If the ocean is so efficient in remineralizing C and nutrients,
why is C preserved at all in sediments?
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Pacific Ocean. (Pederson and Calvert, AAPG Bull.(1990) v74, 454-466).



Carbon preservation and the mystery of
Mediterranean Sea Sapropels
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Mediterranean Sea Sediment Core

Sapropels =
organic rich il
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Sapropels close-up of sapropel layer

Any organic rich layer of sediment is
called a sapropel, Sapropels in the
Medditerranean Sea are very
interesting however because the Med
is one of the least productive bodies of
water today, and sedimetns there are
extremely depleted in organci carbon.
A very long historical record of
sapropel deposition was collected by
the Ocean Drilling Program Legs 160
and 161 (see Initial reports...).
Sapropels were first discovered in the
Eastern Mediterranean Sea, but ODP
found them to be synchronous in both
basins. The shallowest sapropel is <
1m deep and can be sampled with a
gravity core.
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Organic carbon in Mediterranean Sea sediments
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Global distribution of chlorophyll-a in September




Organic carbon in surface sediments
of the Pacific Ocean
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Calvert and Peterson 1993



Formation of Mediterranean Sea Sapropels
Enhanced productivity hypothesis
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Correlation between %0C and nitrogen isotopes
in Mediterranean Sea sediments

215
8N (%/o0) Organic carbon (wt %)
0o 2 4 3]

1 2 3 4 5

Depth
Depth




Nitrogen isotopes in paleoproductivtiy
and denitrification studies

Central Gyres

Low Nutrients
phytoplankton

8'°N = 5.9 per mil

NO3™ —> N(organic)
€ = 0 per mil

Upwelling Zones
and Polar Seas

High Nutrients

phytoplankton

o' "N < 5.9 per mil

NO3™ —» N(organic)
£ = 6 per mil

Deep Sea Nitrate
8'°N = 5.9 per mil

Oxygen Minimum
Zones

Low Oxygen
phytoplankton
3'*N >5.9 per mi
NO3™ —» N3
£ = 20 per mil
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The effect of oxygen on carbon preservation in
Maderia Abyssal Plain Turbidites

Before... During... and Voila!




The effect of oxygen on carbon preservation in
Maderia Abyssal Plain Turbidites
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Fig. 10. Depth distributions of (a) weight percent organic carbon. (b) combined mole percent of two nonprotein amino acids { B-alanine plus
y-aminobutyric acid). and (c) wtal poilen sbundances (grains g’ ) in oxidired and unoxidized scdiments from two cores of the f-turbidite
collected at separate sites in the Madeira Abyssal Plain (data from Cowie er al., 1995; Keil et al., 1994b).



Formation of Mediterranean Sea Sapropels - anoxia hypothesis
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N isotope fractionation and early diagenesis

A8'""N is ( 8'°N of SPM or
phytoplankton - sediment)

phytoplankton detritus

NOs~ T

heavy nitrogen

light nitrogen

Early diagensis operates like N uptake

in biosynthesis. “Light”N is used first, so that
sedimentary OM will get heavier (more
enriched, or more positive) in N-15 as nitrogen
is used during respiration.

However, this is not the case in anoxic systems
because degradation proceeds via a different
route. In anoxic sediments, there is little N
fractionation with diagenesis.

If you measure the isotopic difference between
the original N in biomass, and N that is left in
sediments, the difference will be large (large
fractionation factor in N uptake) in oxic sediments,
whereas the difference will be small for anoxic
sediments.



Correlation between %0C and nitrogen isotopes
in Mediterranean Sea sediments
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8'°N in chlorophyll and sediment from Mediterranean Sea sapropels

Chlorophyll-a is
the light harvesting
pigment in nearly
all marine alge
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1} Chlorophyll (Chl} will record the N isotope value
of algal crganic matter at the time of synthesis. The
isatopic differance beteen Chl and algal biomass is a
constant (5.9 per mil).

2} Dlagenesis acts on total N, but will not change
the isotopic value of Chl.

4. If the isotopic difference {AA1SN) decreases during
sapropel formation, then M isotopic value is changing
due to diagensis. Ifit is constant, then the value of M in
the water column is changing and AN15 is set by changes
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8'°Nin chlorophyll and sediment from Mediterranean Sea sapropels
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What causes sapropels to form in the Mediterranean Sea?
And more generally, what processes act to preserve carbon
In marine sediments?

close-up of sapropel layer

Enhanced productivity due to
Inputs of nutrients?

or

Enhanced preservation due to
Bottom water anoxia?

The productivity vs preservation debate




CP factor #1. The argument for productivity......
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Relationship between burial efficiency
and sedimentation rate
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Coupling and feedbacks between carbon and oxygen cycles

% tectonic degassing
3k photosynthesis

¥ burial of organic carbon
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organic carbon deposition



Comparison of aerobic and anaerobic degradation
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Effect of bottom water oxygen
on burial efficiency
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The effect of oxygen on carbon preservation
in continental margin sediments

Oxygen concentration (UM)

0

100 200 300

® Washington
O Mexico

Organic carbon (wt %)
0 2 46 8 10

D =) ™ ]
a
2 %E e O 8
a0 * 0o
Bgo ® O
4 an . O
B0 o
—_— @ ® O
oo
5§ 8 °
i 10 ] =
‘&i}. o
alZ2| B = ® 0
14| o
16 "
18| |® © Mexico 120,630 m
B O Washington 150, 620m
20

Hartnett et al. (1998) Nature v391, 572-574



The effect of oxygen has been refined somewhat to adjust for
differences in exposure time, which is related to sedimentation
rate (depth of O, penetration/sedimentation rate) = OET

Effect of oxygen exposure time
on burial efficiency
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Total CO5 (mMk)

Respiration of carbon in 0-1 cm and 17-20 cm sediment
under oxic and anoxic conditions

Is carbon more efficiently respired under
oxic or anoxic conditions ?
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Total CO5 (mMk)

Respiration of carbon in 0-1 cm and 17-20 cm sediment
under oxic and anoxic conditions

Is carbon more efficiently respired under
oxic or anoxic conditions ?
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(Anoxic rate/oxic rate)
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CP Factor #3 The composition of organic matter

Effect of chemical composition on
organic matter degradation in sediments
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Was the compostion of OM in anoxic sediments different
than the OM in oxic sediments, thereby producing the
Observed difference?

Selective Degradation of polymeric organic matter
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Depth (cm)

Kinetics of organic matter degradation
and the multi “G" model
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Selective preservation of organic matter in sediments
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If selective preservation occurs, then “old”, buried carbon
should be recalcitrant. Butis it ?
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Depth (cm)

Is the “G” model just and observational artifact?
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Carbon preservation summary

Ocean is >99.5% efficient at recycling C.
Annual production is about 50-70GT C yr, of which 0.1-0.2% is buried.

Several factors affect C preservation:
organic matter production
oxygen

organic matter composition

It is difficult to isolate these factors from one another

to elucidate underlying mechanisms



