

Available online at www.sciencedirect.com

Journal of Geochemical Exploration 88 (2006) 399-403

www.elsevier.com/locate/jgeoexp

pH-Dependent iron oxide precipitation in a subterranean estuary

C. Spiteri^{a,*}, P. Regnier^a, C.P. Slomp^a, M.A. Charette^b

^a Faculty of Geosciences, Department of Earth Sciences–Geochemistry, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands ^b Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Massachusetts, USA

> Received 1 April 2005; accepted 19 August 2005 Available online 11 November 2005

Abstract

Iron-oxide-coated sediment particles in subterranean estuaries can act as a geochemical barrier ("iron curtain") for various chemical species in groundwater (e.g. phosphate), thus limiting their discharge to coastal waters. Little is known about the factors controlling this Fe-oxide precipitation. Here, we implement a simple reaction network in a 1D reactive transport model (RTM), to investigate the effect of O_2 and pH gradients along a flow-line in the subterranean estuary of Waquoit Bay (Cape Cod, Massachusetts) on oxidative precipitation of Fe(II) and subsequent PO₄ sorption. Results show that the observed O_2 gradient is not the main factor controlling precipitation and that it is the pH gradient at the mixing zone of freshwater (pH 5.5) and seawater (pH 7.9) near the beach face that causes a ~7-fold increase in the rate of oxidative precipitation of Fe(II) at ~15 m. Thus, the pH gradient determines the location and magnitude of the observed iron oxide accumulation and the subsequent removal of PO₄ in this subterranean estuary. © 2005 Elsevier B.V. All rights reserved.

Keywords: Subterranean estuaries; Iron-oxide precipitation; Phosphate adsorption

1. Introduction

Submarine groundwater discharge (SGD) provides an important transport pathway for land-derived dissolved nutrients to coastal waters (Charette et al., 2001; Slomp and Van Cappellen, 2004). The chemical composition of SGD is not only determined by the terrestrial freshwater source(s), but also by the biogeochemical processes occurring along the groundwater flow path, particularly in the "subterranean estuary" where freshwater and seawater mix (Moore, 1999).

Removal of dissolved metals and nutrients subterranean estuaries is thought to be mainly controlled by the redox characteristics of the freshwater and seawater (Slomp and Van Cappellen, 2004). For instance, the accumulation of iron oxides observed near the fresh-

* Corresponding author. Fax: +31 30 253 5302. *E-mail address:* c.spiteri@geo.uu.nl (C. Spiteri). Here, we propose an alternative mechanism, where the precipitation of Fe-oxides results from the differences in pH between the freshwater and seawater. To test this hypothesis, we use a 1D RTM to assess the combined effects of O_2 and pH changes on Fe-oxide precipitation and the subsequent phosphate (ΣPO_4) removal along a flow line in the subterranean estuary of Waquoit Bay.

2. Hydrogeology and biogeochemistry of the Waquoit Bay subterranean estuary

Waquoit Bay is a shallow estuary located on the southern shoreline of Cape Cod (Fig. 1). A significant

water-seawater interface of Waquoit Bay (Cape Cod, Massachusetts; Fig. 1), referred to as the "iron curtain", has been attributed to the oxidative precipitation of groundwater Fe upon transport through oxygenated coastal sediments (Charette and Sholkovitz, 2002).

 $^{0375\}text{-}6742/\$$ - see front matter O 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.gexplo.2005.08.084

Fig. 1. Map of Waquoit Bay, showing the 20×8 m piezometer transect (A'–A) perpendicular to the shore line at the head of the bay and the location of the "iron curtain".

portion of the freshwater input and material fluxes to the bay occurs as SGD (Charette et al., 2001). To investigate the chemical constituents of the SGD, 6 piezometers were installed along a transect perpendicular to the coast at the head of the bay where the surface aquifer consists of unconfined, permeable sand (Micheal, 2005). Groundwater samples were collected in June 2004 and analyzed as described elsewhere (Talbot et al., 2003; Charette et al., 2005). Fig. 2 shows depth profiles of total dissolved Fe and ΣPO_4 along the transect. The range of observed pH values and the vertically averaged concentrations are presented in Fig. 3.

Salinity measurements indicate a sharp Ghyben– Herzberg type freshwater–seawater interface (Fig. 2), and surface mixing of seawater and freshwater at the intertidal piezometers PZ-3 and PZ-5 (not shown). A distinct freshwater Fe plume that disappears as the groundwater flows seaward is clearly identified in Fig. 2. At around PZ-3, the Fe content of the dark red, yellow and orange subsurface sands ranges from 2500 to 4100 ppm, which is 10 to 15 times higher than in "control" sediment (Charette and Sholkovitz, 2002). Although the freshwater ΣPO_4 concentrations are relatively low (maximum ~5 µM), phosphate removal is observed as the Fe and ΣPO_4 plumes overlap. Measurements of dissolved oxygen (O₂) (not shown) show relatively low values (40 µM) in the landward piezometers, increasing up to ~200 µM towards PZ-3 and PZ-5. The average pH at the first piezometer in the transect (PZ-7) is 5.5 while at the seaward boundary (PZ-12), the pH is 7.9 (Fig. 3).

