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Abstract

Dissolved Fe concentrations in subterranean estuaries, like their river-seawater counterparts, are strongly controlled by
non-conservative behavior during mixing of groundwater and seawater in coastal aquifers. Previous studies at a subterranean
estuary of Waquoit Bay on Cape Cod, USA demonstrate extensive precipitation of groundwater-borne dissolved ferrous iron
and subsequent accumulation of iron oxides onto subsurface sands. Waquoit Bay is thus an excellent natural laboratory to
assess the mechanisms of Fe-isotope fractionation in redox-stratified environments and determine potential Fe-isotope signa-
tures of groundwater sources to coastal seawater. Here, we report Fe isotope compositions of iron-coated sands and porewa-
ters beneath the intertidal zone of Waquoit Bay. The distribution of pore water Fe shows two distinct sources of Fe: one
residing in the upward rising plume of Fe-rich groundwater and the second in the salt-wedge zone of pore water. The ground-
water source has high Fe(II) concentration consistent with anoxic conditions and yield d56Fe values between 0.3 and �1.3&.
In contrast, sediment porewaters occurring in the mixing zone of the subterranean estuary have very low d56Fe values down to
�5&. These low d56Fe values reflect Fe-redox cycling and result from the preferential retention of heavy Fe-isotopes onto
newly formed Fe-oxyhydroxides. Analysis of Fe-oxides precipitated onto subsurface sands in two cores from the subterranean
estuary revealed strong d56Fe and Fe concentration gradients over less than 2m, yielding an overall range of d56Fe values
between �2 and 1.5&. The relationship between Fe concentration and d56Fe of Fe-rich sands can be modeled by the progres-
sive precipitation of Fe-oxides along fluid flow through the subterranean estuary. These results demonstrate that large-scale
Fe isotope fractionation (up to 5&) can occur in subterranean estuaries, which could lead to coastal seawater characterized by
very low d56Fe values relative to river values.
� 2008 Published by Elsevier Ltd.
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R1. INTRODUCTION

Iron is a particle reactive trace metal present at extre-
mely low concentrations in the upper ocean (<1 nM) (e.g.
Wu et al., 2001; Boyle et al., 2005) and is now recognized
as a limiting nutrient in large regions of world’s ocean
and in certain coastal waters (Martin, 1990; Hutchins et
al., 1999; Archer and Johnson, 2000; Boyd et al., 2000).
The main sources of dissolved Fe into the ocean are atmo-
spheric deposition, input from rivers, re-suspended sedi-
ment and pore water along continental shelves and
hydrothermal vents (e.g. Wells et al., 1995; Elderfield and
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Schultz, 1996; Johnson et al., 1999). In contrast to the inte-
rior of the oceans, marine sediments and rivers are impor-
tant sources of iron to the water column of coastal
systems (e.g., Hutchins et al., 1999; Johnson et al., 1999; El-
rod et al., 2004; Mayer, 1982; Powell and Wilson-Finelli,
2003; Jickells et al., 2005; Buck et al., 2007; Ussher et al.,
2007).

The stable isotope composition of Fe can provide valu-
able insights into the sources of Fe and Fe biogeochemical
cycles in marine and terrestrial environment. In particular,
significant fractionation of Fe isotopes has been demon-
strated during partial oxidation and reduction reactions,
suggesting that Fe isotopes are useful tracers of Fe redox
cycling (Beard et al., 2003b; Johnson et al., 2004; Rouxel
et al., 2005; Staubwasser et al., 2005; Teutsch et al., 2005;
Severmann et al., 2006; Anbar and Rouxel, 2007; de Jong
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et al., 2007). These redox processes include dissimilatory
Fe(III) reduction (Beard et al., 1999; Beard et al., 2003a;
Crosby et al., 2007; Icopini et al., 2004), anaerobic photo-
synthetic Fe(II) oxidation (Croal et al., 2004), abiotic Fe(II)
oxidation and precipitation of ferric hydroxides (Bullen et
al., 2001; Balci et al., 2006), and sorption of aqueous Fe(II)
onto ferric hydroxides (Icopini et al., 2004; Teutsch et al.,
2005).The largest equilibrium isotope fractionations of
around 3& have been observed and theoretically calculated
between co-existing Fe(III) and Fe(II) aqueous species
(Johnson et al., 2002; Welch et al., 2003; Anbar et al., 2005).

Our knowledge of the Fe isotope composition of Fe
sources to the ocean remains incomplete. Fe carried by riv-
ers, including both soluble, colloidal and particulate frac-
tions, has d56Fe values ranging between �0 and �1&,
suggesting that riverine Fe is isotopically light relative to
igneous rocks (Fantle and DePaolo, 2004; Bergquist and
Boyle, 2006). Iron isotope compositions of marine pore flu-
ids from the California continental reveal a relatively large
Fe isotope fractionation during early diagenetic processes,
with d56Fe values ranging from �3 to +0.4& (Severmann
et al., 2006). Hence, the intense cycling of Fe between oxi-
dized and reduced species in the upper few cm of coastal
sediments can lead to the release of low d56Fe iron from
sediments to the water column (Staubwasser et al., 2005;
Severmann et al., 2006).

Studies indicate that groundwater may contribute signif-
icantly to dissolved chemical species to the oceans (Moore,
1999) and, in one recent case, may also represent a large
source of dissolved Fe to the coastal ocean (Windom et
al., 2006). The magnitude of groundwater fluxes is influ-
enced by biogeochemical processes occurring in the subter-
ranean estuary, defined as the mixing zone between
groundwater and seawater in a coastal aquifer. Dissolved
Fe concentrations in subterranean estuaries, like their riv-
er-seawater counterparts, are strongly controlled by non-
conservative (removal) behavior during mixing of river
water and seawater (Sholkovitz, 1976; Boyle et al., 1977).
However, a unique feature of subterranean estuaries is that
the removal of Fe and other nutrients is mainly controlled
by the redox characteristics of the fresh and saline ground-
water (Slomp and VanCappellen, 2004). In particular, the
recent discovery of an ‘‘Iron Curtain” in the subterranean
estuary of Waquoit Bay on Cape Cod, USA demonstrates
extensive precipitation of groundwater-borne dissolved fer-
rous iron and subsequent accumulation of iron oxides onto
subsurface sands at the groundwater-seawater interface
(Charette and Sholkovitz, 2002; Charette et al., 2005; Cha-
rette and Sholkovitz, 2006). Waquoit Bay is thus an excel-
lent natural laboratory to assess the Fe-isotope
composition of the groundwater input in a coastal zone
and to evaluate if the iron flux from subterranean estuaries
has a unique Fe isotope signature that is distinct from other
coastal iron sources.

Here, we report a comprehensive study that demon-
strates that the precipitation of iron oxides and redox-dri-
ven diagenetic reactions in subterranean estuaries produce
large-scale variations of Fe isotopes in both sediments
and pore water. This approach provides important
constraints on the mechanisms of Fe-isotope fractionation
Please cite this article in press as: Rouxel O. et al., Iron isotope
chim. Acta (2008), doi:10.1016/j.gca.2008.05.001
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during Fe redox cycling. In particular, we aim to evaluate
the relative effects of Fe-isotope fractionation associated
with oxidative Fe precipitation vs. reductive Fe-dissolution
pathways in a redox stratified environment.

2. MATERIALS AND SETTING

Waquoit Bay is a shallow estuary located on the south
shoreline of Cape Cod, MA, USA. A significant portion
of the freshwater input into the bay occurs as submarine
discharge of groundwater (Charette et al., 2001) which is
mostly restricted to a narrow (�25 m-wide) band along
the head of the bay (Michael et al., 2003) (Fig. 1). Freshwa-
ter flowing downgradient from the water table may either
discharge at the shore or flow directly under the beach into
the sea. The hydraulic gradient that drives freshwater to-
ward the sea along the fresh-saline groundwater interface
also drives saltwater shoreward, creating a saltwater circu-
lation cell (Michael et al., 2005; Moore, 1999). The hydrau-
lic gradient is influenced by tides and rainfall, leading to
hourly (Sholkovitz et al., 2003), seasonal (Michael et al.,
2003), and interannual variability in groundwater discharge
rates at this location. Topography also exerts a significant
control on the location and flux of groundwater discharge
at Waquoit Bay (Mulligan and Charette, 2006). While these
factors can modulate the peak concentration and vertical/
horizontal position of the dissolved Fe plumes in Waquoit
Bay, six years of repeated sampling shows the same general
features in the Fe distributions as reported in this paper
(Charette et al., 2005).

