have an x wavenumber of the same order as

the basic wave while the barotropic portion of the disturbance will have a relatively small x

wavenumber. The y  wavenumber is 

† 

loF1/2  in original y units and hence the y scale will be

very short. Figure 1a  shows the growth rate as a function of k0 . The  dashed  curve is the

growth rate (on the advective time t) for the parameters F =9870 and k of the original wave

equal to 6p. The solid  curve  shows  the corresponding s wavenumber. The peak of the

growth rate curve corresponds to a value of l0 as predicted by (3.9).

The growth rate predicted by (3.8) is reminiscent of the Eady problem. It is not,

however, the same as the Eady growth rate. If the current were a broad, steady meridional

flow a standard stability analysis would yield as the growth rate,

† 

leady =
Vo
4

lo
{4h1h2 - lo4}1/2

1+ lo
2 (3.12)

which coincides with (3.8)  only if h1 =  h2. The discrepancy comes from the nonlinear term

in (2.10b) that has 

† 

h2 - h1 as a factor and which does not yield a resonant term for the  triad

interaction but which enters the classical  Eady problem. The qualitative similarity is

nevertheless clear and we can identify the triad instability as a classic  baroclinic  instability

emerging on times long  compared to the basic wave period. That is, the b effect is unable to

stabilize the basic wave even for small Z where the b effect is dominant in size. Even though

the basic wave is unstable it can still propagate several of its  own wavelengths before the

instability would be noticeable. The decay of the basic  wave amplitude will  be an order

amplitude2 effect of the instability and hence remain small at least  on the transit time TR .

The evolution of the amplitude of each member of the triad is shown in Figure 1b. During

the initial, exponential growth phase  given by linear theory the amplitude of the original

baroclinic wave is nearly unchanged. It then diminishes as the parasitic instability waves

grow and finally equilibrate. The amplitudes execute a continuing nonlinear oscillation but
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we should realistically expect a irreversible effect to occur as the waves in finite  amplitude

lock on to other triads with which they can also exchange energy. Hence we show only the

first part of the growth and equilibration phase in the figure. We should therefore expect the

wave to successfully cross the basin displaying only slight alterations due to its instability

when Z  is small.

b. Plane wave instability for large Z

For large Z the b effect is negligible at lowest order. The basic baroclinic wave can be

represented by the solution,

† 

yT = (Vo / k)coskx (3.13)

since the phase of the wave is irrelevant in the infinite  domain and the propagation of the

wave on the time scale TR is negligible on the time  scale for growth for small Z. If the

perturbations to the basic wave are written as:

† 

fb = ei lsel tg Ab(x)

fT = ei lsel tg AT (x)

(3.14 a,b)

then the linearized equations for the wave amplitudes in this limit are ( for the case 

† 

h1 = h2:

† 

l e2ATxx - (l2 +1)AT{ }+ ilVo coskx e2Abxx + Ab(1- l2 + e2k 2){ } = 0,

l e2Abxx - (l2)Ab{ }+ il h1h2Vo coskx e2ATxx + AT (-l2 +e2k2){ } = 0.

(3.15 a,b)

We have found it possible to find solutions in the form,
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† 

Ab = Abm cosmkx,
m=0,M max
meven

Â

AT = AT m cosmkx ,
m=1,M max
modd

Â

(3.16 a,b)

The resulting  matrix equations for the Fourier  coefficients, after truncation at  m = Mmax,

yield a straightforward eigenvalue problem  for the growth rate as a function of s

wavenumber. Figure 2a shows the growth rate curves for the same values of F as in the low

Z triad case with a truncation corresponding to Mmax =25. The peak of the most unstable

mode occurs at nearly the same meridional wavenumber as before while the maximum

growth rate, compared to the low Z triad case is somewhat increased; it is 17.3 instead of

10.35 , an increase  of about 68%. Figure 2b shows  the x structure of the barotropic part

of the disturbance streamfunction. The mode is dominated by a structure which has twice

the x wavenumber of the fundamental wave. This wavenumber is still very small compared

to the meridional wavenumber which, again, is of the order of  Ld
-1. Thus, over the whole

range of Z  the growth rate is an order one constant multiplied by the amplitude of the

baroclinic velocity in the wave divided by the deformation radius. An example of the

evolution, from a numerical run with Z=5, is shown in Figure 3. The baroclinic wave (left

panels) is seen to develop zonally-oriented wiggles before dissolving entirely into eddies.

