An Array of Ice-Based Observatories for Arctic Studies

Woods Hole Oceanographic Institution: Institute of Ocean Sciences, Canada: Alfred Wegener Institute, Germany: Universite Pierre et Marie Curie, France; **Cold Region Research and Engineering Laboratory;** Arctic and Antarctic Research Institute, Russia,

The Arctic Ocean's role in global climate - while now widely appreciated remains poorly understood. Lack of information about key processes within the oceanic, cryospheric, biologic, atmospheric and geologic disciplines will continue to impede physical understanding, model validation, and climate prediction until a practical observing system is designed and implemented.

Several designs for Arctic Observing Systems are emerging as part of the U.S. National Science Foundation's "Study of Environmental Arctic Change" (SEARCH) program and comparable Arctic study programs conceived as contributions to the proposed International Polar Year (IPY) 2007/2008. An outcome of these ongoing discussions is an increasingly focused vision for future Arctic research including: (1) manned expeditions with enhanced capabilities; (2) basin-wide networks of autonomous icebased instrument systems and autonomous vehicles: and (3) cabled oceanographic observatories.

Schematic depiction of an Arctic Observing System showing different elements including Cable and Ice-Based Observatories and Autonomous Underwater Vehicles.

Following up on the second of these themes.

lives and program managers from etailing the next generation of ice-based technologies in ont development

Ice-based instrument systems

Autonomous instruments have become an increasingly important source of Arctic data. Since 1978. observations from the International Arctic Buoy Program (IABP) have contributed significantly to polar science by returning meteorological and sea ice drift data for real-time operational requirements and research purposes. Buoys with subsurface instrumentation have also been used with great success, including Polar Ocean Profiler (or SALARGOS) data buoys Ice-Ocean Environmental Buoys (IOEB) and JAMSTEC Compact Arctic Drifter (J-CAD) buoys.

At least four prototypes versions of oceanic observing systems are already operating in the Arctic, providing real time information, including:

□ IABP buoy array accompanied by Ice Mass Balance (IMB) buoys

□ JAMSTEC J-CAD buoy in combination with IMB buoys

WHOI's Ice-Tethered Profiler (ITP) in combination with IMB buoy

□ North Pole Environmental Observatory (NPEO; which includes Arctic Ocean Flux Buoys (AOFB), J-CADs and IMB buoys).

Requirements and challenges for ice-based observatories

Experience gained in previous studies was brought to bear by workshop participants to develop the concept of an array of ice-based instrument systems, or Ice-Based Observatories (IBO's), necessary to satisfy the needs of international Arctic science programs.

Parameters to be obtained by IBOs. (Core parameters are those for which sensors are presently available: expanded parameters include those for which sensors are in development and could be available in the relatively near future.)

Core Atmospheric Parameters	Sensor
Air pressure	Barometric pressure sensor
Air temperature	Shielded thermistor, at least 2 levels for stratification
Wind speed and direction	Anemometer, 10m if practical
Direction reference	Fluxgate compass or differential GPS
Rime sensor	
Short wave radiation flux (up and down)	Radiometers
Long wave radiation	Radiometers at 1-2 levels
Cloud cover	All-sky Webcam technology
Ozone concentration	Spectrometer
Changing surface and sky conditions	Webcam technology
Expanded Atmospheric Parameters	
Biologically important production of chemical different heights above the ice surface	lly relevant gases: CO2, O2, DMS, halogens, methane at
Deposition of atmospheric material onto the s	now/ice (e.g., soot)
Core Sealice Parameters	Sensor

Position (and sea-ice deformation)	GPS (GPS buoy array)
Snow thickness	Acoustic echo sounder
Ice thickness	Acoustic echo sounder
Temperature in snow and ice	Thermistors at 0.1 m vertical resolution
Short wave radiation in ice	Radiometers at 1-2 levels
Snow wetness	Dielectric sensor
Ice surface salinity	Dielectric sensor
Changing surface ice conditions	Webcam technology
Expanded Sea-ice Parameters	
Fluorescence profiles, optical properties (s surface and under-ice biology (surface rove	pectroradiometers), permeability, chemical profiles, sea-ice er, AUV, webcam)
Sub-ice surface characteristics using camer	ras, spectral instruments