Previous studies of the subterranean estuary of Waquoit
Bay (Charette and Sholkovitz, 2002, 2006; Charette et al.,
2005) have reported on element cycling of Fe, Mn, Ba, P
and U in the permeable sediments and pore water. A series
of sediment cores, ranging from 1.1 to 2.0 m in length were
collected at the head of Waquoit Bay in April 2001 using a
vibracoring technique (Charette and Sholkovitz, 2002). The
pore water within the permeable sands of these cores
drained away during the extrusion and sectioning activities.
Hence, our solid phase data of Fe isotopes for these cores
are not accompanied by pore-water data. Of the five recov-
ered cores, Cores 2 and 3 have been selected for this study
based on their location relative to the source of groundwa-
ter in the bay (Fig. 1). Core 2 is located near the piezometer
transect A-A0 in Fig. 1 whereas Core 3 is located near pie-
zometer #4, about 50 m apart. The recovered lengths for
cores 2 and 3 were 175 and 169 cm, respectively. The most
outstanding visual feature of these cores is the color
changes that occur over a transition zone of many tens of
centimeters. Core 2 changes from gray to dark red coating
at a depth of �85 cm; this color change reflects predomi-
nantly the deposition of ferrihydrite (64%) with goethite
(26%) and lepidocrocite (10%). Core 3 changes from gray
to red to orange at a depth of �30 cm and has the largest
amount of lepidocrocite (19%) whereas goethite and fer-
rihydrite represent 44 and 37% respectively (Charette et
al., 2005). We also analyzed two types of ‘‘background”

sediments (1) surface beach sand from the head of Waquoit
Bay near the coring sites, and (2) offsite sand collected from
a Vineyard Sound beach located 10 km from Waquoit Bay.
fractionation in subterranean estuaries, Geochim. Cosmo-
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Fig. 1. Location of Waquoit Bay on Cape Cod, USA. The Bay opens to open seawater at the southern end. The expanded map of the head of
the Bay shows the location of the piezometers along a profile (A-A0) perpendicular to the shoreline. Location for piezometer #4 Core#2 and
Core#3 are also presented.
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All types of sediments (surface and deep) have similar size
distribution and contain greater than 95% sand (mainly
quartz with trace amounts of plagioclase and clinopyrox-
ene, amphiboles and mica) and less than 5% silt and clay.

A piezometer was used to obtain a two dimensional dis-
tribution of the porewater composition at the head of the
bay along a 17m transect. Field sampling methods and
porewater chemistry are presented in detail in previous
studies (Charette and Allen, 2006; Charette and Sholkovitz,
2006). The piezometer consists of a screened port at the end
of a thin probe which can be pushed down into the beach
sands. Ground water is pumped to the surface through
plastic tubing. Slow pumping and immediate filtration
using syringes keeps the ambient air out of the samples
which minimizes the oxidation of dissolved Fe (II) to par-
Please cite this article in press as: Rouxel O. et al., Iron isotope
chim. Acta (2008), doi:10.1016/j.gca.2008.05.001
ticulate Fe (III) oxides prior to acidification and storage.
Each profile required 4 to 8 h of sampling, and the complete
transect covered 17 days (7 June to 3 July 2002). Hence, the
pore-water data do not represent synchronous distributions
of the measured parameters. The salinity distribution along
the piezometer transect A-A0 (Fig. 1) is presented in Fig. 2
and shows that there is a well-defined subterranean estuary
beneath the head of the Bay. Fresh groundwater flows
across a narrow seepage face parallel to the shoreline.
Two distinct sources of high dissolved Fe have been identi-
fied (Fig. 2). One source resides in the upward rising plume
of Fe-rich freshwater and the second source lies in the salt-
wedge zone of mid to high salinity pore water. The second
source of dissolved Fe, where pore water concentrations
reach up to 75 lM in Piezometer#8 along the transect A-
fractionation in subterranean estuaries, Geochim. Cosmo-
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A0 (Fig. 2) and up to 500 lM in Piezometer #4 (�50 m
away), result from chemical diagenesis typical of that found
in reducing marine sediments where microbial activity leads
to the reduction of Fe oxide (Froelich et al., 1979). Pore
water data show that sulfate reduction is not occurring in
the salt wedge section that contains high levels of reduced
Fe and Mn. Hence, the production of sulfides is not an
important part of the redox-driven cycling of Fe (Charette
and Sholkovitz, 2006). The lack of sulfide formation in
porewater, together with dissolved O2 concentration less
down to 0.5 mg/L, suggest mostly O2-deficient but not an-
oxic conditions within the subterranean estuary. Represen-
tative samples of groundwater and Fe(II)-rich pore waters
with Fe concentration between 30 and 490 lM were se-
lected for Fe isotope measurements (Fig. 2).

It is important to note the large difference in scale be-
tween the sediment cores (maximum 1.8 m in length) and
porewater samples that extend up to 8 m into the sediment
beneath the head of Waquoit Bay (Fig. 2). Hence, sediment
core geochemistry cannot be directly link to porewater geo-
chemistry. Because the Fe concentrations continue to in-
crease toward the bottom of the sediment cores, the full
vertical extent of the iron curtain sediments was not entirely
known at the time of collection. Recently, a set of longer (7
m) sediment cores from this location were collected. Fe (hy-
dr)oxide analysis of the sediment revealed the existence of
two iron curtains: (1) a shallow one, approximately 2 m
in the vertical, likely associated with oxidation of Fe from
the freshwater Fe plume, and (2) a deeper, 1 m zone of high
Fe located just above the mid-high salinity Fe maximum
(Gonneea et al., 2007).

3. ANALYTICAL METHOD

Core sediments and beach sands were air dried and
hand-sieved through a polypropylene mesh with a nominal
retention diameter of 1 mm. The concentration of Fe and
Mn in the sieved sediments, along with their associated P,
Ba, U and Th concentrations, have been reported previ-
ously (Charette et al., 2005; Charette and Sholkovitz,
2006) using a selective dissolution protocol (Hall et al.,
1996). This protocol was designed to selectively dissolve
‘‘amorphous” iron oxides followed by ‘‘crystalline” Fe (hy-
dr)oxides using reductive solutions of 0.25 M hydroxyl-
amine hydrochloride in 0.05 M HCl and 1 M
hydroxylamine hydrochloride in 25% glacial acetic acid
respectively. The sum of these two leaches is referred to a
‘‘total oxide” composition and data are reported in Table 3.

Because reductive Fe-(hydr)oxides dissolution may frac-
tionate Fe-isotopes during incomplete reduction of Fe(III)
to Fe(II) (Icopini et al., 2004), we preferred using concen-
trated acid dissolution that prevent Fe-isotope fraction-
ation (Skulan et al., 2002). Fe-oxides, coating quartz
sands, were dissolved in PTFE beaker using ultra-pure
grade 6N HCl on hot plate for 24 hours at approximately
80 �C. 10 mL of 6N HCl with 50ll of ultrapure H2O2 were
used for about 500 mg of sands. Because the sediments at
Waquoit Bay are primarily composed of quartz sand coated
with various Fe-oxide phases and contain only minor sili-
cate minerals, Fe concentrations determined using our
Please cite this article in press as: Rouxel O. et al., Iron isotope
chim. Acta (2008), doi:10.1016/j.gca.2008.05.001
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strong acid leach method agreed well with total Fe concen-
tration using the selective dissolution protocol reported in
Charette et al. (2005). Sample purification for mass spec-
trometry analysis has been undertaken by ion-exchange
chromatography in a clean room environment following
previous protocols (Beard et al., 2003a; Rouxel et al.,
2005). After centrifugation and separation of 6N HCl by
pipetting, a precise solution volume, corresponding to not
more than 100 lg of Fe, was purified on Bio-Rad AG1X8
anion resin (2.5 mL wet bed). After 30 mL of 6N HCl
was passed through the column to remove the matrix, 20
mL of 0.12N HCl was used to elute Fe. Eluted solution
was then evaporated to dryness and dissolved with 2%
HNO3 for mass spectrometry analysis.

In treating the pore water samples, aliquots are evapo-
rated and then purified in the same manner as for solid sam-
ples. No more than 15 mL of the water samples are dried
down in PTFE beakers with 1mL of concentrated HNO3.
This step is repeated. The maximum operational volume
for saline water reflects the high load of salts that prevent
evaporating larger volume of waters without subsequent
problems during chromatography separation. After evapo-
ration, the residues of the water samples are dissolved with
5mL 6N HCl with trace of H2O2 and subsequently purified
through ion-exchange chromatography.

The Fe isotope composition was determined with a
Finnigan Neptune multicollector inductively coupled plas-
ma mass spectrometry (MC-ICPMS) operated at Woods
Hole Oceanographic Institution (WHOI). The Neptune

instrument permits high precision measurement of Fe iso-
tope ratios without argon interferences using high-mass res-
olution mode (Malinovski et al., 2003; Weyer and
Schwieters, 2003; Arnold et al., 2004). Mass resolution
power of about 8000 (medium resolution mode) was used
to resolve isobaric interferences, such as ArO on 56Fe,
ArOH on 57Fe, and ArN on 54Fe.