The barotropic field (right panels) quickly evolves from the isotropic random initial state to

one dominated by zonally-elongated eddies.

We have carried out calculations over a wide range of Z and the resulting growth rates

as a function of Z are shown in Fig. 4a. The corresponding analytical rates in the limits of

large and small Z are indicated by the lines. The experimental values are close to predicted

in the two limits, although somewhat smaller. The difference varies with the choice of initial

barotropic field; somewhat faster growth is obtained when initializing with the most unstable

barotropic wave. Note that the growth rates at intermediate Z lie between those at the two
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extremes (that is, nothing unusual happens at Z=1). The weak variation with Z is quite

remarkable.

In Fig. 4b, we show the variation of growth rate with F for two values of Z. In both

cases, the F 1/2 dependence, expected from theory, is apparent. Again, the growth is faster

with larger Z. As mentioned above the growth rates are a very weak function of the relative

layer depths. Figure 5 shows the dependence of the growth rates, as determined by the

numerical  model, over the  range of layer depth ratio for both small  (Z =0.25 ) and large

(Z =2) values of Z.

Interestingly, the value of Z also determines the character of the nonlinear evolution. If

Z > 1, triadic interactions among other barotropic modes, subsequent to the initial growth,

produce a nearly isotropic barotropic eddy field. These eddies merge, producing larger

eddies; i.e. there is an inverse energy cascade to larger scales. The cascade is halted at a

larger scale by beta, the so-called “arrest” described by  Rhines (1975) and others. The end

state is one of weakly zonally-elongated barotropic eddies which exhibit westward phase

propagation at the barotropic phase speed corresponding to their size. The eddies are larger

than deformation scale, the more so for larger values of Z (Z determines the arrest scale).

If, on the other hand, Z is order one or smaller, the barotropic eddies retain the

zonally-elongated aspect of the barotropic perturbation and intensify as such. In this case

beta is large enough so that the barotropic field is already “arrested” at the outset and no

further spectral evolution occurs. The barotropic eddies at late times thus retain their

deformation scale meridional width. This is essentially what has happened in Fig. 3.

4. The instability of the basin modes

We turn out attention now to the instability of the low frequency, large scale basin

modes described by LaCasce (2000) and Cessi  and Primeau (2000). As we have already

noted, the form of such basin modes closely resembles the latitude independent baroclinic

wave whose instability was examined in the previous section. See, for example, Figure 3 in
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LaCasce and Pedlosky (2002). We therefore can expect strong similarities between the

stability properties of the basin modes and the free, infinite domain baroclinic Rossby wave.

We can make that similarity explicit by first examining, as did  LaCasce (2000) a simple

model in which the basin is replaced by a meridional channel with solid boundaries at x =0

and x =1 (L in dimensional units). An exact solution of (2.2 a,b) which satisfies the

condition that the streamfunction be spatially constant on the meridional boundaries and

which satisfies the integral condition,

† 

∂

∂t
yT dx dy

0

1
ÚÚ = 0 (4.1)

is :

† 

yT = (Vo / k)sin(kx -w t)

w = -
bk

k 2 + F
,

k = 2 jp , j =1,2,3...

(4.2 a,b,c)

For large Z the stability problem is described by (3.15  a,b) except that now the basic wave

has an arbitrary phase, 

† 

J , with respect to the channel boundary at x =0.

† 

l e2ATxx - (l2 +1)AT{ }+ ilVo cos(kx +J ) e2Abxx + Ab(1- l2 + e2k 2){ } = 0,

l e2Abxx - (l2)Ab{ }+ il h1h2Vo cos(kx + J ) e2ATxx + AT (-l2 +e2k2){ } = 0.

