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Abstract. To examine the topography and gravity ano-
malies due to mantle convection, we have carried out finite
difference calculations of thermal convection in a fluid layer
with a viscosity exponentially decreasing with temperature.
Both surface topography and gravity anomalies are shown to
be positive over regions of ascending flow and negative
over regions of descending flow. These results differ
significantly from those of McKenzie (1977) which for simi-
lar conditions predict negative topography and gravity ano-
malies above rising plumes. At large Rayleigh number, the
amplitude of surface topography is found to depend on Ray-
leigh number to the seven-ninths power as predicted by
boundary layer theory. These results are applied to test the
hypothesis that the linear small-scale gravity undulations in
the Central Pacific Ocean (Haxby and Weissel, 1983) are
caused by convective rolls in a layer at the base of the litho-
sphere. For a convecting layer thickness one-half the
observed gravity wavelength and with plausible values of
flexural rigidity and heat flux, we show that convection can
produce gravity anomalies of the observed magnitude with a
layer viscosity comparable to that determined by post-glacial
rebound. However, a large increase of viscosity with depth
is required to confine convection to a thin layer. If these
anomalies are actively maintained by convective stresses,
one possibility is that layered convection may result from
compositional stratification of the mantle.

Introduction

Proposed creep laws for the Earth’s mantle indicate a
rapid decrease in effective viscosity with increasing temper-
ature (e.g. Weertman and Weertman, 1975). A number of
studies have already been carried out to investigate the
influence of viscosity variation on thermal convection and
explore its geophysical implications. We will focus on the
possible effects of a temperature-dependent mantle viscosity
on surface topography and gravity anomalies due to finite
amplitude thermal convection.

Several earlier studies have examined the surface topog-
raphy and gravity anomalies that would result from convec-
tion in a variable viscosity mantle (McKenzie, 1977; Par-
mentier and Turcotte, 1978). For a convecting layer of con-
stant viscosity fluid, the surface is elevated above regions of
ascending flow and depressed above regions of descending
flow. However, the study of McKenzie (1977) predicted
that the surface would be locally depressed above regions of
ascending flow for a strongly temperature-dependent viscos-
ity. If correct, this could have important implications; for
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example it might explain the presence of an axial valley on
slow spreading mid-ocean ridges. To further examine
gravity and topography due to convection we present results
for two-dimensional periodic modes of convection in a fluid
layer with temperature-dependent viscosity. The calculated
surface topography as a function of Rayleigh number is
compared with that predicted by boundary layer scaling.

Gravity anomalies recovered from SEASAT altimeter
data provide the most direct evidence yet presented for
small-scale convection beneath the oceanic lithosphere
(Haxby and Weissel, 1983). Certain oceanic regions are
characterized by small-scale undulations in the gravity field,
with the Central Pacific Ocean as the best example. These
undulations have 150-250 km wavelengths and 8-20 mgal
peak to trough amplitudes. Haxby and Weissel interpreted
them as a possible manifestation of small-scale convection
in the low velocity zone of the sublithospheric upper man-
tle. The breakdown of the linear relationship between sea
floor depth and the square root of age at about 70 Ma might
also be explained by the presence of small-scale convection
under old sea floor which transfers heat to the bottom of the
plate thus keeping sea floor depth constant (Parsons and
McKenzie, 1978). Based on our results, small-scale convec-
tion in a layer at the base of the lithosphere that transfers
sufficient heat to explain flattening of seafloor with age can
also explain the amplitude of the observed gravity anoma-
lies. -

Thermal Convection and Surface Topography

The basic equations describing thermal convection can
be found in numerous earlier studies (e.g. Parmentier,
1975). Convection of a viscous fluid with infinite Prandtl
number confined between two horizontal isothermal bounda-
ries is considered. The Boussinesq approximation is
adopted so that the effects of compressibility and viscous
dissipation are neglected. The governing equations are put
in dimensionless form with the Rayleigh number Ra defined
in terms of the temperature difference between the top and
bottom boundaries and a viscosity evaluated at the mean
temperature. The thermal diffusivity and the coefficient of
thermal expansion are assumed to be constant, however, the
dimensionless viscosity 1 =exp[-CT] where C is a measure
of the temperature dependence of viscosity and T varies
between —1/2 and + 1/2 on the upper and lower boundaries,
respectively. Since each convection cell in a two-dimen-
sional, horizontally periodic pattern is the mirror image of
an adjacent cell, symmetry conditions for vertical velocity,
stream function and temperature are prescribed on the verti-
cal boundaries of each cell. For our studies with temp€ra-
ture-dependent viscosity, we take the horizontal boundaries
to be shear stress-free.
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Fig. 1. Left: Isotherms (solid lines) and streamlines (dashed
lines) for convection in a fluid with Ra= 10° and C=4. Grid
point locations in the 56 X 56 grid are shown by tick
marks. Right: Horizontally averaged temperature.