Instrumental mass bias is corrected using Ni isotopes as
internal standard. This method, which has been proved to
be reliable for the Neptune instrument, involves deriving
the instrumental mass bias from simultaneously measuring
a Ni standard solution (Malinovski et al., 2003; Poitrasson
and Freydier, 2005). We also used the ‘‘sample-standard
bracketing” technique to correct for instrumental mass dis-
crimination by normalizing Fe isotope ratios to the average
measured composition of the standard that was run before
and after the sample (Belshaw et al., 2000; Beard et al.,
2003a; Rouxel et al., 2003). Fe isotope compositions are re-
ported relative the Fe-isotope standard IRMM-14 using the
following notation:

d56Fe¼1000�½ð56Fe=54FeÞsample=ð56Fe=54FeÞIRMM�14�1� ð1Þ
d57Fe¼1000�½ð57Fe=54FeÞsample=ð57Fe=54FeÞIRMM�14�1� ð2Þ

53Cr, 54Fe, 56Fe, 57Fe, 58Fe+ 58Ni 60Ni, and 61Ni isotopes
were counted on the Faraday cups using the high mass res-
olution mode. Although quantitatively separated during
analysis, Cr, which interferes with 54Fe, was monitored dur-
ing each Fe isotope measurements and found to identical of
background levels. Baseline corrections were made before
acquisition of each data block by completely deflecting
fractionation in subterranean estuaries, Geochim. Cosmo-
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Fig. 2. Cross section of pore water salinity and total dissolve Fe concentration (T.D. Fe) in lM along the shore-perpendicular transect A-A0

in Fig. 1. The isochores of constant salinity and and T.D. Fe and the corresponding Piezometer measurements from this study is shown in
each box. The piezometer station numbers for each profile are located along the top edge of the figure. Locations of samples selected for Fe-
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also presented for comparison. Modified after Charette and Sholkovitz (2006).
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analyzed at least twice using both techniques (i.e. Ni doping
and standard-sample bracketing) and the internal precision
of the data are given at 95% confidence levels based on the
standard deviation calculated on duplicates.

Purified samples of Fe-oxide-coated sands were diluted
to 1.5 ppm of Fe and Ni and introduced into the plasma
using a double quartz spray chamber system (cyclonic
and double pass) and a microconcentric PFA nebulizer
operating at a flow rate of about 100 ll/min. Purified water
samples were analyzed using a desolvation nebulizer (Cetac
Apex) and X-cones (Thermo-Finnigan) to improve the sen-
Please cite this article in press as: Rouxel O. et al., Iron isotope
chim. Acta (2008), doi:10.1016/j.gca.2008.05.001
sitivity of the Neptune (Schoenberg and von Blanckenburg,
2005).

Based on over 50 analyses – dissolution, purification and
ICP-MS measurement - of an internal standard (BHVO-1,
a Hawaiian basalt), we have obtained an average of d56Fe
values at 0.10 with a precision of 0.09& (2r). We evaluated
the accuracy of measuring Fe isotopes in saline water sam-
ples through the analysis of Fe isotope composition of arti-
ficial samples corresponding to seawater-like matrix doped
with Fe standard. Procedural blanks, including evapora-
tion/dissolution steps and ion exchange purification are be-
low 5 ng. As presented in Table 1, a precision of 0.15& can
fractionation in subterranean estuaries, Geochim. Cosmo-
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Table 1
Fe-isotope composition of seawater matrix doped with various
amount of Fe isotopic standards (IRMM-14 and BHVO-1)

Sample Fe lM N# d56Fe 2SD d57Fe 2SD

SeawateraDoped with IRMM-14
#1 5 4 0.03 0.19 0.06 0.27
#2 5 2 0.08 0.17 0.12 0.21
#3 10 2 �0.01 0.15 �0.05 0.21
#4 10 2 0.05 0.02 0.11 0.01
Average 0.04 0.08 0.06 0.16
Seawatera Doped with BHVO-1
#1 10 2 0.16 0.20 0.20 0.20
#2 20 2 0.04 0.05 0.05 0.12
#3 50 2 0.09 0.03 0.28 0.10
#4 200 2 0.06 0.09 0.16 0.17
#5 400 2 0.16 0.02 0.21 0.04
#6 600 2 0.07 0.15 0.10 0.21
Average 0.10 0.10 0.17 0.16

# Number of duplicated analysis used to calculate average Fe-
isotope isotope composition and precision (2SD: 2 standard
deviation).

a Used 15 mL of seawater and processed through complete
chemical purification procedure. Procedural blank (seawater only)
determined at �0.1 lM.
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be achieved for saline water samples as low as 5 lM and
probably lower.

4. RESULTS

4.1. Fe-isotope composition of groundwater and brackish

porewaters

In a previous study, Charette and Sholkovitz (2006) re-
ported Fe concentrations in porewater ranging from less
than 1 lM to up to 500 lM for the whole salinity range
of the subterranean estuary. A subset of twenty-six pore-
water samples has been selected for this study based on
their Fe concentration and location within the subterranean
estuary. Exact location of these porewater samples relative
to the subterranean estuary are presented in Fig. 2 together
with corresponding Fe-concentration and salinity.

We selected groundwater samples with salinity <0.4
along the piezometer transect (Pz #6, 7 and 10) to charac-
terize the Fe-isotope composition of Fe(II) in the seaward-
moving plume of freshwater feeding the subterranean estu-
ary. Results show a range of d56Fe values between 0.44 and
�0.8& (Table 2) with higher d56Fe values found in shal-
lower sections whereas lower d56Fe values are found deeper
near the salinity gradient within the subterranean estuary.

We also selected brackish porewater samples with salin-
ity between 19 and 29 and Fe-concentrations between 40
and 500 lM and obtained d56Fe values ranging from
�4.8& to 0.22& (Table 2). It is important to note that
porewater having a salinity between 19 and 27 (e.g. Piezom-
eter #3 and #4) display the largest Fe-isotope fractionation
suggesting that most of the fractionation of Fe-isotopes in
porewater is observed at the interface between the two ma-
jor sources of reduced Fe in the subterranean estuary. This
range of d56Fe values is the largest reported so far in natural
Please cite this article in press as: Rouxel O. et al., Iron isotope
chim. Acta (2008), doi:10.1016/j.gca.2008.05.001
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systems and indicates that Fe redox cycling across the salin-
ity gradient at Waquoit is able to produce extreme Fe-iso-
tope fractionation in porewater.

4.2. Fe-isotope composition of permeable sediments

As presented in Fig. 3 and Table 3, Fe oxide coated
sands in Core #2 have Fe concentrations ranging from
500 to 8000 ppm and d56Fe values decreasing upward from
�1.5& at 140 cm to 0& near the surface. The d56Fe gradi-
ent of 1.5&, over 1.4 m of section mirrors the Fe concentra-
tion gradient. The Fe concentration in Core 3 increases
downward from 900 ppm to more than 7500 ppm at 100
cm. In contrast to mostly positive d56Fe values in Core 2,
Core 3 oxides have systematically negative d56Fe values.
Core 3 also exhibits a well defined minimum d56Fe
(�1.8&) in the mid-depth section (45–55 cm) while maxi-
mum d56Fe values (between �0.2 and �0.4&) occur at
the top and bottom (120 cm) of the core (Fig. 3). The over-
all range of d56Fe values �1.6& in Core 3 is however sim-
ilar to Core 2. Two types of ‘‘background” sediments
(surface beach sand at Waquoit Bay and offsite sand col-
lected 10km from Waquoit Bay) were also analyzed and re-
sults show a restricted range of Fe-isotope composition
clustered at 0& and Fe concentrations between 300 and
430 ppm.

Because a vibra-core was used to recover sediment cores,
it was not possible to sample corresponding pore water.
Although Core 2 and 3 were recovered in the proximity
of piezometer #8 and #4 respectively (Fig. 1), we only have
Fe-isotope composition of pore water deeper in the section.
However, we note that generally negative d56Fe values in
Fe-oxides in Core 3 (down to �1.8&) are consistent with
the highly negative values found in Piezometer #4 (d56Fe
values down to �2.4& at 4 meters depth). Likewise, posi-
tive d56Fe values in Core 2 are consistent with higher
d56Fe values in Piezometer #8 (d56Fe between 0.22 and
�0.31& from 0.6 to 0.9 m depth). Hence, the major differ-
ence between Core 2 (i.e. mostly positive d56Fe values) and
Core 3 (i.e. mostly negative d56Fe values) is, to a first
approximation, the result of different initial d56Fe values
for pore water Fe(II) for each cores The difference between
d56Fe values in Core 2 and 3 that are about 50 m apart as
well as the variability of d56Fe values of up to 1.5& within
each core demonstrate large variations of porewater d56Fe
values over several centimeters to meters at the head of
the Bay. The significance of these variations is discussed
in the following section.