(4.3 a,b)

where on the time scale of the instability the phase of the wave, 

† 

J = -w tr  , is a constant to

the first approximation.
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The boundary conditions are that the perturbation must vanish at x =0 and 1. Thus

solutions can be sought  in the form,

† 

Ab(x) = Abn sin n
n=1
Â px,

AT (x) = ATn sinnpx
n=1
Â

(4.4 a,b)

This leads to two coupled matrix equations of the form:

† 

l AT{ } = Q[ ] Ab{ }

l Ab{ } = R[ ] AT{ }
(4.5 a,b)

where the matrices  Q and R are given in Appendix A. Combining the equations leads to a

single matrix  eigenvalue problem  (A.4). The eigenvalues can be easily determined by any

standard matrix eigenvalue  package such as MATLAB and the results are shown in Figure

6  for the growth rate for the unstable modes is shown  as a function of (scaled) meridional

wavenumber. The important result is that for large Z  the growth  rate is essentially the same

as the growth rate for the instability of the baroclinic wave in the infinite domain (compare

with figure 3). Perhaps this is not too surprising  since the instability is of such small

meridional  scale that the perturbations are largely insensitive to the detailed structure of the

flow near the meridional boundaries. In the example shown the phase 

† 

J  was chosen

arbitrarily to be p/4 but the result is also insensitive to the phase.

The similarity of the growth rates for the channel model and the infinite domain model

suggest that the general estimates for the latter will hold for the basin modes for a wide

range of Z . If that is the case then for small Z we would expect the basin mode to survive
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the instability as the interior long Rossby wave crosses  the basin  while for large Z the

mode  should suffer strongly from the small scale instabilities.

To test this hypothesis we have initialized our numerical basin model with a baroclinic

basin mode. The latter was calculated in the manner described by LaCasce and Pedlosky

(2002) for a square (untilted) basin. A weak, barotropic perturbation (generated from a

white noise PV field) was superimposed to hasten unstable growth, and weak Rayleigh

damping imposed on the baroclinic and barotropic relative vorticities; the damping

coefficient was the same as that used in calculating the mode, and corresponded to a

damping time of several hundred eddy turnover times (that is, much longer than the typical

instability time seen hereafter).

To begin, we examined the evolution without beta , i.e. infinite Z. As with the plane

wave, the initial stage is characterized by a nearly exponential growth in the barotropic

energy. We examined how the growth rate scaled with F; the case shown in Figure 7, for the

n=3 basin mode, is typical. The growth is somewhat suppressed at smaller F, evidently as

the deformation radius approaches a significant fraction of the basin scale. But at larger F,

the increase in growth rate asymptotes to a F1/2 dependence. Note that these growth rates are

very close to those obtained for the plane wave in the spectral model at large Z.

An example of the evolution with non-zero beta is shown in Figure 8, for which Z=5.

The baroclinic basin mode (upper left panel) resembles a plane wave except for the

boundary layers at the north and south walls. In these regions, barotropic eddies form in the

early stages (upper right panel) due to the self-advection of baroclinic vorticity (the fourth

term in equation 2.2a). These eddies remain near the boundary and do not significantly

affect the interior evolution. However, because of them we calculated the growth rates in

Figure 7 using the barotropic kinetic energy only in a latitudinal band about the basin mid-

section.  As time progresses, the baroclinic wave develops wiggles, as in the plane wave case,

and deformation-scale barotropic eddies appear. The eddies grow initially to largest
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amplitude in the west.  But soon the basic wave completely succumbs, leaving a nearly

isotropic field of barotropic eddies throughout the interior (lower right panel).

As with the plane wave, an inverse cascade also occurs in the basin, provided Z is large

enough. The cascade is again halted by beta, at a scale determined by Z Now however,  the

barotropic eddies remain isotropic. As discussed by LaCasce (2002), the arrest in a basin is

accomplished by the barotropic normal modes rather than plane waves; this means that with

Z>1, we have the interesting situation of a baroclinic wave mode evolving to (finite

amplitude) barotropic wave modes.

