Biogeochemical cycling in anoxic sediments

Consortia of bacteria are needed to degrade
Complex organic mater

Waste products of one bacteria serve as the substrate for another
Major reactions are fermetation, sulfate reduction, and methanogenesis

Biogeochemical zonation occurs due to differences in free energy of TEA yields

C oxidation in CLB sediments show fluxes and processes are
In balance, suggesting all major pathways are accounted for.

Natural system closely resembles that expected
from pure culture work.
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Molecular hydrogen as a control on organic matter
oxidation in anoxic sediments

Is C oxidation in anoxic sediments under thermodynamic
or kinetic control?

(CH,O)n + nH,O -->nCO, +2nH,

2nH, +mX,, --> mX.4 + zH,0

(e.9. X, =S0,% X 4=5%)

Aern = AG(T)O + RT In ( {Xred}m/{xox}m (PH2)2n)

and...
Pro = ({Xeeal ™ {Xod™ €(AG 1-AG,O/RT)) 120



Oxidation of organic matter in marine sediments

Reaction AE(KJ/mole) Capacity
(mmoles/L sed)
O> — CO> -475 0.85
NO3~™ —»= N+ CO> -448 0.05
Mn(IV) —»  Mn (II) -349 2-22
Fe(lll) — Fe (I1) -114 14-28
SOy~ — S2- -77 56

CO> — CHgy4 -58
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Effect of TEA on H, concentrations
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Hydrogen Concentration (nM)
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Dependence of [H,] on [SO, 2]
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Profiles of hydrogen and sulfate in CLB and WOR sediments
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Profiles of hydrogen and sulfate in CLB and WOR sediments
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Effect of TEA on H, concentrations
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Effect of sulfate on H, in CLB sediments
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Hydrogen as a control on organic matter oxidation
In anoxic sediments (fresh and marine)

Hydrogen is a by-product of fermentation and is essential
for sulfate reduction and methanogenesis.

Hydrogen concentrations respond to T, [X], pH.
Laboratory changes correspond well to field observations.

Variations in H, suggest maintenance of constant
AG values of -10 to -15 kd mol'.

H2 has a very short lifetime in sediments- makes an
Excellent E regulator. Small changes in H2 concentration
Results in large changes in AG.

Intense competition by bacteria regulate [H.,]
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Natural Sources of Atmospheric
Methane
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Almospheric Methane

C isotopic changes in atmospheric methane

Concentration | ppby)

1804 [\
1780 "J {’

176
1740
170 - "y
|70
|68

el
Jan03

\ S

Monthly Mean of Flask Sample Methane Concentrations and

Jan-th

Isotopic Signature

Jama7 Jan- Y%

Date

" "l“"’)-.\‘xl
s

—a— Methane Concemration
_g—d130

Jrai =1

Jan-44

")

Jan-i

434

e Mw N\,V‘\/ e

4%

[elra 13712 Carbon (%)



How do we explain the increase in atmospheric ?
Why is there a seasonal cycle in methane concentration?

Why is there a seasonal cycle in methane C isotopes?

(can C isotopes be used to understand and
Quantify processes that lead to atms increase?)
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There are two pathways that yield methane:

Freshwater

CH,COOH --> CH, + CO,

Marine
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Carbon isotope fractionation with methanogenesis

Freshwater

CH,COOH > CH, + CO,
o = -48%o

Marine

o = -70%0
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Production of methane from acetate and CO,
in CLB sediments. 14C tracer studies.

14C tracer rates
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Seasonal changes in 13C for methane and CO,

Table 1. Cape Lookour Bight sediment gas bubble composition and 8'*C dara. Values listed arc means
+ SD for the number of sample bottles listed. Superscripts indicate the number of samples for which
compositional dara were obtained when different from the number of sample bottles listed.

Methane Methane dCEE?iT Carbon
D sample 5''C-CH, ‘ dioxide 5'7C-CO,
ate bottles conrent (per mul) . content (per mul)
(%) pe bottles ~ P
(no.) ; (%)
(no.)
6 June 1983 5 97 £ 2 -64.5 £ 0.7 5 2.5 0.1 -6.8 £ 1.1
19 July 1983 6 95 x4 -622x04 6 3402 -86=*12
3 August 1983 5 9% x4 -61.7 209 5 24 =03 -8.8 = 1.0
19 August 1983 5 94 £2 -575x03 4 24 =02 -9.4 = 0.3
15 Scprember 1983 5 97 = 2 -60.3 = 0.4 5 25 0.1 -83+05
16 October 1983 6 95 =3 —60.0=05 5 24+05* -72=*06
20 November 1983 4 93 =2 -02.2 £ 0.4 4 2406 -80*+02
2 February 1984 4 98 = 3 -63.4 £ 0.6 4 1.6 = 0.5° -60x1.2
7 April 1984 4 94 + 3 -63.8 £ 0.2 1 1.0 02 =51=07
6 May 1984 4 90 £6 -63.8 04 3 1502 ~30=038
31 May 1984 5 94 = § -68.5 = 0.7 3 1.8 =06 ~70 =20
14 June 1984 5 94 = 3 ~-64.1 = 0.6 4 29 =10 -6.2*24
2 July 1984 + 97 £ 4* =594+ 1.2 2 21 =01 -100=x07
18 July 1984 4 98 = 2! -60.6 = 1.6 ) 2202 -106 =32
11 August 1984 5 98+ 3* -573=x06 5 23 =02 -76=x1.2
30 August 1984 4 94 = ] -57.9 = 1.0 3 3811 -89 = 1.1
22 September 1984 5 99 = 0? -58.0 =03 5 24 =13 -81 =10
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Monthly flux and isotope data for methane flux from CLB

Monthiv

methane  Annual L3~ -
Monch bubble Ayt E'I. E'LHI',IJ'
- (%) ‘per mil!
(mmol m™3)

lanuary o {l
February 0 D -—-63.4 =10.6
March 0 il
April 0 0 -638 =0.2
Max 8 08 —664 =15
une 150 F2 =643 = 0)7
luly 1270 262 =610 = 1.6
Anpust 1643 339 -587 = 2.0
Septemnber L0935 226 -39 =14
Dierohbier 409 B4 =600 = 0.5
[wionvermoer 47 10 =622 +10.4
Drecemiber ] ]

Full year 43582 = 1277 1000 —-600 = 1.0




Anaerobic methane oxidation...where has all
the methane gone?

Oceans have a huge reservoir of methane in sediments, but
Contribute only 2% of the global atmospheric flux of methane.

Several lines of evidence suggest methane is being efficiently
Oxidized before it reaches the sediment water interface:

curvature in methane profiles
radiotracer experiments

isotopic fractionation between methane and CO,

measured rates of methane oxidation in sulfate
reduction zone.



CH, + SO, % --->>HCO; -+ HS- +H,O

Energetically favorable, but ratio of SRR/MOR
is very high ( >99.99).

Anaerobic methane oxidation probably occurs
as a consortia between SRB and MOB



Coupled methane oxidation and sulfate reduction in
CLB sediments
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Methane oxidation
and CO, reduction to
methane in CLB sediments

Ratia

MORCRR

Conceniralion

Suilale

Meithane Omidatioa Rale (bd)

Ap 80
Time (days)

8o

100

120

Methane Concentralion (mbl)

COy Reduction Hale (pkbid)



macromolecules

v

small
organic acids

— N

Gy — o)
\ @D