5. DISCUSSION

5.1. Freshwater source at Waquoit Bay

Cape Cod ground burden consists mainly of coarse-
grained sand, and as such rain precipitation infiltrates the
sediments and recharges subsurface aquifers. Hence,
groundwater is a major source of freshwater to Waquoit
Bay in addition to the two rivers that drain into it (Charette
et al., 2001). The source of Fe(II) we have measured in the
groundwater is uncertain, but likely derives from rainwater
fractionation in subterranean estuaries, Geochim. Cosmo-
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Table 2
Pore water concentrations of trace metals, Fe isotope composition of metals and ancilllary water quality parameters

Depth (m) Salinity PO4 (lM) SiO4 (lM) Mn (lM) U(nM) Fe (lM) N# d56Fe 2SD d57Fe 2SD

Piezometer #3
4.42 25.9 4.6 222.0 22.8 12.5 39.7 4 �4.91 0.14 �7.38 0.19
4.57 26.1 6.9 214.0 21.4 10.30 50.6 2 �4.19 0.13 �6.28 0.18
5.03 26.4 13.1 190.0 8.4 8.5 50.6 4 �2.47 0.19 �3.63 0.15
5.49 26.6 15.8 161.0 4.2 7.70 51.0 2 �2.29 0.14 �3.32 0.20
Piezometer #4
3.96 19.1 0.9 245.0 26.1 1.3 146.0 2 �2.43 0.03 �3.75 0.03
4.42 23.2 0.5 203.0 30.0 2.8 112.0 2 �1.68 0.18 �2.50 0.25
4.88 24.5 0.7 196.0 19.6 2.4 67.4 2 �1.36 0.19 �1.97 0.19
5.79 26.5 7.8 200.0 19.4 1.7 64.5 2 �1.13 0.16 �1.67 0.25
6.71 25.7 14.1 171.0 16.2 1.4 77.6 2 �0.79 0.08 �1.19 0.11
7.16 25.7 14.2 174.0 21.3 1.4 100.9 2 �0.53 0.18 �0.75 0.16
7.62 26.2 9.6 152.0 17.4 1.2 330.0 2 �0.36 0.10 �0.51 0.17
7.92 26.5 8.9 158.0 18.9 1 491.5 2 �0.37 0.18 �0.63 0.25
Piezometer #5
0.15 28.8 9.4 83.4 14.1 4.3 58.9 2 �0.64 0.03 �0.93 0.03
0.61 28.8 9.4 121.0 23.6 3.3 48.4 2 �1.43 0.21 �2.18 0.30
5.18 27.5 13.1 141.0 2.6 3.9 42.6 2 �1.89 0.17 �2.80 0.16
5.64 28.1 10.3 138.0 2.8 2.7 46.7 2 �1.20 0.15 �1.79 0.19
6.55 28.9 14.3 102.0 1.4 2.5 41.5 2 �1.15 0.13 �1.82 0.16
Piezometer #6
1.52 0.4 0.5 27.4 5.0 0.8 141.1 2 0.44 0.03 0.74 0.05
1.98 0.1 2.5 16.9 1.2 1.0 54.2 2 �0.10 0.12 �0.21 0.14
7.01 25.7 1.8 202.0 29.1 17.3 42.9 2 �2.03 0.13 �3.07 0.16
Piezometer #7
3.20 0.0 0.7 117.0 2.7 1.2 196.3 2 �0.17 0.15 �0.26 0.19
3.66 0.0 0.1 109.0 12.9 0.1 106.5 4 �0.79 0.05 �1.14 0.05
Piezometer #8
0.61 27.6 9.3 178.0 31.3 3.4 79.0 4 0.22 0.12 0.43 0.13
0.91 28.4 4.8 232.0 30.0 1.2 41.2 4 �0.31 0.14 �0.47 0.16
Piezometer #10
3.05 0.0 0.2 23.5 3.0 0.3 119.4 3 0.29 0.12 0.45 0.21
3.96 0.0 0.1 25.1 4.7 1.5 128.3 4 �0.66 0.11 �0.89 0.15

PO4, SiO4, Mn, U and Fe data determined by high-resolution ICPMS from Charette and Sholkovitz, 2006.
# Number of duplicated analysis used to calculate average Fe-isotope isotope composition and precision (2SD: 2 standard deviation).
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ous measurements that have been made on dissolved Fe in
rivers, including both soluble and colloidal fractions, have
shown variable d56Fe values ranging between �0 and �1
&. This suggests that dissolved Fe is isotopically light rela-
tive to igneous rocks (Fantle and DePaolo, 2004; Bergquist
and Boyle, 2006). Measurements on the Fe-isotope compo-
sitions of pore water in soils also indicate that mineral dis-
solution in the presence of Fe-chelating organic ligands and
Fe-reducing bacteria preferentially releases light Fe from
silicates and Fe-oxides (Brantley et al., 2001; Brantley et
al., 2004; Emmanuel et al., 2005). Teutch et al. (2005) ob-
tained d56Fe values of �0.4 ± 0.1& for anoxic groundwater
which are lighter than the sediment leach for Fe(III)
(0.16 ± 0.05 &). These values have been interpreted as
reflecting a slight fractionation (only 0.3 &) during micro-
bial mediated reductive dissolution of Fe-oxyhydroxides
present in the aquifer.

Our measurements of d56Fe values in the groundwater at
Waquoit Bay, between 0.44 and �0.8&, are thus similar to
the values that have been obtained for dissolved Fe in sev-
eral other systems. The lowest d56Fe values down to �0.8&

could be explained by either reductive dissolution of
Please cite this article in press as: Rouxel O. et al., Iron isotope
chim. Acta (2008), doi:10.1016/j.gca.2008.05.001
Fe(III)-oxyhydroxides (Beard et al., 2003a; Icopini et al.,
2004; Balci et al., 2006) or organic-ligand promoted silicate
dissolution (Brantley et al., 2004) in soil environments. The
origin of the positive d56Fe values (up to 0.44&) is however
less clear. It is possible that they are due to quantitative
reductive dissolution of isotopically enriched Fe-oxides in
subsurface sediments beneath the head of the Bay. It is also
possible that run-off freshwater may be characterized by
slightly positive d56Fe values �0.4 & as recently reported
in local rivers (Escoube et al., 2007). In both cases, d56Fe
values in groundwater are controlled by the mixing between
shallow and deeper sources with positive and negative d56Fe
values respectively. Based on these results, we constrain the
d56Fe value of the freshwater source of Fe(II) to Waquoit
Bay to be around �0.15 ± 0.5 & which is, on average, close
to bulk d56Fe values for soils and lithogenic Fe-sources
(Emmanuel et al., 2005; Poitrasson and Freydier, 2005).

5.2. Fe-isotope systematics of Fe-oxide coated sands

As reported by Charette and Sholkovitz (2002), the dee-
per sections of Cores 2 and 3 are characterized by large
amounts of Fe oxides (ferrihydrite, lepidocrocite and goe-
fractionation in subterranean estuaries, Geochim. Cosmo-
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Fig. 3. Downhole variations of Fe-concentration and Fe-isotope composition in Fe-oxyhydroxide coated sands from A) Core#2 and B)
Core#3. Core 2 and Core 3 are located in the tidal zone of the head of Waquoit Bay near piezometer #8 and #4 respectively (see Fig. 1). Gray
shaded area correspond to the range of Fe-concentration and Fe-isotope composition for ‘‘off-site” surface beach sands reported in Table 1Q1 .
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Othite) that precipitate on quartz sand. Note that the salinity

gradient along Piezometers #8 and #4 is located in the
vicinity of Core 2 and 3 respectively (Table 2). This implies
that the source of Fe to these sediment cores is derived from
Fe(II)-rich brackish pore waters. A ‘‘background” Fe-oxy-
hydroxide component in sand is also anticipated in Core 2
and 3 because the analysis of two surface beach sand sam-
ples, away from any groundwater sources, yielded Fe con-
centration betweens 300 and 430 ppm (Table 3). This
‘‘background” Fe-oxyhydroxide component has a restricted
range of Fe-isotope composition clustered at 0&. Although
the source of Fe-oxyhydroxide in coastal area may be mul-
tiple (e.g. detrital, hydrogeneous, diagenetic sources), beach
sands remote from local groundwater sources tend to have
homogeneous Fe concentrations and d56Fe values near 0&.
Hence, two major components of Fe are expected in sedi-
ment Core 2 and 3: (1) background Fe-oxides with d56Fe
Please cite this article in press as: Rouxel O. et al., Iron isotope
chim. Acta (2008), doi:10.1016/j.gca.2008.05.001
values near 0& and concentrations below 500ppm; and
(2) and Fe-oxides formed during the upward transport
and oxidation of Fe(II)-rich pore waters from saline zone.

