Terrestrial Organic Carbon Inputs to Marine Sediments
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Significance of Terrestrial Organic Carbon

*  Most (ca. 90%) of the OC burial in present-day marine sediments occurs on
continental margins and in deltas.

+ Because they lie at the land-ocean interface, these depositional environments have
the potential to be strongly influenced by terrestrial organic carbon inputs.

* The flux of POC from land is sufficient to account for all the OC being buried in
marine sediments.

» Terrestrial OM is relatively poor in N relative to marine OM, and hence might be
expected to be less susceptible to (re)cycling (reduced respiration) and preferentially
accumulate in marine OC reservoirs.

» This doesn’t appear to be the case, so what happens to terrestrial OC?

Implications:

* Global carbon budgets

» Long-term controls on atmospheric CO, and O,.

+ Estimates of export of primary production from surface ocean.

» Inferences of past productivity in the oceans from OC-based sediment records.

» Interpretation of records of terrestrial and marine productivity from marine sediments.
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Important Considerations

» Organic compounds synthesized by organisms are subject to biological and
physicochemical processes that alter their chemical composition, and complicate their
recognition and quantification in downstream organic carbon (OC) reservoirs such as
soils and sediments.

» This “pre-conditioning” that modifies organic matter prior to burial may influence its
reactivity in the sub-surface (e.g., by physical association or chemical reaction).

* The time-scales over which organic matter is processed prior to burial may also vary
substantially, depending on its origin.

* As aresult, contemporaneously deposited organic material of terrestrial and marine
origin may exhibit a range of ages and labilities.

* In seeking to quantify the proportions of organic matter preserved in the sub-surface
that stem from different sources it is important to find tracer properties that are largely
independent of degradation.

» Continental margins contain significant quantities of “pre-aged” organic carbon.

Approaches to quantify OC inputs to marine sediments

*  Bulk parameters

- Corganic/Ntotal
. - 813
8"Croc

*  Molecular parameters
* - Regression of terrestrial biomarker concentrations vs bulk properties (5'3C, C,,¢/N)

» extrapolation to zero marker concentration yields a bulk marine end-member
elemental or isotopic value that can be inserted into isotopic/elemental mass balance.

» - Direct use of concentration measurements for biomarkers in “representative” end-
member samples (e.g. plant wax biomarkers in riverine suspended sediments) to
determine extent of dilution by marine OC.

Limitations:

+ Typically, only 2 end-members are considered (marine and vascular plant), and
terrestrial end-member biased towards vascular plant inputs.

+ Constancy in composition is assumed along transects.




Bulk properties used to quantify terrestrial OC inputs

Corg/N ratios

» Principle: Vascular plant biomass is depleted in nitrogen (mainly comprised of
cellulose and lignin), compared to [protein-rich] marine phytoplankton.

» Limitations:

* - Diagenetic influences - proteins are relatively labile, resulting in increased C/N
ratios with degradation.

» Inorganic N bound in clays can affect ratio, especially in low TOC sediments.

o"3C OC composition

+  Principle: OC from marine primary production typically enriched in 3C relative to Cy
vascular plant carbon.

+ Limitations:

. Complications due to mixed inputs of C;3 and C, higher plant carbon.
. Past and present-day variations in §'3C value of marine end-member.
. Potential diagenetic influences due to intermolecular isotopic variations

(e.g. selective preservation of 13C-depleted lipids over '3C-enriched proteins)
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Fig. 5. Atomic N/C ratio versus stable carbon isotopic

composition (8'°C, %o) of organic matter in size and den-

sity fractions isolated from Washington coast sediments

(Keil er al., 1994). M is marine material, B is bulk sedi-

ment, C is clay-, L is silt- and S is sand-sized sediment.

Subscript t is high density (p > 2.6) fraction and subscript
o is low density (p < 1.5) fraction.




%Corganic @Nd %Ny, in surface marine sediments (Gulf of Mexico)
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Fig. 2. Organic carbon to mineral surface area ratio (OC:SA) plotted against organic matter stable carbon isotope
composition. River samples are as filled and delta samples are as open symbols, A shift downward in OC:SA denotes
net loss of organic matter in the sediment mineral fractions. and a shift toward more positive isotopic compositions
indicates addition of marine organic matter. The right hand side of the figure illustrates the average ( =1 std) total
amount of terrestrial organic matter (OC,) remaining in deltaie sediments after accounting for both shifts in OC:SA
and 8"'C between river and delta sediments for the coupled river-delta systems studied 1o date.