With Z<1, the baroclinic waves propagate a significant distance before instability sets

in, as suggested earlier. With Z=0.25 (upper panels of Figure 9), the baroclinic wave

propagates nearly to the western boundary, and barotropic eddies are visible only there.

With Z=0.5, instability sets in roughly halfway across, so the baroclinic wave is coherent

only in the eastern half of the basin; west of that, the barotropic eddies dominate. So we may

identify Z=0.5 as an approximate boundary between the existence of the mode and its

breakdown into eddies.

To reiterate, the basin baroclinic normal mode remains in tact when Z is small; when

Z< 0.25, the constituent baroclinic waves propagate unharmed across the basin. When Z >

0.5, the baroclinic mode dissolves by instability into barotropic eddies; the final flow,

following an inverse cascade and a beta-arrest, is dominated by finite-amplitude, barotropic

basin modes.

5. Consequences of the instability

The parameter Z is the ratio of the travel time of a long Rossby wave to the e-folding

time of the baroclinic instability of that wave and we have seen that the nature of the

instability and the order of magnitude of the growth rate can be simply scaled with the

amplitude of the wave and the deformation radius. More  precisely,
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† 

Z =sTR =
l

F1/2
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

V
Ld

3
L

bdim
(5.1)

where l is the growth rate on the advective time scale and V is the amplitude of the

meridional shear in the  wave. At  Z =1, for which the transit time and the growth time are

equal, the length L , is given by,

† 

L =
ZF1/2

l

Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ 
bdimLd

3

V
(5.2)

The ratio 

† 

l / F1/2  is an order one number, ranging between 0.1 for small Z to about 0.17

for large Z. In quasi- geostrophic theory, L, as defined by (3.2) is a constant. However, we

may heuristically consider the  variation with latitude  of the critical L  which makes Z =1 by

allowing the variation of b  and of the deformation radius. Since 

† 

Ld = ND/ f  the

deformation radius is inversely proportional to the sine of latitude while b is proportional to

the cosine of latitude. Figure 10 shows  the resulting variation of L in thousands of km as a

function of latitude for Z =0.5  and 

† 

l / F1/2  =  0.17. We have chosen this value of Z since

our results in Figure 9 indicate this is a reasonable transition point between propagation and

destruction of the wave. What is clear from Figure 10 and relatively independent  of the

specific values  of Z and l is that the distance L   is small at all latitudes outside the tropics.

Only the weakest waves can propagate large distances unaffected by the instability, A long

Rossby wave with a velocity amplitude of 5 cm/sec will reach a critical value of unit Z at less

than  a thousand km, much less  than the width of  the Pacific  basin. If the critical value of

Z is  even smaller, as  evidenced by the results of section 4, say Z= 0.25, the length will be

two times  less than that. We  believe, first of all that this is the fundamental reason why the

observations  of Chelton and Schlax show the Rossby  wave propagation only at low

latitudes. The dissipation of the waves suggested by Qiu et. al. (1997) is, we believe, actually

due to their  instability and that instability is enhanced at higher latitudes. The limitation to
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lower latitudes is due partly to the lower propagation speed of the Rossby waves at higher

latitudes but also due to the enhanced instability at higher latitudes; both effects combine to

limit the distance the baroclinic Rossby wave can propagate. We emphasize  that this

argument holds whether the wave forms part of the low  frequency basin mode, resistant to

ordinary dissipation, (e.g. LaCasce, 2000 or Cessi  and Primeau, 2001) or whether it is a

free Rossby wave generated in the mid ocean by, say , wind-forcing.

We may draw further conclusions. In addition to altering the large-scale coherence

and vertical structure of the eddy field, baroclinic instability would also change the dominant

eddy length scales. Our results suggest this happens essentially in two stages. First, as the

instability calculations of sections 3 and 4 show, the emerging barotropic field has a y-

wavenumber of about 0.66 L d
-1

  , so that the daughter barotropic eddies are about twice as

large as the deformation radius. Second, as seen in the numerical experiments, those

barotropic eddies merge if Z>1, leading to an inverse energy cascade and a beta-arrest at a

still larger scale. If Z>1, the final eddies are barotropic and possibly much larger than the

deformation radius.