An important question to address is whether these vari-
able d56Fe values and Fe-concentrations through the sedi-
ment cores at Waquoit Bay result from mixing effects
between lithogenic Fe-oxides and diagenetic (i.e. derived
from Fe-rich porewater) Fe-oxides or result from in-situ

Fe-isotope fractionation during oxidative Fe precipitation.
The potential relationships between Fe concentrations
and d56Fe values of Fe oxides in the case of mixing between
lithogenic and diagenetic Fe-oxides are presented in Fig. 4.
The model assumes d56Fe values for lithogenic at 0& and
diagenetic Fe-oxides having d56Fe values similar to those
measured in the deeper section of each core. The results
suggest that Fe-isotope composition of both sediment cores
cannot be simply explained by a binary mixing between
fractionation in subterranean estuaries, Geochim. Cosmo-
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Table 3
Chemical composition and Fe-isotope composition of surface beach sediment and sediment cores

Sample Depth FeT ppm MnT ppm N# d56Fe 2SD d57Fe 2SD

Surface beach sand from Waquoit Bay near the coring sites
Sand ‘‘WB” 0.1 426 n.d. 2 0.04 0.17 0.13 0.27

duplicatea 2 �0.06 0.12 �0.07 0.14
duplicate 2 �0.03 0.10 0.00 0.15

Surface beach sand from Vineyard Bay, 10 km from Waquoit Bay
Sand ‘‘PB” 0.1 303 1890 2 0.00 0.08 0.08 0.22

duplicate 2 0.06 0.10 0.10 0.20
duplicate 2 0.02 0.17 0.11 0.21

Sediment Core 2
Core 2-1 2.5 785 23 3 �0.20 0.06 �0.30 0.02
Core 2-5 22.5 744 4 3 0.01 0.19 0.04 0.22
Core 2-10 47.5 820 4 3 0.14 0.09 0.29 0.17
Core 2-11 52.5 1106 5 2 0.09 0.04 0.16 0.04
Core 2-15 72.5 791 3 2 0.35 0.08 0.51 0.15
Core 2-17 82.5 772 4 2 0.54 0.05 0.75 0.14
Core 2-18 87.5 1094 5 4 0.48 0.24 0.70 0.32
Core 2-19 92.5 1279 7 2 0.48 0.07 0.67 0.17
Core 2-20 97.5 1373 9 6 0.52 0.21 0.78 0.34
Core 2-21 102.5 1666 2 0.63 0.01 0.93 0.01
Core 2-22 107.5 1847 2 0.65 0.02 0.96 0.01
Core 2-23 112.5 2279 12 3 0.98 0.06 1.42 0.14

duplicate 3 1.03 0.08 1.52 0.17
Core 2-25 122.5 2376 2 0.92 0.02 1.42 0.04
Core 2-28 132.5 3255 7 2 1.48 0.10 2.35 0.20

duplicate 2 1.57 0.14 2.40 0.18
Core 2-30 138.5 2613 5 2 1.39 0.04 2.09 0.10
Core 2-33 148.5 2040 5 2 1.22 0.02 1.75 0.04
Core 2-38 168.5 2480 6 2 1.20 0.01 1.81 0.01

duplicate 2 1.26 0.05 1.84 0.01
Core 2-41 173 2795 – 3 0.98 0.23 1.55 0.14
Sediment Core 3
Core 3-17 3.2 906 9 4 �0.56 0.17 �0.83 0.29
Core 3-15 16.1 532 16 2 �0.21 0.14 �0.27 0.19
Core 3-14 24.2 659 5 2 �0.74 0.06 �1.06 0.03
Core 3-13 31.8 1684 2 �1.04 0.10 �1.52 0.11
Core 3-11 46.1 2581 11 3 �1.76 0.15 �2.60 0.16
Core 3-10 53.9 3625 15 3 �1.61 0.03 �2.34 0.06

duplicate 2 �1.70 0.16 �2.45 0.25
Core 3-8 69.0 2605 2 �1.27 0.03 �1.86 0.02
Core 3-7 75.6 4883 26 2 �1.49 0.00 �2.18 0.05
Core 3-6 82.4 5181 27 2 �0.93 0.05 �1.40 0.11
Core 3-5 89.3 5041 23 3 �1.14 0.09 �1.71 0.17
Core 3-3 101.7 7588 22 3 �0.58 0.17 �0.85 0.24
Core 3-2 106.4 7190 17 2 �0.42 0.03 �0.60 0.05

# Number of duplicated analysis used to calculate average Fe-isotope isotope composition and precision (2SD: 2 standard deviatio Fe and
Mn concentration determined by reductive leaching method and ICPMS analysis, after Charette et al., 2006.

a Duplicate analysis include dissolution, chemical purification and mass spectrometry analysis.
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Nthese two sources. In the case of Core 2, the mixing between

lithogenic and isotopically enriched Fe-oxides does not ac-
count for the near linear correlation between Fe concentra-
tions and d56Fe values. Similarly, in the case for Core 3, the
strong curvature observed between Fe concentrations and
d56Fe values argue against simple mixing effects.

The correlation between Fe concentration and d56Fe val-
ues in Core 2 and bottom half of Core 3 is consistent with
results reported by Bullen et al. (2001) and Teutsch et al.
(2005). Bullen et al. (2001) reported abiotic Fe isotope frac-
tionation during precipitation of isotopically enriched Fe-
oxyhydroxides from Fe-rich spring water, resulting in light-
Please cite this article in press as: Rouxel O. et al., Iron isotope
chim. Acta (2008), doi:10.1016/j.gca.2008.05.001
er aqueous Fe(II) and lower Fe in the remaining dissolved
Fe(II). Teutch et al. (2005) measured the evolution of the
Fe-isotope composition of Fe(II)-rich reduced groundwater
during injection of oxygen-containing water. They show
that the adsorption of Fe(II) onto newly formed Fe(III)-
oxyhydroxides yields a very light groundwater component
with d56Fe values as low as �3 &, indicating that heavier
Fe(II) is preferentially adsorbed to the newly formed
Fe(III)-oxyhydroxides surfaces. These field observations
are consistent with experimental studies showing a prefer-
ential enrichment of heavy Fe-isotopes associated with the
formation of Fe-oxyhydroxides (Welch et al., 2003; Croal
fractionation in subterranean estuaries, Geochim. Cosmo-
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Fig. 4. Relationship between Fe-concentration and Fe-isotope
composition of Fe-oxyhydroxide coated sands in Core 2 and 3.
Simple mixing relationships between Fe-oxyhydroxide coated
sands at the bottom of Core 2 and 3 and surface beach sands
([Fe] = 500 ppm d 56Fe = 0 &) are illustrated using dashed lines.
Gray and black lines correspond to the theoretical relationships
between Fe concentration and Fe-isotope composition of sediments
for each depth and are calculated using advection-reaction model
during partial Fe(II) oxidation and Fe-oxyhydroxide precipitation.
A) Model line for Core 2 is calculated using initial conditions for d
56Fe = 0.8&, Fe(II) oxidation rate of 0.12 d�1 and isotope
fractionation factor a = 1.001. B) Both model lines for Core 3
are calculated using initial conditions for d56Fe = �0.8& and
isotope fractionation factor a = 1.0012. Gray line and black lines
are calculated using Fe(II) oxidation rate of 0.25 d�1 and 0.4 d�1

respectively. See text and Appendix for discussion.
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Fig. 5. Conceptual model used for calculating theoretical relation-
ship between Fe-concentration and Fe-isotope composition
observed in Fe-oxyhydroxide coated sands in Core 2 and 3. In
this model, the upward transport and oxidation of Fe(II)-rich pore
waters from saline zone and/or freshwater represents the major
source of the Fe-oxyhydroxide rich cores. In addition, it is assumed
that sands contain significant proportion of ‘‘background” Fe-
oxides with d56Fe near 0& as demonstrated by the analysis of
surface sands in area not affected by groundwater input (Table 1).
During Oxidative Fe Precipitation (OIP), newly formed Fe-
oxyhydroxide will preferentially incorporate heavy Fe-isotopes,
producing a remaining aqueous Fe(II) pool enriched in light Fe-
isotopes.
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Net al., 2004; Balci et al., 2006). Our results also suggest that

a similar process is affecting the Fe-isotope composition of
sediment cores at the head of Waquoit Bay.