Biological markers as tracers of terrestrial OC inputs

Compound types

* - Plant waxes (long-chain n-alkanes, n-alcohols, n-alkanoic acids)
+ - Terpenoids (e.g., abietic acid, retene, taraxerol)

* - branched ether lipids

+ - Lignin phenols

+ - Cutin

e - Tannins, Suberins




Molecular markers of terrestrial vegetation

Two primary groups of compounds have been used to trace present and past terrestrial
(vascular plant) vegetation inputs in aquatic sediments:

Higher plant epicuticular leaf waxes:
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Molecular markers of terrestrial vegetation

Lignin Compositional Parameters

Lignin-derived phenols
« syringyl/guaiacyl ratio (S/V): angiosperm vs. gymnosperms

« cinnamyl/guaiacyl ratio (C/V): leafy vs woody vegetation
« acid/aldehyde ratio (Ad/Al)v: extent of lignin degradation

« 313C: Determination of C3 vs C4 vs CAM inputs

Compositional parameters derived from CuO oxidation products
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Stable carbon isotopic analysis of lignin-derived phenols
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INTENSITY

Example gas chromatogram of waxes
(alkane fraction) from Tobacco leaves
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This figure shows a typical gas chromatography trace of a hydrocarbon (alkane) fraction extracted and
purified from a higher plant leaf sample. Note the predominance of long-chain (>C,,) odd-carbon-
numbered n-alkanes (marked with circles) that is highly characteristic of higher plant leaf waxes. The

chain-length distribution of these compounds is indicative of growth temperature.
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Molecular markers of terrestrial vegetation

Plant Wax Compositional Parameters
Plant wax n-alkanes/n-alcohols/n-acids

* Carbon Preference Index (CPI) or Odd-over-Even Predominance (OEP)
CPI = 2X0odd C21-t0-C35/(Zeven Cgo-tO-C34 + Yeven CZZ'tO'C36)

* Average chain length (ACL)
ACL = (Z[C] x N)/Z[C] where:
i is the range of carbon numbers (typically 23-35 for alkanes)
C, is the relative concentration of the alkane containing i carbon atoms.
« 313C: Determination of C3 vs C4 vs CAM inputs

« 3D: aridity/water stress

The Columbia River/Washington margin system
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Higher plant biomarkers in Washington Margin sediments
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Lignin phenol contents and isotopic
compositions of Gulf of Mexico sediments
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Evidence for minimal terrestrial OC contributions to marine
sediments

+ Variations in OC:SA and 8'3C, in estuaries.

* Low C, /N values for marine sediments.

+ Enriched §'3C values of marine sedimentary OC relative to terrestrial (C,
OC).

* Rapid decrease in lignin phenols with distance offshore.

Evidence for significant terrestrial OC contributions to
marine sediments

+ Unknown contributions from '3C-enriched (C,) terrestrial OC sources.

» Importance of hydrodynamic processes in exporting terrestrial OC.

» Old core-top ages for continental margin sediments.

* Global influence of small, mountainous rivers.

* Arctic ocean undersampled.

* Widespread distribution of plant wax lipids in ocean sediments.

» Greater importance of terrestrial OC in glacial times (low sea-level stand)?
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Bulk and Molecular Isotopic Compositions
of Gulf of Mexico Surface Sediments
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Stable carbon isotopic characteristics of riverine SPOM
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Fig. 1. Map of the continental United States with river sample sites (Canfield, 1997), and 8'°C values of suspended POM
from those sites, ill The distribution of C4 g (shaded area) is adapted from Coupland (1979).

Carbon isotopic compositions of leaf wax biomarkers

~ [
3§ go] Dendrocalamus sirictus g0 THandsia usnecides 50 Secchanm officinarum
“ © ©
= I” = i "
o 0
% ] 1 i I I I I
L& o L
- 16 Ca|asfe—1 cAM | e : 4
i‘: a 2 w2
o ' _HM asfe— 3 —_—
= — 3 30 e
Wl 5 — a8 a8 '
R T EEEEEEEEEEEEEEL
.
é‘. £ S— o] Selenicersus grancilionss o Miscanthus saccharifiorum
g “ « ©
£ » 0 21
ERET I P B
2 1] "y
g- 3 -lg.n
] Gy g1 CAM| g ! 4
A 20l 2 =} '
o Wle— 3 M -
= — 1
3 WpT) 20 20
38 H 2% e

N n M2 BN R MR M W M OB A N R M N @ A N E AN WM
Carbon Number Carbon Number Carbon Number

Fig. 1. Individual 8"C values (% vs PDB) and relative abundances (% of total alkane fraction) vs

n-alkane carbon number for plant waxes extracted from representative plants of different CO, metab-

olisms. 1, 8 *C value for leaf total tissue; 2, & PC value for total surface lipid extract; 3, weighted mean
average § C value for individual n-alkanes.