Stammer (1997) calculated dominant eddy length scales from Topex-Poseidon data.

His eddy scales were comparable to the deformation radius in the tropics, but were larger at

higher latitudes. However the scales at higher latitudes appeared to be proportional to the

deformation radius (see his Fig. 25). In the latitude range of 20 to 50 degrees, the scales are

approximately twice the deformation radius; at higher latitudes, they are somewhat larger

(perhaps three times larger). In addition, his length scales display no relation to the Rhines

scale. As Stammer pointed out, it appeared that no beta-arrest was occurring in the extra-

tropical ocean.

Rossby wave instability could explain the length scales at higher latitudes, provided

that the inverse cascade and beta-arrest, seen in the models when Z>1, is somehow defeated.

The models, having  flat bottoms and no mean flows, are ideal environments for an inverse

cascade, but the real ocean may be less accommodating . If no cascade occurs, we would
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expect the eddy field to reflect that which emerges from the instability, with a scale of

roughly twice the deformation radius. Stammer's results suggest in addition that the tropical

wave field is of deformation scale, something we couldn't have predicted; our results simply

say that the tropical baroclinic waves should retain their structure.

A second point concerns the observed phase speeds. Because the eddies generated by

instability are larger than the deformation radius and barotropic, they will propagate faster

than the baroclinic long wave speed. The emerging barotropic eddies, with a y wavenumber

of 0.66 Ld -1would have a westward phase speed of about 2.25 bLd2 or about twice the

baroclinic wave speed. A graphic example, shown in Figure 11, reveals this. Shown is a

Hovmuller diagram constructed from the upper layer streamfunction from a plane wave

computation with Z=0.25, i.e. within the wave regime. The propagation at early times is at

the baroclinic phase speed corresponding to the initial wave (for which k=14 pi). But

following instability, the apparent phase speed increases to a value comparable to the

aforementioned estimate (as indicated by the solid line in the figure). The numerical

experiments in which Z>1 reveal still faster phase speeds for the late-time barotropic field,

because the cascade produces larger, faster-propagating eddies. But if the cascade is

defeated in the ocean, as suggested above, the late time phase speeds would be roughly twice

the long wave speed.

One of the most puzzling results of the Chelton and Schlax (1996) altimeter study

was  an apparent systematic increase in the Rossby phase speeds outside of the tropics.

This is plainly seen in their Figure 5b. Numerous theoretical studies followed which

invoked various effects to explain this increase (e.g. Mean flow effects, Killworth et al.,

1997; homogenized subsurface potential vorticity, Dewar, 1998; topography, Tailleux and

McWilliams, 2001). While each explanation was appealing in its own right, it is difficult to

see how any one would produce a systematic change over the entire Pacific basin. The

present explanation, i.e. a change in the wave structure due to instability, could produce such

a systematic change. Waves emanating from the eastern boundary or generated in the
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interior would break up, and the eddy field at higher latitudes should be more barotropic and

propagating faster. No mean flow is required.

But in addition, the present explanation is the only one which also predicts an increase

in eddy scale, as seen by Stammer (1997). Indeed, the coincidence that the waves are

propagating twice too fast in the extra-tropics but are also twice the deformation radius

seems to have been overlooked. Furthermore, we would expect to see the phase speeds to

accelerate in the basin interior where Z is O(1) because long waves would be present in he

eastern portion of the basin and barotropic eddies in the west. In the Pacific such an

acceleration evidently occurs near 180 0 W, between 15 0N and  25 0 N (Chelton and Schlax,

1996; Leeuwenburgh and Stammer, 2001). Lastly, of course, the wave instability conjecture

predicts that the propagating eddies should be much more barotropic in the extra-tropics,

and this is of course is testable.

Perhaps most important though is that the parasitic instability of Rossby waves, no

matter how they are generated, can contribute substantially to the vigor of the mid-ocean

eddy field in mid and higher  latitudes. We may go so far as to suggest  that the eddy field

at higher latitudes might in fact be a manifestation of the underlying presence of large scale

Rossby waves.