Core Ocean Parameters	Sensor
Pressure	Strain gauge
Temperature	Thermistors
Salinity	Conductivity
Current velocity and backscatter	Acoustic (single point and profiling)
Dissolved Oxygen	Oxygen (e.g. SBE-43)
Fluorescence	Fluorometers
Light Transmission or Turbidity	Transmissometer or scatterometers
Photosynthetically Available Radiation (PAR)	PAR sensors
Optical	(e.g. AC-9)
Nitrate (NO3)	(e.g. Satlantic ISUS)
Active and Passive Acoustics	Tomography
Turbulent fluxes in the ocean mixed layer	Flux sensors
Carbon Dioxide Partial Pressure (p CO,)	SAMI- CO, sensor
Expanded Ocean Parameters	

en-18) CECs metals imary production (fast repetition rate fluorometer), spectral auality, plankton/particle identification

photography), genetic analysis of plankton ediment traps, discrete water sample collection The basic requirements identified at the workshop for a future generation of ice-based unmanned platforms are:

Four-dimensional diagram showing Arctic temporal and spatial limits for long-live IBOs, W. S. S. and F denote Winter, Spring, Summer, and Fall, respectively.

Time/space diagram for key physical oceanic processes and water mass distributions in the Arctic Ocean that could be studied using the IBO concept.

Although much of the necessary IBO technology already exists and routine observations are presently underway using the IBO concept, a variety of challenges must be addressed en route to a comprehensive observing system:

2. Platform instrumentation should be improved by continued developmen profiling systems for atmosphere, ice and ocean with the goal of sampling biological and chemical variables on the same spatial and temporal scales physical variables in order to separate biological and /or chemically transformations from changes due to physical mechanisms. Profiling syste many physical variables are presently available or easily adapted for could for the physical variables. hany physical variables are presently available or easily adapted for rout

□ IBOs will be best suited to deployment in perennial pack ice. However, the seasonal sea ice zone accounts for a majority of the northern marine cryosphere, and most of this is in shallow water (<500 m). Specialized IBO designs will likely be needed for the seasonal ice zone, platform lifetimes will be short, and frequent re-deployments will be required. Alternate technology (e.g. profiling floats) may also be required. -----

□ The integration of autonomous vehicles with IBO's needs to be addressed in design studies. There are specific technological issues (e.g. navigation, communication and energy transfer) relating to interactions among IBO's, floats, gliders and AUVs that should be addressed concurrently with an IBO array

Workshop Conclusions and Recommendations

Ice-based instrument systems are a proven means of acquiring unattended high quality air, ice, and ocean data from the central Arctic during all seasons. Arctic Change is ongoing and measurements need to begin now. An array of IBO units, deployed and maintained throughout the central Arctic, is envisioned to observe the spatial structure and annual to decadal variations of the polar atmosphere-ice-ocean environment as one component of a coordinated Arctic Observing System. Practical, cost-effective and proven IBO designs presently exist, can be readily extended to provide interdisciplinary observations. and should be implemented expeditiously as part of a coordinated effort to observe the coupled Arctic atmosphere-ice-ocean system.

Specific recommendations were:

Area of observational coverage based on IABP buoys for 1979-2000. Solid blue line depicts 800 m isobath and red lines show buoy trajectories.

Acknowledgements: We gratefully acknowledge contributions from all workshop participants, and in particular the keynote speakers who are isted, along with a summary of their presentations and the workshop report, at http://www.w

Thomas Pyle of the National Science Foundation (NSF) provided the impetus for the workshop. Financial support was provided by NSF through Grant No. OPP-0349416 from the Office of Polar Programs.