3. Model description

The processes included in the Biogeochemical Reaction Network Simulator (BRNS), a flexible 1D RTM

Fig. 2. Concentration profiles of total dissolved Fe and Σ PO₄ in the X–Z plane. The dotted line indicates the position of the salt-wedge, based on salinity measurements.

(Regnier et al., 2003; Aguilera et al., 2005), are pHdependent oxidative precipitation of Fe(II), ΣPO_4 adsorption onto Fe-oxides and advective plus dispersive groundwater transport (Table 1). At the upstream boundary (x=0 m), a Dirichlet boundary condition is applied, which fixes the concentration of Fe(II), O_2 , ΣPO_4 and pH at the freshwater side of the domain (Table 2). The Fe(II) concentration is set equal to the measured dissolved Fe, based on field measurements (Charette et al., 2005). At the outflow (x = 20 m), a zero concentration gradient boundary condition is specified for all dissolved chemical species. Although it would be possible to incorporate pH and O₂ as master variables in the RTM (e.g. Aguilera et al., 2005), the current data set for Waquoit Bay does not allow the reaction network required to model these variables to be fully constrained. Instead, both O₂ and pH are implemented as forcing functions, either as constant values or as a longitudinal gradient along the flow line (Table 2). The solid species, i.e. Fe-oxides (Fe(OH)₃) and Fe-bound phosphate (Fe-P) are considered immobile and hence are only affected by local biogeochemical transformations.

In the model, we represent the pH-dependent Fe(II) oxidation by O_2 as:

$$-\left(\frac{\mathrm{d}[\mathrm{Fe}(\mathrm{II})]}{\mathrm{d}t}\right)$$
$$=\left(k_0[\mathrm{Fe}(\mathrm{II})] + k_1\beta_1\frac{[\mathrm{Fe}(\mathrm{II})]}{[\mathrm{H}^+]} + k_2\beta_2\frac{[\mathrm{Fe}(\mathrm{II})]}{[\mathrm{H}^+]^2}\right)[\mathrm{O}_2]$$
(1)

where $k_0=252 \text{ M}^{-1} \text{ year}^{-1}$, $k_1=.9 \times 10^8 \text{ M}^{-1} \text{ year}^{-1}$, $k_2=252 \times 10^{14} \text{ M}^{-1} \text{ year}^{-1}$ are rate constants corrected for a temperature of 10 °C. The apparent equilibrium constants β_1 and β_2 are equal to 3.2×10^{-10} M and $2.5 \times 10^{-21} \text{ M}^2$, respectively (Martin, 2003). Our formulation ignores the heterogeneous catalysis of the metal oxide surfaces that enhances the oxidation process at pH values above 7 (Martin, 2003). Eq. (1) leads to a progressive increase in the rate of oxidation with O_2 as the dominant hydrolysis species shifts from $[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$ to $[\text{Fe}(\text{H}_2\text{O})_5\text{OH}]^+$ and further to $[\text{Fe}(\text{H}_2\text{O})_4(\text{OH})_2]^0$ with increasing pH. In the pH range considered here, a unit increase in pH will cause a 100-fold increase in the overall reaction rate.

Fig. 3. Model results for scenarios with a constant pH and a pH gradient with distance along the flow line, assuming an O₂ concentration gradient in both. Data points are vertically averaged concentrations of total dissolved Fe and ΣPO_4 in the freshwater plume. The units for solutes are given in µmoles per dm³ pore water (µM) while solid species are in µmoles per dm³ total volume (µmol dm⁻³).

Adsorption of phosphate onto the Fe-oxides is assumed to follow a Langmuir isotherm, in which the extent of sorption is limited by the amount of available surface sites, X_T (mol dm⁻³):

$$[Fe - P] = \frac{\alpha X_T [\sum PO_4]}{1 + \alpha [\sum PO_4]}$$
(2)

with $\alpha = K_d * \phi$ and $X_T = 0.1 * [Fe(OH)_3]$.

In Eq. (2), K_d is the dimensionless distribution coefficient and X_T defines the amount of Fe-oxides avail-

Table 1 Model parameters used in the simulations

Symbol (unit)	Parameter	Value
Δx (m)	Grid spacing	0.2
Δt (year)	Max. time step	1.5×10^{-2}
t_{total} (year)	Total time of simulation	0.4
α_{L} (m)	Longitudinal dispersivity	0.5*
$v \text{ (m year}^{-1}\text{)}$	Advective velocity	182.5**
φ (-)	Aquifer porosity	0.35*
K _d (–)	Distribution coefficient	3.0×10^{5}

* Micheal (2005).