5. Summary and conclusions

We have  examined the instability of long baroclinic Rossby waves, both in the infinite

domain and as components of low frequency baroclinic Rossby basin modes and have

shown that such waves are unstable at all wave amplitudes. The b  effect is unable to render

the wave stable. The central  parameter which emerges is the product of the growth rate of

baroclinic  instability and the time of the Rossby wave to traverse a distance L. That

parameter, Z  in our notation, distinguishes a parameter regime in which the  instability only

slightly affects the basic Rossby wave (small Z) from the regime ( Z >1)  in which the wave

is destroyed by the  parasitic baroclinic  instability. That criterion holds for both free waves

and for the low frequency basin modes previously suggested as being particularly immune
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to dissipation. We have found that contrary to such expectations these long  waves will

naturally give up much of their energy  in  latitudes outside the tropics so  that, at the very

least, it would  seem unlikely that such long-lived basin modes could persist in mid-

latitudes. Indeed, we suggest that the instability that should occur  where Z > 1,  which we

identify with high latitudes, can be a significant contributor to the mid-latitude  eddy field.

Baroclinic wave instability has further consequences. For one, it would produce eddies

greater than deformation scale. The model simulations suggest that the eddies are about

twice the deformation scale if Z=1, as predicted by theory, but grow to still larger scales due

to an inverse cascade of energy. The final scale was determined by beta in those

experiments because the cascade arrested to barotropic Rossby waves, and the larger Z, the

larger the equilibrated eddy scale. Satellite results (Stammer, 1997) however do not support

the existence of a beta-arrest in the extra-tropical ocean, but suggest the dominant eddy scale

at higher latitudes is about twice the deformation radius. So it may be that instability is

occurring, but not the cascade.

The other consequence of baroclinic wave instability is that the observed phase speed

at higher latitudes should be at least twice the baroclinic long wave speed (reflecting larger,

barotropic waves). It would be greater still if an inverse cascade occurs. Satellite results

(Chelton and Schlax, 1996) suggest the observed phase speed is about twice as fast outside

the tropics. That would be consistent with our results, providing the  inverse cascade is

somehow inhibited.

It would be of particular  interest to extend the present model beyond quasi-

geostrophy to include the equatorial domain to examine whether Rossby/Kelvin basin

modes  of the sort discussed here exist and are stable. That problem is currently under

study.
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Appendix A

The  matrices Q and R

Projecting equations (4.3 a, b) leads to the two matrix equations (4.5 a, b). Writing

† 

L11(m) = (mpe)2 + l2,

L21(m) = (mpe)2 + l2 +1,

L12(m) = h1h2il Vo[((mpe)2 + l2 -e2k 2],

L22(m) = ilVo (mpe)2 + l2 -1+ e2k 2[ ]

(A. 1 a,b,c,d)

and

† 

P(n, m) = 0.5cosJ , m ± n = ±2 j,
else

P(n, m) = -(2 j /p )sinJ 1- (-1)n+m[ ] 1
(n + m)2 - 4 j2 +

1
(n - m)2 - 4 j 2

Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ .

(A.2a,b)

then,

† 

Q(n, m) =
L12(m)P(n, m)

L11(n)
,

R(n, m) =
L22(m)P(n, m)

L21(n)

(A. 3 a,b)

This leads to the single matrix eigenvalue  problem.
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† 

l2 Ab{ } = [QR] Ab{ } (A.4)

whose solution leads to the growth rates shown in  Figure 6.
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FIGURE CAPTIONS

Figure 1. a)The growth rate curve for the triad instability of the long Rossby wave is shown

by the dashed line. The solid curve gives the accompanying y-wavenumber for the

instability (divided by F1/2. In the case shown the basic wave has a wavenumber 6p

and F  =9870. b) The evolution of the wave amplitudes of the triad on the growth rate

time scale.

Figure 2 a) The growth rate curves as a function of wavenumber l  (divided by F1/2) for F =

9870 but for large Z. b) the x-structure of the barotropic  wave in the most unstable

mode. The dashed curve is the basic baroclinic wave.

