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Abstract 43 
 44 

A simple oceanic model is presented for source-sink flow on the β-plane to discuss 45 

the pathways from source to sink when transport boundary layers have large enough 46 

Reynolds numbers to be inertial in their dynamics. A representation of the flow as a 47 

Fofonoff gyre, suggested by prior work on inertial boundary layers and eddy driven 48 

circulations in two-dimensional turbulent flows, indicates that even when the source and 49 

sink are aligned along the same western boundary the flow must intrude deep into the 50 

interior before exiting at the sink. The existence of interior pathways for the flow is thus 51 

an intrinsic property of an inertial circulation and is not dependent on particular 52 

geographical basin geometry. 53 
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1. Introduction 68 

The climatically important meridional overturning circulation of the world’s ocean 69 

can be conceptualized in its simplest form as sinking of dense water in the North Atlantic 70 

that proceeds to flow in the abyss to fill the deep basins of the rest of the global ocean. In 71 

its earliest theoretical representation the pathway of the dense water was portrayed as 72 

occurring in a narrow, deep western boundary layer (Stommel and Arons, 1960). 73 

Subsequent developments of the dynamics of the Meridional Overturning Circulation 74 

(MOC) essentially considered the deep western boundary current as a simple, pipe-like 75 

conduit in the global abyssal circulation joining the polar source waters to their eventual 76 

more southern and temporary reservoirs on their pathway to eventual return to the polar 77 

North Atlantic. It is easy to show that if the western boundary current were viscous and 78 

linear, the flow from source to sink would not penetrate the interior. That exercise is left 79 

to the reader. 80 

That simple picture has come under increased scrutiny as a result of both 81 

observational and theoretical reasons. Bower et. al. 2009 found evidence from RAFOS 82 

float trajectories emanating from the Labrador Sea that followed pathways that were 83 

rarely limited to a deep western boundary current. Only about 8% of the floats followed 84 

the simple path southward in a western boundary current. 85 

From a theoretical perspective a western boundary current with a high Reynolds 86 

number, i.e., that is essentially inertial rather than viscous, and so preserving potential 87 

vorticity, requires inflow from the interior to its east (Greenspan 1962). The necessity of 88 

such an interior westward flow has been interpreted (Pedlosky, 1965) as necessary to 89 

prevent Rossby Wave energy from radiating into the interior. For the wind driven 90 

circulation of the upper ocean that westward flow is produced, at least over a major part 91 
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of the western boundary layer’s path, by interior flow in the subtropical gyres driven by 92 

the wind stress.  93 

In the model under discussion the putative boundary layer flow is driven by a 94 

source in the northwest corner of the basin and a sink in the southwest corner, crudely 95 

modeling the result of polar sinking of Atlantic water in the Arctic and “pulled” 96 

southward by upwelling to the surface of deep water in the Southern ocean (See, for 97 

example, Marshall and Speer, 2012). For source-sink flow it is not a priori clear what the 98 

mechanism would be to provide that westward containing flow unless the source-driven 99 

flow generates its own interior westward current. The suggestion has also been made that 100 

such a circulation may be eddy driven (Lozier et. al.) 101 

The calculation presented in this paper utilizes a simple Fofonoff model. It has 102 

been shown (Bretherton and Haidvogel, 1976) that the end state of a highly turbulent 103 

flow, preserving energy but minimizing enstrophy, would lead naturally to that model 104 

and this paper takes up that suggestion and applies it to a Fofonoff model modified by a 105 

source and a sink both on the western boundary. It is shown that although the Fofonoff 106 

model supports western boundary currents the resulting source-driven circulation 107 

naturally generates interior pathways to provide the containment required by Greenspan’s 108 

theorem. This suggests that the presence of interior pathways in such high Reynolds 109 

number circulations is an intrinsic feature of the dynamics and not related to any inability 110 

of the flow to follow the boundary because of the curvature of the boundary. Further, 111 

when the source strength is strong enough so that the solution is not of boundary layer 112 

type interior pathways fill the gyre.  113 

Section 2 presents the model and provides the analytical solution. Section 3 114 

presents and discusses the results as a function of the strength of the forcing source flow. 115 
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 116 