In order to test the hypothesis that the fractionation of
Fe-isotopes in iron oxides is controlled by partial oxidation
of Fe(II)-rich porewater upon mixing with seawater, we
have formulated a simple mathematical model for the evo-
lution of Fe-isotopes in sediments. The numerical model is
described in more detail in Appendix A and results are pre-
sented below for Core #2 and #3. In this model, it is con-
sidered that Fe(II) is progressively oxidized within the
Please cite this article in press as: Rouxel O. et al., Iron isotope
chim. Acta (2008), doi:10.1016/j.gca.2008.05.001
O
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uppermost �2 m of sediments, limited by oxic coastal sea-
water and Fe(II)-rich porewater (Fig. 5). Hence, for each
depth level, Fe concentration and isotope composition in
sediments will be controlled by the extent of Fe-oxyhydrox-
ide precipitation and input from underlying porewater as
well as and the relative contribution of ‘‘background” Fe-
oxides having d56Fe=0&. In this model, the theoretical
relationship between Fe concentration and Fe-isotope com-
position of sediments for each depth is calculated using
advection-reaction model during partial Fe(II) oxidation
and Fe-oxyhydroxide precipitation. Variable parameters
of this model include: i) initial d56Fei composition of pore-
water Fe(II); ii) Fe(II) oxidation rate; iii) Fe-isotope frac-
tionation factor a between Fe(II) and Fe-oxyhydroxides.
The rate of Fe(II) oxidation cannot be easily determined
at each depth since O2 concentrations are not available
along the sediment sections. Nevertheless, in the oxygen
deficient conditions in sediment porewater of Waquoit
Bay, with O2 < 5 lM and seawater-like pH, temperature
and salinity, the Fe(II) oxidation rate is expected to be less
than �0.3 day�1 (Millero et al., 1987). The mean ground-
fractionation in subterranean estuaries, Geochim. Cosmo-
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water discharge for the head of Waquoit Bay is considered
constant at 8 cm d�1 following the estimation by Abraham
et al. (2003). It is however important to note that significant
temporal variability of the groundwater discharge occurs in
response to tidal cycles and seasonal or interannual precip-
itation variability. There is also evidence that the ground-
water discharge is heterogeneously distributed along the
head of Waquoit Bay with Core 3 located in area with high-
er groundwater flow than in Core 2 (Mulligan and Cha-
rette, 2006). Although a more complex numerical
treatment of Fe-isotope systematics in sediment cores, one
that integrates variable rates of Fe(II) oxidation, Fe-isotope
fractionation factors and groundwater discharge (both ver-
tically and horizontally) is possible, such a model is beyond
our objectives for this paper.

5.2.1. Core 2

Results for Core 2 are presented in Fig. 4 and show that
the relationship between Fe-concentration and Fe-isotope
composition can be modeled using a simple advection-reac-
tion model during partial Fe(II) oxidation and Fe-oxyhy-
droxide precipitation. A best fit of the data is obtained
using a solid-liquid fractionation factor (a) at 1.001 and ini-
tial d56Fe values of 0.8&. The pseudo-first-order rate con-
stant of Fe(II) oxidation is set constant at 0.12 d�1 over
the entire core section, which is consistent with suboxic con-
ditions (Millero et al., 1987). The value around 1.001 for the
fractionation factor indicate that the d56Fe value of precip-
itated Fe-oxides is enriched in heavy isotopes by 1.0& rel-
ative to dissolved Fe(II) which is similar to those obtained
for abiotic Fe oxidation (around 0.9&) (Bullen et al., 2001)
and slightly lower than for bacterial Fe oxidation (around
1.5&) (Croal et al., 2004). The initial d56Fei value
(�0.8&) of porewater in Core 2 is however higher than
maximum measured d56Fe values in porewater from Pie-
zometer #8 (d56Fe between 0.22 and �0.31& from 0.6 to
0.9 m depth). This discrepancy may be explained by the dif-
ferences in sampling time (i.e. Core 2 was recovered in April
2001 whereas porewater samples were recovered between
June and July 2002) and the fact that porewater composi-
tion may changes through time. It is also possible that high-
er porewater d56Fei values (�0.8&) are due to reductive
dissolution of isotopically enriched Fe-oxides previously
precipitated deeper in Core 2.

5.2.2. Core 3

Results for Core 3 are presented in Fig. 4 and the rela-
tionship between Fe-concentration and Fe-isotope compo-
sition has been modeled using a similar advection-
reaction model than for Core 2. Although the model repro-
duce the well defined minimum d56Fe values (�1.5 to 1.8&)
in the mid-depth section (0.5–0.6m), a single best-fit model
curve cannot be obtained using a constant Fe(II) oxidation
rate over the entire section of Core 3. Using a solid-liquid
fractionation factor (a) at 1.0012, the lower section of Core
2 is best explained using Fe(II) oxidation rate at 0.25 d�1

whereas the upper section is best explained using higher
Fe(II) oxidation rate at 0.4 d�1 (Fig. 4). These results sug-
gest that Fe(II) oxidation rate increase upward, during mix-
ing between O2-poor porewater and oxic seawater.
Please cite this article in press as: Rouxel O. et al., Iron isotope
chim. Acta (2008), doi:10.1016/j.gca.2008.05.001
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It is interesting to note that, although Fe-isotope values
between Core 2 and 3 are different, similar process (i.e. par-
tial Fe(II) oxidation during upward advection of Fe-rich
porewater) can explain Fe-isotope values in both Cores.
In particular, the curvature in Fig. 4 between Fe concentra-
tion and d56Fe values in Core 3 (i.e. minimum d56Fe values
at mid-depth) is explained by the cumulative effect of (1)
preferential depletion in heavy Fe isotopes in porewater
due to partial oxidation, producing negative d56Fe values
for Fe(III)-oxides and (2) increase in d56Fe values for
Fe(III) due to mixing effects with ‘‘background” Fe-oxyhy-
droxides having d56Fe values around 0&. Because the bot-
tom half of Core 3 has much higher Fe-oxide concentration
than ‘‘background” sands, d56Fe values are mostly affected
by Fe-isotope fractionation during partial Fe(II) oxidation
whereas the top half, with lower Fe-oxide concentration,
suggest a prominent effect of physical mixture between
porewater-precipitated and ‘‘background” Fe-oxyhydrox-
ides. Similar mass balance consideration can be applied
for Core 2 to explain the lack of curvature between Fe con-
centration and d56Fe values in Fig. 4. In this case, the pre-
cipitation of isotopically heavy Fe-oxyhydroxides at the
bottom of the core produces isotopically lighter, but not
strongly negative, Fe-oxyhydroxides at the top of the core.
Hence, the presence of ‘‘background” Fe-oxyhydroxides at
�0& through Core 2 doesn’t have significant effects on the
overall Fe concentration vs. d56Fe relationship, except in
the uppermost section of the Core.

5.3. Fe-isotope composition of brackish porewaters

Because the variability of d56Fe values in groundwater
(between 0.44 and �0.8&) is of second order compared
to the large range of d56Fe values up to 5& in brackish
porewaters (i.e. salinity between 19 and 27) (Fig. 6), it is un-
likely that the variations of d56Fe values in brackish pore-
water is controlled by groundwater Fe-isotope
composition. Charette and Sholkovitz (2006) and Spiteri
et al. (2006) showed that a major fraction of iron in the fer-
rous-rich groundwater is oxidized within the freshwater end
of subterranean estuary between Piezometers 6 and 3. In-
deed, pore water pumped from piezometer 3 at a depth of
3 m contained suspended yellow particles that are nearly
pure iron oxyhydroxides. Spiteri et al. (2006) investigated
the effect of O2 and pH gradients on Fe(II) oxidation rates
along a flow-line in the subterranean estuary of Waquoit
Bay. Results show that the observed O2 gradient is not
the main factor controlling oxidative precipitation. Rather
it was shown that the pH gradient at the mixing zone of
freshwater and seawater causes a �7-fold increase in the
rate of Fe(II) oxidation. In contrast, the enrichment of
Fe(II) in the saline porewater end-member is the result of
diagenetic reactions and reductive dissolution of Fe(III)
oxides. Hence, we infer that the large Fe-isotope fraction-
ation across the salinity gradient is due to successive redox
reactions associated with the oxidative precipitation of dis-
solved ferrous Fe in the freshwater endmember and the
reductive dissolution of Fe oxides at higher salinity.