Influence of long-term

degradation on isotopic
composition of leaf-wax

biomarker lipids

n-Alkane
percentage of modern content

&' values

e = 2 = ® a =R
Decomposition time (yr.)
n-E—a =
(B)
i Modem
3 S C. Vulgaris
32 L 1
TS— !
M T T T T T
= = 2 2 2 & =
Decompesition time (yr.)

—O— nly —o— alp —o0— uCy,

—a— nC;; —&— Bulk

Long range transport and
preservation of plant wax alkanes

in marine sediments

Fig. 1. Losations of the msjor SEAREX. sumpling sites and some of the typical air mass trajectories for
the Enewelal k sine: (1) dry seasca; (2) wel season.

Gagosian and Peltzer

L L L . L L L L
SR N A

Losss A
EFud iz mr

.i-l_|:j J.I'JL'I .'|;< 'T

Asclan Dus| M2X/10):
CPTdans TR ACLAIE B

e il

i i"?ll’

Marine sedmen; M16TEZ
et 0w AL 1
ooty

Mados segierant MIGTES
Pt . ACLae
- it e 437
v
i
iill L

HYDROCARBON FRACTIONS

#. a-allney wiih pinag oddleves predsmiaince,
Peesumably from seolizn dest Hamiporation.

e S Lt T PO RS T T T

Eglinton (senior) et al




Med. Wood

Vegetation zones of
Africa (modern and
past glacial)

Med. Scrub

Woodland

Tropical

20 to 16 kyrs ago

Rainforest

} Tropical)

Scrub

Tropical
Woodland
Tr.[l
Rfr.

Tr. Wdld.

Tr.S.Des. Warm Tem. Forest

Med. Scrub Dry Steppe

20N ) <

10°N
0} 1
\‘c'/
o
10°8
1
------ Cruise track |
« Dust sampling site
2005 [T — | 20°S
40"W 30w 20°W 10°W o 10°E 20°E

Fig. 1. Ship track and dust sampling sites of RV Meteor cruise \HI-’I along the \'-w Mncan margm Phymgmgmphnnl
zonation of Africa is taken from White I‘JR\J Med = MST =

transition; d = desen; sd = semidesen; gs = grass savanna: (s = tree savanna: if = rain forest. Major wind systems are
drawn after Kalu (1979}, Tetzlafl and Wolter (1980), and Samthein et al. (1981). Note that samples D19 and D20 were taken
at almost the same location




25 29
| = ) DNl
,;; | CPl = 7.65
| - .
|1 0
|:; .
%I BT T T T 3
&l
& |
M

b
[ 2 D13
‘ | = | & CPl = 4.40
Iy%\,/\/ ! .
-28
29
-3 3
-
% “2!2526272829.‘03\323]
§ 27 33
il -
[ . a = '
_L_._. B R PR B,

Retention time ——

Fig. 3, Gas chromatographic traces of saturated hydrocarbon fractions of organic solvent extracts of serosol samples with
{a) a high and (b} a low CPl {above: D11, CPl = 7.65; below: D13, CP1 = 4.40). Dots indicate n-alkanes, stars indicate
1721 B(H)-hopancs. Insets show stable carbon isstopic compositions (in %) vs. chain-length of r-alkancs.

40'N

0N

31/(29+31)
Dl? 0.1 0.I6

- 30N
-
. 20°N
-
]
b 10N
s =ea
L] o
-
-
-
- s
C I e [ 205
2 4 L] 8 20w 0w o* 10°E 0°E
CPI

Fig. 4. (a) The variation in the ratio of the two dominant n-alkane homologues 1-C, /(n-Cay + n-Cy,), (b) the CPI, and
(c) the percentage of Cy plant-derived n-alkanes in the acrosol samples vs, latitude. Ship track and sampling sites are shown.
Note that sample D2 is missing. (d) Vegetation zones on the continent with mixed C,/C, plant vegetation are light shaded,
the Sahara and Namib desert with sparse but predominant C; plant vegetation are dark shaded. Major dust source regions

and patl

¥s are 1. The gray stippled line indicates the position of the ITCZ.