2. The model and solution 117 

Consider a rectangular model basin of north-south extent L, and east-west extent 118 

L xe . The basin is filled with constant density fluid over a flat bottom. At the northwest 119 

corner of the basin a source of fluid enters meridionally with flux S through a narrow 120 

opening in the northern boundary flush against the western wall of the basin. At the 121 

southwestern boundary a similar sink of fluid of the same strength extracts the fluid from 122 

the basin. The question of interest is the pathway taken between the source and sink.  123 

As described above, the Fofonoff model for the flow is applied. If  ψ  is the 124 

streamfunction for the flow such that the velocities in the x and y directions are u,v 125 

respectively, 
  
u=−

∂ψ
∂y
,v=

∂ψ
∂x

  while the streamfunction  ψ  satisfies 126 

 127 

    ∇
2ψ+βy= a2ψ ,      (2.1) 128 

and where β is the planetary vorticity gradient and a2  is the Fofonoff parameter that we 129 

will relate to the source strength. On the southern and northern boundaries of the basin, 130 

i.e. at y = 0 and L,  ψ  is zero. The streamfunction also vanishes on the eastern boundary at 131 

 y= L xe . However, on the western boundary at x = 0,  ψ =S. Note that with  a
2 > 0  the 132 

solution to (2.1) will be stable to finite amplitude perturbations (Arnol’d.1965) 133 

We introduce the following scaling to reduce the problem to non-dimensional 134 

form. The stream function is scaled by S, x and y are scaled by L. Then the characteristic 135 

velocity U = S / L  is used to define a from the relation 
  
a2 = βU  so that the 136 

dimensionless interior westward flow in the limit of very large β is unity. That leads to 137 
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the nondimensional form of  (2.1)  138 

  139 

     ∇
2ψ−K 2ψ=−K 2y        (2.2) 140 

where all quantities are nondimensional and where  141 

    
  
K 2 = βL

3

S         (2.3) 142 

For large values of K 2 the classical Fofonoff gyre would appear in the absence of 143 

the source and sink and boundary layer solutions of (2.2) would show a uniform interior 144 

flow girdled on western, northern and eastern boundaries by thin layers of thickness  K−1 .  145 

Such solutions are particularly apt when the source strength is very weak and so K 2  is 146 

large. To consider more general solutions it is useful to take advantage of the 147 

homogeneous boundary conditions on the southern and northern boundaries, i.e. at y = 0, 148 

1 respectively and represent the solution as a sine series in y. The solution that also 149 

satisfies the condition of zero streamfunction on the eastern boundary,  x= xe  while 150 

yielding a unit value on the western boundary at x = 0 can be easily found as,  151 

 152 

  

ψ= ψn (x)sinnπy,
n=1

N
∑

ψn =−
2
nπ
(−1)n (K 2 /Kn

2 ) 1− sinh(Knx)
sinh(Knxe )

+
sinh(Kn (x− xe ))
sinh(Knxe )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
2
nπ

1−(−1)n{ }sinhKn (x− xe )
sinh(Knxe )

(2.4 a,b) 153 

 154 

 155 

where   Kn
2 = K 2 +n2π2  . The final term on the right hand side of (2.4) is only present 156 
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when the source is considered. Note that (2.4) is valid for both positive and negative  157 

values of K 2 . For the calculations shown in the next section the sum in (2.4) was 158 

terminated after 100 terms in the series. 159 

 160 

3. Results and discussion 161 

Figure 1 shows the result of the solution of (2.2) in the absence of a source and sink, 162 

i.e., the classic Fofonoff gyre. The value of  K 2 /π2  is 400. In this case, for the Fofonoff 163 

free mode with no forcing , the value of K is arbitrary and the value chosen for the 164 

calculation of Figure1 is chosen for comparison with the same value of K for the forced 165 

flow in Figure 2.  The solution obtained is, for this large value of K 2 indistinguishable 166 

from the asymptotic boundary layer solution of Fofonoff(1954). The interior flow is 167 

uniform in y   and westward. Boundary layers on western, northern and eastern 168 

boundaries complete the recirculation. Streamfunction values are shown to illustrate the 169 

direction of flow.  170 

The nature of the circulation is quite different when the solution is driven by a 171 

source –sink pair located on the northwest and southwest corners of the basin as shown in 172 