Figure 3 The evolution of the wave fields for Z=5.The strong instability rapidly transforms

the baroclinic field (shown in the left panels) into eddies. The right panels shows the

development of a barotropic component to the eddy field. Note the appearance of

eddies on the deformation radius scale.

Figure 4. a) The growth rate as a function of Z. The solid lines  show the predictions of the

triad and analytical large Z results. b) The growth rate as a function of F,

demonstrating the F1/2 behavior as predicted by the analytical results.

Figure 5  The dependence  of the growth rate on the  layer depth ratio. The dependence is

shown for small  Z (0.25) and large  Z (2.0).

Figure 6  The growth rates for the unstable modes for the channel model at large Z for the

same parameters as figure 2.
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Figure 7  The growth rate as a function of F for the basin mode 3.

Figure 8. The evolution of the basin mode (n=3) instability for Z= 5. The panels on the left

show the baroclinic field at times t =0.2,1.2 and 2.0. The panels on the right  show the

barotropic fields at the same times. At late times the barotropic eddies are significantly

stronger than the baroclinic eddies and no trace of the initial wave remains.

Figure 9. The evolved wave fields at late times (t =2.0)  for Z =0.25 (upper panels) and Z

=0.5 (lower panels). Again,  the baroclinic  fields are shown on the left and the

barotropic fields on the right.

Figure 10  The length  L which makes Z=0.5. This length can be interpreted as the distance

a Rossby plane wave can propagate before being destroyed by the instabilities

described. In this case L  is given in thousands of km as a function of latitude  for the

growth rate  

† 

l / F1/2  =  0.17. The deformation radius is chosen to be 50 km at 450 N.

The curves of L versus latitude are  shown for different  values of the amplitude of the

meridional velocity in the basic baroclinic Rossby wave.

Figure 11. A Hovmuller diagam showing the propagation of the wave field in  the upper

layer  for Z=0.25.  At the initial  time the field displays propagation at the baroclinic

Rossby wave speed, but at later times when, due to the instability,  the barotropic

component appears the propagation, shown by the solid  line, is  at 2.25 bLd2 as

predicted by the instability selection of meridional  wavenumber.
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a)

b

Figure 1. a)The growth rate curve for the triad instability of the long Rossby wave is shown
by the dashed line. The solid curve gives the accompanying y-wavenumber for the
instability (divided by F1/2. In the case shown the basic wave has a wavenumber 6p
and F  =9870. b) The evolution of the wave amplitudes of the triad on the growth rate
time scale.
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a)

b

Figure 2 a) The growth rate curves as a function of wavenumber l  (divided by F1/2) for F =
9870 but for large Z. b) the x-structure of the barotropic  wave in the most unstable
mode. The dashed curve is the basic baroclinic wave.
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Figure 3 The evolution of the wave fields for Z=5.The strong instability rapidly transforms
the baroclinic field (shown in the left panels) into eddies. The right panels shows the
development of a barotropic component to the eddy field. Note the appearance of
eddies on the deformation radius scale.
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Figure 4. a) The growth rate as a function of Z. The solid lines  show the predictions of the
triad and analytical large Z results.
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Figure 4b) The growth rate as a function of F, demonstrating the F1/2 behavior as predicted
by the analytical results.
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Figure 5  The dependence  of the growth rate on the  layer depth ratio. The dependence is
shown for small  Z (0.25) and large  Z (2.0).
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Figure 6  The growth rates for the unstable modes for the channel model at large Z for the
same parameters as figure 2.
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Figure 7  The growth rate as a function of F for the basin mode 3.
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Figure 8. The evolution of the basin mode (n=3) instability for Z= 5. The panels on the left
show the baroclinic field at times t =0.2,1.2 and 2.0. The panels on the right  show the
barotropic fields at the same times. At late times the barotropic eddies are significantly
stronger than the baroclinic eddies and no trace of the initial wave remains.
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Figure 9. The evolved wave fields at late times (t =2.0)  for Z =0.25 (upper panels) and Z
=0.5 (lower panels). Again,  the baroclinic  fields are shown on the left and the
barotropic fields on the right.
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Figure 10  The length  L which makes Z=0.5. This length can be interpreted as the distance
a Rossby plane wave can propagate before being destroyed by the instabilities
described. In this case L  is given in thousands of km as a function of latitude  for the
growth rate  

† 

l / F1/2  =  0.17. The deformation radius is chosen to be 50 km at 450 N.
The curves of L versus latitude are  shown for different  values of the amplitude of the
meridional velocity in the basic baroclinic Rossby wave.