Plant wax (C,4 n-alkane) carbon isotopes of African dust
and E-Atlantic surface sediments
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Carbon isotopic composition of dustfall sample off NW Africa

Concn. §13C A'C 14C age
Fractions (gdw basis) (%o) (%o) (yr BP)
Total Organic Carbon 1.02 % -18.93 -149.6 1260 + 40
Black Carbon 0.24 % -15.13 -231.7 2070 + 35
Plant wax alcohols 12 ng -27.9 -80.8 649 + 143

Eglinton et al., G3, 2002




Isotopic compositions of Bengal fan sediments and the
emergence of C4 plants
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FiG, 2. 8C of TOC in Bengal Fan sediments plotied agains: age
in Holes TI17C and 718B. Data are available upon request 1o the
authors or in NOAA data base. The increase of §C values at ca. 7
Ma reflects the increase of the C4/C3 plant ratio in the source of the

organic matter. The $°C

paleosol data. Variations in §''C are
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Fig. 1. Map of the Indian subcontinent showing outcrop pattem of
Siwalik Group and sample localities for both paleasol and marine
sediments (insert map).

Isotopic compositions of Bengal fan sediments and the
emergence of C4 plants
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Fig. 6. §'*C values representing the average of odd-carbon-numbered HMW alkanes plotted as a function of sample age
for both the paleosol and sediment samples. Dotted line represent the approximate limits of n-alkane 81C values expecied
for C-3 and C-4 plants (see text and Table 14). Paleosol samples with evidence for significant contribution of s-alkanes from

parent materials are not included.




14C age of OC in marine sediment core-tops (0-3 cm)
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Importance of tropical mountainous river systems in
terrigenous OC export to the oceans

Fig.1 Annual discharge of =
total organic carbon of major
::world rivers to U&e oceans
m;&amc carbon fluxes are in

0" gC year™; wet tropics are
underlam in dark grey). Data
are from: Telang et al. (1991;
Mackenzie, Yukon, St.
Lawrence, Mississippi); Depe-
tris and Paolini (1991;
Orinoco, Parana); Richey et
al. (1991; Amazon); Martins
and Probst (1991; Zaire,
Niger); Degens et al. (1991;
Nile); Kgné]p;eet al. (1991;

Seine + Loire

+ Gironde); Telu:,g et al.
(1991; Ob, Yenisei, Lena);
Gan-Wei-Bin et al. (1983;
Yangtze); Subramanian and.
Ittekkot (1991; Ganges

Bn.hmagtra + l.ndus) Bl.rd
etal. (1

Milliman et al

Importance of tropical mountainous river systems in
terrigenous OC export to the oceans
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Sediment Yield (10° tkm/yr)
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Fig. 1. Relationship between anoual sediment load (a) and sediment yield (b) and basin m for various southeast Asian and
Indonesian/Papua New Guinean humid (=500 mm y~' run-off), in {>1000 m jon) rivers. Note that the East
Indies rivers (Fly, Purari, Solo, Citamandy, Cimanuk, Cimuntur, Cilutung, Cijolang, and Agno; solid dots) have loads and yields very
near values predicted based solely on southeast Asian river (open circles) algorithms; see text for further discussion. Data from Milliman
and Syvitski (1992), somewhat modified by Milliman and Farnsworth (in prep.).
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Fig. 6. Stable carbon isolopic composition of plants, soils, colle-
5 vium, and riverine suspensions in the Eel River watershed and pf
clay-sized sediment at the K70 site on the Eel River shelf. To date, we
80 80 have been able 1o sample river suspensions only at flows of less than
3700 m* 5", The available data suggest that particles in transport 'at

= SN P L progressively higher discharges have more positive §°C valies, a tread

1020 30 40 50 60 70 28 -25 -24 -23 -22 -2 that we hypothesize reflects a greater contribution from mass wasting

weight percent clay ] of melange vs, erosion of topsoil during more extreme precipitatibn
events, 1 '




The Mackenzie/Beaufort System

Fig. |. Location map of the Mackenzie Shelf in the Canadian Beaufort Sea showing the various features discussed in the text.
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14C ages of suspended

particulate and

sedimentary OC in river

dominated systems
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