Figure 2. The interior flow is very much the same as in Figure 1. However, the flow in 173 

the western boundary current is directed southward and is fed only indirectly by the 174 

source. The flow issuing from the source flows, almost in its entirety, along the northern 175 

boundary and joins the interior through an eastern boundary layer. As a consequence the 176 

western boundary current starts southward as a rather weak current and builds in 177 

transport strength as the current is continuously fed from the interior by the westward 178 

flowing current, which by Greenspan’s theorem, is required to hold the boundary current 179 

at the western wall. If the source were at some other location, e.g. along the northern 180 
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boundary or the eastern boundary, the resulting flow would be similar to Figure 2 except 181 

that the circulation would start at the location of the source but otherwise resemble the 182 

flow in Figure 2. 183 

If the source strength is increased as in Figure 3 so that the value of  K 2 /π2  is 20, 184 

the solution loses its purely boundary layer character. The major part of the flow from the 185 

source now sweeps eastward in the interior before turning and reaching the sink in the 186 

southwest corner through pathways that are largely in the interior. There is still a  β  187 

induced asymmetry in the flow. The interior eastward flow occupies a smaller meridional 188 

extent compared to the westward flow but the character of the solution is no longer 189 

boundary layer-like and Greenspan’s theorem is no longer rigorously relevant. It’s also 190 

clear that the development of interior pathways is not related to any curvature of the 191 

western boundary or a separation-induced phenomenon but is rather intrinsic to the 192 

source-sink flow on the β plane when the flow is inertial, i.e. when friction is not strong 193 

enough to allow a simple frictional western boundary current conduit directly from 194 

source to sink. Figure 4 shows the circulation for a somewhat smaller K 2 /π2 = 10. 195 

If we imagine the circulation in Figures 3 and 4 as rough models of the abyssal flow 196 

in the Atlantic west of the Mid Atlantic Ridge and consider a characteristic velocity for 197 

the interior flow of the order of a few cm/sec the pattern of Figures 3 and 4 are probably 198 

more appropriate than the boundary layer form of Figure 2. In Figure 3, with its value of 199 

 K 2 /π2 = 20, a characteristic interior velocity is of the order of    U = βL2 /K 2  which for L 200 

=  1000 km and   β=10−13cm−1 sec−1  yields a value of U of about 5 cm/sec which seems 201 

reasonable for the interior abyssal flow. We note that the tendency towards interior 202 

pathways will increase the time to traverse the gyre from source to sink with obvious 203 

implications for the overturning circulation of which it is a part. It also emphasizes that 204 
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the MOC is a three dimensional dynamical structure not limited to a meridional vertical 205 

plane. 206 

 207 
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 257 

Figures 258 

Figure 1. The classical Fofonoff anticyclonic gyre with no source or sink, i.e. S = 0. K 2  = 259 

400 π
2 . 260 

 261 

Figure 2. The flow as in Figure 1 but now with a source in the northwest corner and a 262 

sink in the southwest corner. 263 

 264 

Figure 3. The source-sink flow  as in Figure 2 but for a smaller value of K 2  = 4  π2   265 

 266 

Figure 4. As in Figure 3 but for  K 2 /π2  = 10. 267 

 268 
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Figure 1. The classical Fofonoff anticyclonic gyre with no source or sink, i.e. S = 0. K 2  = 400 π
2 . 281 
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 290 
 291 
Figure 2. The flow as in Figure 1 but with a source in the northwest corner and a sink in the southwest 292 

corner. 293 
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Figure 3. The source-sink flow as in Figure 2 but for a smaller value of K 2  = 4  π

2   302 
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Figure 4. As in Figure 3 but for  K 2 /π2  = 10. 311 
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