43

Figure 11. A Hovmuller diagam showing the propagation of the wave field in  the upper
layer  for Z=0.25.  At the initial  time the field displays propagation at the baroclinic
Rossby wave speed, but at later times when, due to the instability,  the barotropic
component appears the propagation, shown by the solid  line, is  at 2.25 bLd2 as
predicted by the instability selection of meridional  wavenumber.



44

References

Cessi, P. and F. Primeau, 2001. Dissipative selection of low-frequency modes in a reduced

gravity basin. J.  Phys. Oceanography. 31, 127-137.

Chelton, D. B. and M. G.  Schlax, 1996. Global observations of oceanic Rossby waves.

Science,  272, 234-238.

Dewar, W. K., 1998. On ``too fast'' baroclinic planetary waves in the general circulation. J.

Phys. Oceanogr., 28, 1739-1758.

Flierl, G.R., 1977 Simple  applications of McWilliams’ “A note on a consistent quasi-

geostrophic model in a multiply connected domain”. Dyn. Atmos. Ocean. 1, 443-453.

Freeland, H.J., P.B. Rhines and T. Rossby. 1975. Statistical observations of the trajectories

of neutrally buoyant floats in the North Atlantic. J. Mar. Res., 33, 383-404.

Gill, A.E. 1974. The stability on planetary waves on an infinite beta-plane. Geophys.  Fluid

Dyn. , 6, 29-47.

Kamenkovich, V.M. and I.V. Kamenkovich, 1993. On the evolution of Rossby waves,

generated by wind stress in a closed basin, incorporating total mass conservation.

Dyn. Atmos.  Ocean. 18, 67-103.



45

Kessler, W.S., 1990.  Observations of long Rossby waves in the tropical Pacific.  J.

Geophys. Res, 95,  5183-5217.

Killworth, P.D., D. B. Chelton and R. A. de Szoeke, 1997. The speed of observed and

theoretical long extratropical planetary waves. J. Phys. Oceanogr.,27, 1946-1966.

LaCasce, J.H. 2000, Baroclinic Rossby waves in a square basin. J. Phys. Oceanography.,

30, 3161-3178.

LaCasce, J. H., 2002. On turbulence and normal modes in a basin. J. Mar. Res., 60, 431-

460.

___________  and J. Pedlosky, 2002. Baroclinic Rossby waves in irregular basins. J.

Phys. Oceanography,  32, 2828-2847.

Leeuwenburgh, O and D. Stammer, 2001. The effect of ocean currents on sea surface

temperature anomalies. J. Phys. Ocean. ,31, 2340-2358.

Leonard, B. P., 1979. A stable and accurate convection modeling procedure based on

quadratic upstream interpolation. Comp. Meth. Appl. Mech. Eng., 19, 59-98.

Qiu, B. , W. Miao, and P.Müller, 1997. Propagation and decay of  forced and free

baroclinic Rossby waves in off-equatorial  oceans. J. Phys. Oceanography. 27, 2405-

2417.

Rhines, P. B.  1975.  Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417-443.



46

Stammer, D., 1997. Global characteristics of ocean variability estimated from regional

TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 1743-1769.

Tailleux, R. & McWilliams J. C., 2001: Bottom Pressure decoupling and the speed of

extratropical baroclinic Rossby waves. J. Phys. Oceanogr. 31, 1461-1476

White, W. 1977, Observations of long Rossby waves in the northern tropical Pacific. J.

Phys. Oceanography. , 27, 50-61