However, an important question remains is whether the
very low d56Fe values in porewaters (between �2 and �5&)
fractionation in subterranean estuaries, Geochim. Cosmo-
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are solely the result of diagenetic reduction of Fe-oxides or
may also result from partial Fe(II) oxidation in subsurface
environments, as previously demonstrated in Section 5.2 on
the sediment cores. It has been experimentally demon-
strated that Fe isotope fractionations during Fe(III) reduc-
tion (e.g. DIR, dissimilatory iron reduction) are dependent
on reduction rates (Beard et al., 2003a; Johnson et al., 2004;
Icopini et al., 2004). At high reduction rates, rapid forma-
tion and sorption of Fe(II) to ferric oxide substrate pro-
duced fractionations as large as �2.3& but this value
corresponds to an extreme case. Hence, a fractionation of
�1.3 & between biogenic Fe(II) and ferric oxide is more
representative. Our results of Fe-isotope composition of
saline porewaters (S > 27, Fig. 7) show d56Fe values ranging
from 0.2 to �1.8&, which are consistent with, but do not
necessarily prove, Fe-isotope fractionation by Fe-reducing
bacteria. These variations are also consistent with d56Fe
values found in suboxic porewater of margin sediments
(Staubwasser et al., 2005; Severmann et al., 2006) where
diagenetic Fe-redox cycling at sediment-water interface
produce isotopically depleted Fe(II) pool in porewater.
Porewater samples with the highest Fe concentrations
(Pz#4), representing the end-member for diagenetically re-
duced Fe(II), yield d56Fe values of only �0.5& which are
surprisingly similar to groundwater d56Fe values (Fig. 7).
This minimal fractionation may reflect either small frac-
tionation factors during DIR due to specific environmental
conditions for Fe-reducing bacteria or either limiting
Please cite this article in press as: Rouxel O. et al., Iron isotope
chim. Acta (2008), doi:10.1016/j.gca.2008.05.001
Fe(III) substrate availability (i.e. quantitative reduction of
Fe(III) substrate). Considering the extent of Fe-isotope
fractionation during DIR at around �1.2 to �1.5& (Beard
et al., 2003a; Icopini et al., 2004), it appears unlikely that
DIR processes alone would produce d56Fe values as low
as �5 & in porewaters in intermediate salinity and lower
Fe-concentrations.

Uranium in oxic sea water is very soluble as its redox
form is U(VI). In marked contrast, reducing conditions in
pore water and ground water lead to U(IV) which is very
particle reactive. Hence, reducing sediments are depleted
in pore water U; upon the return of more oxic conditions,
sedimentary U is oxidized to U(VI) species and U is rapidly
released in porewater (Barnes and Cochran, 1990).. Because
soluble U(VI) can be converted to insoluble U(IV) under
conditions similar to those that favor the reduction of
Fe(III) to Fe(II) (Cochran et al., 1986; Barnes and Coch-
ran, 1990; Chaillou et al., 2002; McManus et al., 2006),
comparing U concentrations with d56Fe values in porewa-
ters may provide insight regarding the relative effect of oxi-
fractionation in subterranean estuaries, Geochim. Cosmo-



C

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

Iron isotope fractionation in subterranean estuaries 13

GCA 5652 No. of Pages 18

26 May 2008 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E

dative Fe(II) precipitation vs. reductive Fe(III) dissolution.
Charette and Sholkovitz (2006) reported U concentration
in Waquoit subterranean estuary (Table 2) and observed
a strongly non-conservative behavior of U with an overall
net U removal over the entire salinity range. They also re-
ported evidence for U increase above seawater values at
the high salinity end which likely reflect the release of ad-
sorbed U(IV) under more oxidizing conditions. As pre-
sented in Fig. 7A, low d56Fe values correlate well with
high concentration of U in porewater. Assuming that sig-
nificant oxidation of porewater Fe(II) and precipitation of
Fe-oxyhydroxide are associated with U-rich pore waters,
the low d56Fe values (down to �5&) in the sediment cores
can result from the precipitation of isotopically heavy Fe-
oxyhydroxides rather than from the reductive dissolution
of Fe-oxyhydroxides.

As illustrated in Fig. 7B, the oxidative Fe precipitation
can explain the observed range of Fe(II) concentrations
(from 500 lM to 25 lM), as well as the Fe-isotopic compo-
sition in porewater. The simple model presented in Fig. 7B
assumes Rayleigh-type Fe-isotope fractionation in pore-
water during oxidative Fe precipitation. Considering an ini-
tial porewater Fe concentration of 500lM and d56Fe value
of �0.5 &, d56Fe values as low as �5 & would be expected
after 95% of Fe-precipitation as Fe-oxyhydroxides with a
fractionation factor of 1.0015 (Balci et al., 2006). Similar
low d56Fe values may be also obtained with smaller frac-
tionation factors �1.0012 as those suggested during Fe(II)
oxidation and precipitation of Fe-oxyhydroxides in sedi-
ment cores, but requires lower initial d56Fe values at around
�1.5& (Fig. 7B). Additional fractionation is thus required
if a significant fraction of precipitated Fe-oxides are further
reduced and returned to the Fe(II) pool. For example, field
observations suggest that redox gradients in Waquoit Bay
groundwater are tightly coupled to seasonal and interan-
nual movement of the fresh-saline groundwater interface
(Charette et al., 2007).

Thus, multiple cycles of Fe-reduction and oxidation are
likely to occur within the subterranean estuary at Waquoit
Bay and can produce d56Fe values down to �5& in the
porewaters. However, it is important to note that, though
Fe reduction is responsible for the enrichment of Fe in
porewater, strongly negative values of Fe-isotopes are
mostly the result of the oxidative pathways of the Fe cycle
and the sequestration of heavy Fe-isotopes in Fe-oxides. It
is also possible that Fe(II) could be adsorbed onto newly
formed Fe-oxyhydroxides in sediment during increasing
oxygenation. Teutch et al. (2005) reported strong Fe-iso-
tope fractionation (up to 3&) in groundwater Fe(II) result-
ing from rapid adsorption of Fe(II) on Fe-oxyhydroxides
formed during injection of O2-containing water. Similar
process may also be important in the subterranean estuary
at Waquoit Bay given the high Fe-oxyhydroxide content in
cores.

Fe-isotope results in the subterranean estuary of Wa-
quoit Bay could be also compared to recent studies of Fe-
isotope composition in Fe-oxide concretion from the Nava-
jo Sandstone that precipitated from reducing Fe-rich
groundwater (Chan et al., 2006; Busigny and Dauphas,
2007). In these studies, negative d56Fe values for Fe-oxide
Please cite this article in press as: Rouxel O. et al., Iron isotope
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concretions (down to � �2&) have been explained by com-
plete oxidation and precipitation from aqueous fluids that
had negative d56Fe values. These low d56Fe values have
been either interpreted as resulting from bacterial reduction
of Fe-oxides (Chan et al., 2006) or evolution of the fluid
composition through precipitation and/or adsorption isoto-
pically heavy Fe during fluid flow (Busigny and Dauphas,
2007). These studies can be reconciled if both bacterial
reduction of Fe-oxides and partial Fe(II) oxidation occur
in conjunction in O2-depleted environments, as those ob-
served at Waquoit Bay.

5.4. Hydrogeochemical model

The conceptual model of Fe-isotope systematic in sub-
terranean estuary at Waquoit Bay is presented in the sche-
matic diagram in Fig. 8. This figure incorporates the
hydrology of the subterranean estuary as described previ-
ously (Charette et al., 2005; Charette and Sholkovitz,
2006) as well as Fe-isotope compositions observed in this
study. Seepage meter studies at Waquoit Bay have shown
that subterranean circulation leads to the upward flow of
saline pore water to the intertidal zone (Michael et al.,
2003; Sholkovitz et al., 2003). A plume of seaward flowing
fresh groundwater and recirculating seawater lead to a salt-
wedge type distribution of pore-water salinity. The sedi-
mentary and aqueous environment of this subterranean
estuary is one of active redox reactions for Fe where two
major sources and oxidative sinks of reduced iron are
found: (1) a freshwater plume from the land transporting
high concentrations of dissolved Fe(II) toward the bay
where the precipitation of iron oxyhydroxides occurs in
the freshwater end of the plume (resulting from oxic seawa-
ter recirculation and/or pH increase); and (2) the upward
transport and oxidation of Fe(II)-rich pore waters in the
saline zone (representing the major source of the iron oxy-
hydroxide rich cores reported in this study). These terres-
trial and marine sources are probably interconnected as
they operate within several meters of each other in the ver-
tical and offshore directions. Since both end-members have
d56Fe values varying between 0.3 and �1.3&, likely result-
ing from dissimilatory Fe reduction (noted as DIR in Fig.
8), most of the Fe-isotope fractionation is occurring during
oxidative precipitation of Fe-oxyhydroxide (noted as OIP
in Fig. 8) within the mixing zone between groundwater
and brackish O2-depleted porewater. Hence, both high con-
centration of Fe(II) in porewater (resulting from DIR) and
partial Fe(II) oxidation are required to produce the large
scale Fe-isotope fractionation found in both sediment and
porewater.