** M. Charette (personal communication).

able for P sorption, assuming a $[Fe(OH)_3]$: [Fe-P] maximum ratio of 10 (Slomp et al., 1996).

4. Model results and discussion

In a first simulation, the pH is maintained constant over the 1D flow line (pH=5.7). In this case, the model predicts a gradual drop in the Fe(II) and Σ PO₄ in the seaward direction which is significantly smaller than the decline observed in the field. Most Fe oxide pre-

Table 2					
Boundary a	nd initial	concentrations	for all	chemical	species

Chemical species	Boundary concentration		Initial concentration		
Fe(II) (µM)	100		40		
$\Sigma PO_4 (\mu M)$	2.5		1.0		
O ₂ (μM)	40*	40**	40*	40-200**	
pН	5.7*	5.7**	5.7*	5.7-7.9**	
$Fe(OH)_3 \ (\mu mol \ dm^{-3})$	0.0		0.0		
Fe-P (µmol dm ⁻³)	0.0		0.0		

* Constant.

** Gradient.

cipitation occurs in the freshwater part (Fig. 3). In contrast, in a simulation with an increasing pH (5.7 to 7.9), Fe-oxide precipitation rates increase 7-fold at ~ 15 m and a peak in Fe-oxides is formed. The latter location is consistent with the zone of major Fe-oxide accumulation observed in the field (Charette and Sholkovitz, 2002). The complete disappearance of groundwater Fe(II) observed in the seaward direction (Figs. 2 and 3) is also well captured by the model that includes pHdependent Fe(II) oxidation. Using either constant O_2 concentrations (40 μ M) or a seaward increase in O₂ (from 40 to 200 μ M), does not affect the model results significantly, implying that changes in the redox characteristics of the subterranean estuary in Waquoit Bay play a minor role in the removal of Fe(II). Because of the enhanced precipitation of Fe oxides, more groundwater ΣPO_4 is removed when the pH dependency of the precipitation of Fe oxides is considered (Fig. 3).

5. Conclusions

Using a 1D RTM, applied to a groundwater flow line of Waquoit Bay subterranean estuary, we show that the pH gradient in the mixing zone of freshwater and seawater at the beach face is the key factor driving the formation of the "iron curtain". The pHdependent Fe-oxide precipitation explains the location and magnitude of the Fe-oxide coated sediments observed in the field and the concomitant removal of groundwater Fe. Results also indicate that the generation of "iron curtains" can significantly attenuate dissolved ΣPO_4 in groundwater prior to discharge to the coastal waters.

Acknowledgements

Financial support was provided by the Netherlands Organisation for Scientific Research (NWO) and WHOI Guest Student Program (grants to C. Spiteri), the Royal Netherlands Academy of Arts and Sciences (KNAW) (fellowship to C.P. Slomp) and US National Science Foundation NSF-OCE0095384 and NSF-OCE0425061 (grants to M.A. Charette).

References

- Aguilera, D.R., Jourabchi, P., Spiteri, C., Regnier, P., 2005. A knowledge-based reactive transport approach for the simulation of biogeochemical dynamics in earth systems. Geochemistry, Geophysics and Geosystems 6, Q07012. doi:10.1029/2004GC000899.
- Charette, M.A., Buesseler, K.O., Andrews, J.E., 2001. Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary. Limnology and Oceanography 46, 465–470.
- Charette, M.A., Sholkovitz, E.R., 2002. Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay. Geophysical Research Letters 29 (art. no.-1444).
- Charette, M.A., Sholkovitz, E.R., Hansel, C., 2005. Trace element cycling in a subterranean estuary: Part 1. Geochemistry of the permeable sediments. Geochimica et Cosmochimica Acta 69, 2095–2109.
- Martin, S.T., 2003. Precipitation and dissolution of iron and manganese oxides. In: Grassian, V.H. (Ed.), Environmental Catalysis. Marcel-Dekker.
- Micheal, H.A., 2005. Seasonal Dynamics in Coastal Aquifers: Investigation of Submarine Groundwater Discharge through Field Measurements and Numerical Models, PhD Thesis, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology.
- Moore, W.S., 1999. The subterranean estuary: a reaction zone of ground water and sea water. Marine Chemistry 65, 111–126.
- Regnier, P., Jourabchi, P., Slomp, C.P., 2003. Reactive-transport modeling as a technique for understanding coupled biogeochemical processes in surface and subsurface environments. Netherlands Journal of Geosciences 82, 5–18.
- Slomp, C.P., Van Cappellen, P., 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology 295, 64–86.
- Slomp, C.P., Van der Gaast, S.J., Van Raaphorst, W., 1996. Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Marine Chemistry 52, 55–73.
- Talbot, J.M., Kroeger, K.D., Rago, A., Allen, M.C., Charette, M.A., 2003. Nitrogen flux and speciation through the subterranean estuary of Waquoit Bay, Massachusetts. Biological Bulletin 205, 244–245.