It is likely that this large-scale Fe isotope fractionation
(up to 5&) produced by the precipitation of Fe-oxides in
permeable sediments during the mixing of anoxic ground-
water with seawater is not restricted to the subterranean
estuary at Waquoit Bay. More generally, any coastal aqui-
fer with pore water bearing high dissolved ferrous iron that
intercepts oxic to suboxic seawater may produce a Fe(II)
flux to coastal seawater characterized by negative d56Fe val-
ues. The radium isotope studies by Charette et al. (2001)
show that there is strong groundwater signature in Waquoit
fractionation in subterranean estuaries, Geochim. Cosmo-
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Bay water. Although the isotopic composition of dissolved
and suspended Fe in the water column of Waquoit Bay has
yet to be measured, our results imply that subterranean
estuary may impact Fe-isotope budget in coastal waters.

6. CONCLUSIONS

Dissolved Fe has a distinctly non-conservative behavior
in estuaries (Sholkovitz, 1976; Boyle et al., 1977; Mayer,
1982) due to the rapid flocculation of dissolved Fe and hu-
mic substances during mixing between rivers and seawater.
Similar features are also observed in subterranean estuaries
but here, redox characteristics of the freshwater and seawa-
ter have significant influence on the partitioning of Fe be-
tween the solid and aqueous phases. In previous studies,
it has been demonstrated that the upward transport of
Fe(II)-rich groundwater is responsible for the formation
of Fe oxide-rich sands (Iron Curtain) in the subterranean
estuary of Waquoit Bay (Charette and Sholkovitz, 2002).
In this study, we reported a large scale Fe isotope fraction-
ation in iron-coated sands and porewater in the intertidal
zone of Waquoit Bay. The distribution of Fe-isotopes in
pore water reveal that very low d56Fe values of porewater
down to �5& occur within the mixing zone of the subter-
ranean estuary. We interpret the Fe-isotope fractionation
to reflect intensive Fe-redox cycling across a density inter-
face between anoxic groundwater and O2-deficient saline
porewaters. Large range of d56Fe values, between �2 and
1.5& has been also observed in two sediment cores across
the subterranean estuary. The relationship between Fe con-
centration and d56Fe values of Fe oxides can be modeled by
Please cite this article in press as: Rouxel O. et al., Iron isotope
chim. Acta (2008), doi:10.1016/j.gca.2008.05.001
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precipitation of Fe-oxides during fluid flow across the sub-
terranean estuary. These results suggest that partial Fe(II)
oxidation in low O2 conditions is the major process produc-
ing the large scale Fe-isotope fractionation found in both
sediment and porewater.

The Fe isotope composition of dissolved Fe in oceanic
water masses has not been systematically determined as
the analytical difficulties have yet to be mastered. Hydrog-
enous accumulations in the form of ferromanganese (Fe–
Mn) oxides display variable, but negative d56Fe values
that may provide record of marine Fe isotope composition
(Zhu et al., 2000; Levasseur et al., 2004). Among potential
sources of negative d56Fe components in seawater, conti-
nental run-off (Fantle and DePaolo, 2004), hydrothermal
sources (Beard et al., 2003b) and diagenetic pore fluids
from shelf sediments (Staubwasser et al., 2005; Severmann
et al., 2006) have been suggested to provide significant
source of low-d56Fe iron to the oceans. In this study, we
demonstrated that groundwater input in subterranean
estuaries may also represent a significant source of light
Fe in seawater due to the preferential sequestration of
heavy Fe-isotopes in sediments, yielding aqueous Fe(II)
with d56Fe down to �5.0&. Considering the recently rec-
ognized importance of submarine groundwater input as
source of dissolve Fe in the ocean (Windom et al.,
2006), future studies will need to focus on the Fe isotopic
composition of coastal waters in order to further our
understanding of the links between biogeochemical pro-
cesses occurring in subterranean estuaries and coastal
water Fe pools.
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APPENDIX A

The model runs as follows. First, pore water Fe2+ concen-
trations within the uppermost 2m of the sediments are deter-
mined using the general 1-dimension diagenetic model
described by Richter and DePaolo (1987) and Berner (1980):

oCi
ot
¼ Dc

o2Ci
oz2
� m

oCi
oz
þ
X

R ða:1Þ

where Ci represents the concentration of the solute i, t is the
time, z is the depth, Dc is the diffusivity of the solute i , t is
the advective velocity and RR represents the sum of the
reaction terms.

In the case of homogeneous Fe(II)-oxidation in pore-
water, RR is given by
X

R ¼ �k1½FeðIIÞ� ða:2Þ

where k1 is the pseudo-first-order rate constant of Fe(II)
oxidation which is strongly dependent upon pH and O2

(e.g. Millero et al., 1987) following:

k1 ¼ �k½OH��½O2� ða:3Þ

To a first approximation, this formulation does not take
into account the heterogeneous oxidation whereby the rate
of oxidation increases with the concentration of Fe(III)
hydroxide due to autocatalytic effects.

The diffusion coefficient Dc is related to the temperature,
porosity and tortuosity of the sediment which are considered
constant with depth over the uppermost 2-m of sediment sec-
tion. Given a porosity of 0.35 for sand sediments at Waquoit
Bay (Hoefel and Evans, 2001), DFe2+ can be estimated at
�0.04 cm2d�1 (Li and Gregory, 1974). The groundwater dis-
charge for the head of Waquoit Bay has been estimated by
Abraham et al. (2003) at t � 8 cm d�1. Although the total
groundwater discharge proceeds through both horizontal
and vertical transport, we only considered vertical advection
in our model. Because only two cores have been investigated
in this study, it is presently impossible to develop a more com-
plex 2D advection-reaction model.

This suggests that Fe2+ transport through the sediments
is essentially advective (i.e. Peclet number�1) and that Eq.
(a.1) could be simplified as:

oFe2þ

ot
¼ �m

oFe2þ

oz
� k1½Fe2þ� ða:4Þ

Since Fe(II) oxidation fractionate Fe-isotopes toward hea-
vy isotopes in the insoluble Fe(III) product, the rate of
Fe(II) oxidation is different between Fe-isotopes and Eq.
(a.4) can be written for 56Fe and 54Fe isotopes:
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o56Fe2þ

ot
¼ �m

o56Fe2þ

oz
� 56k1½56Fe2þ� ða:5Þ

o54Fe2þ

ot
¼ �m

o54Fe2þ

oz
� 54k1½54Fe2þ� ða:6Þ

Where 54k1 and 56k1 are the pseudo-first-order rate con-
stant of 54Fe(II) and 56Fe(II) oxidation respectively. It is
also assumed no differences in advection rate t between
54Fe and 56Fe isotopes.

The isotope fractionation factor during Fe(II) oxidation
a which is generally determined between 1.001 and 1.0015
(Bullen et al., 2001; Croal et al., 2004; Balci et al., 2006)
is defined by

a ¼ 56k1=54k1 ða:7Þ

The theoretical relationship between Fe2+ concentration
and isotope composition in porewater can be calculated
using the DuFort-Frankel scheme, an explicit three-level fi-
nite difference method (DuFort and Frankel, 1953; Richter
and DePaolo, 1987). This model is stepped in time and
space allowing for advection and reaction. Fe2+ concentra-
tion and 56Fe/54Fe isotope ratios are calculated for each
depth intervals using equations (4) and (5). The evolution
of Fe2þ

t;z at time t and depth z is described by

Fe2þ
tþ1;z � Fe2þ

t�1;z

2Dt
¼ �m

Fe2þ
t;zþ1 � Fe2þ

t;z�1

2Dz
� k1 Fe2þ

t�1;z

h i
ða:8Þ

The parameter Dt is the time step used in the model calcu-
lation (in day) while Dz is the grid spacing in cm. Similarly,
54Fe2þ

t;z and 56Fe2þ
t;z are calculated using the same centered fi-

nite approach for solving Eqs. (a.5) and (a.6) .
Since Fe-oxidation product is insoluble and considered

immobile in sediments, Fe(III) concentration can be calcu-
lated for each depth intervals, such as:

oFeðIIIÞ
ot

¼ k1½Fe2þ� U
qð1� UÞ ða:9Þ

Where q is sediment density (�2 g cm�3) and U sediment
porosity of �0.35 for sediments at Waquoit Bay.

The evolution of 54Fe(III) and 56Fe(III) at time t and
depth z is then described by:

56FeðIIIÞtþ1;z � 56FeðIIIÞt�1;z

2Dt
¼ k1

U
qð1� UÞ

56Fe2þ
t�1;z

h i
ða:10Þ

54FeðIIIÞtþ1;z � 54FeðIIIÞt�1;z

2Dt
¼ k1

a
U

qð1� UÞ
54Fe2þ

t�1;z

h i
ða:11Þ

Where we solve 54Fe(III)t+1,z and 56Fe(III)t+1,z and allow
the determination of d 56Fe values of Fe-oxides at any
depth z. The model is run until Fe(III) concentrations
reaches the present day. Only parameters k1 (rate of Fe2+

oxidation) and fractionation factor a are adjusted to give
a best fit of Fe(III) vs. d56Fe relationship.
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