The finite-difference approximations employed in this
study are described by Parmentier (1975). An example solu-
tion is shown in Figure 1. A non-uniform grid was
employed which allowed grid points to be concentrated in
the thermal boundary layers where large temperature gradi-
ents must be resolved. The viscous flow and temperature
outside the boundary layers is more uniformly distributed
and can be resolved with much larger grid spacing. If grid
points were uniformly distributed, more than three times the
number of horizontal and vertical grid points would be
required to achieve the same overall resolution. Grid points
were distributed to provide relatively similar resolution of
the top and bottom thermal boundary layers. Comparing
solutions on successively refined grids as fine as 56 X 56
shows that the temperature structure in the boundary layers
is well resolved for moderate Ra (<10°). In terms of Nus-
selt number, Nu, solutions on 28 X 28 and 56 X 56 grids
have estimated truncation errors of 3% and 1% or less
respectively.

Normal stress equilibrium at the top surface of the con-
vecting layer can be represented as —opgh(x)=—-P+1,
where the normal stress from thermal convection is balanced
by the hydrostatic pressure of the excess mass of topogra-
phy. Here P is fluid pressure due to convection, T, is the
deviatoric normal stress, h(x) is the topography, and x is
horizontal distance along the top boundary. The topography
is calculated using finite difference approximations as dis-
cussed in Parmentier and Turcotte (1978).

Lin and Parmentier: Surface Topography Due To Convection

The calculated topography for constant viscosity with
Ra=3X10’ is shown in Figure 2a. For comparison with the
results of McKenzie (1977), the separate contributions to
the normal stress due to the fluid pressure P and the devia-
toric normal stress T,, are also shown. For constant viscos-
ity these two contributions are both positive above the
ascending plume (x=0) and negative above the descending
plume (x=1). Therefore, total normal stress is compressive
(elevation) over rising flow and tensile (depression) over
sinking flow. For constant viscosity, our results appear to be
nearly identical to those of McKenzie (1977; Figure 2).
Slight differences arise because McKenzie considered a uni-
form heat flux rather than a uniform temperature lower
boundary and defined Ra in terms of heat flux and viscosity
at the top boundary. An equivalent value of this Ra can be
obtained by multiplying our Ra by Nwexp[0.5C].

Significant differences between our results and those of
McKenzie arise for temperature-dependent viscosity. This
previous study presented three examples in which the vis-
cosity variations measured by the ratio of maximum to mini-
mum viscosity were about 11, 35, and 110. As this
viscosity ratio increases, the normal stress above the rising
plume changes from compression to tension, and conse-
quently the topography changes from elevation to depression
(McKenzie, 1977, Figures 8b,9,10). For Ra=2.4X10°, the
surface is elevated for a viscosity ratio of 11 but depressed
for viscosity ratio of 35.

For comparison, we chose values of Ra and the viscosity
ratio to match those of McKenzie (1977) as closely as possi-
ble. As can be seen in Figures 2b and c, our results predict
compressive normal stress (elevation) over the rising plume,
as for constant viscosity, even at the highest values of Ra
and viscosity ratio. According to our calculations, with a Ra
of 3x10° and a viscosity ratio of 55, the surface remains
elevated over the rising plume. The difference between
results of the two studies is the magnitude of fluid pressure
P. Relative to the magnitude of 1,,, the pressure variations
in McKenzie's results appear to be almost exactly twice as
large as ours resulting in the topographic depression which
his calculations predict. In summary, we did not obtain the
previously reported surface depression above the rising
plume for any values of Ra and viscosity ratio examined.

Boundary Layer Scaling

In the limit of large Ra, convective motion is vigorous
enough to consider the thermal structure of the cell as an
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Fig. 2. Dimensionless normal stress o,, (solid lines), fluid pressure P (dotted lines), and deviatoric normal stress
T, (dashed lines) on the top boundary of the fluid layer for Ra=3Xx 10° with (a) constant viscosity, (b) C=4 or
Nimax/Tmin =33, and (¢) C=35 Or Npax/Mmin = 148. The normalizing viscosity 7 is that at T=0, % is the thermal diffu-

sivity, and d is the layer thickness.



Lin and Parmentier: Surface Topography Due To Convection 359

lo' 10 10° 10

Fig. 3. Nusselt number and normal stress magnitude as a
function of Ra for shear stress-free boundaries with constant
(squares) and temperature-dependent viscosity (circles) with
Nmax/Mmin =355. Calculations for the three highest Ra-values
were carried out on 56 X 56 grids like that shown in Figure
1. The two lowest Ra-values are with 28 X 28 grids. Lines
represent the boundary layer scaling discussed in the text.

isothermal core enclosed by thin thermal plumes and bound-
ary layers (e.g. Turcotte and Oxburgh, 1967). The fluid
motion is driven by buoyancy due to temperature variations
in the plumes. For stress-free boundaries, the heat transfer
can be characterized by a Nusselt number Nu~Ra'’ (Rob-
erts, 1979; Olson and Corcos, 1980). Our numerical results
shown in Figure 3 agree closely with this power-law rela-
tionship. For no-slip boundaries, Roberts (1979) predicted
an exponent of 1/5. For the numerical results in Figure 4,
the power-law exponent is between 1/4 and 1/5.

For no-slip and shear stress-free boundaries, the shear
stress and horizontal velocity, respectively, on the bounda-
ries depends on Ra”. However, for both no-slip and
stress-free boundaries the dependence of normal stress on
Ra is more complicated. As pointed out by Roberts (1979),
the Ra-scaling of stresses and velocities near the comners of
the cell differ from those in the cell interior. In a corner
region of radius r, velocities are proportional to
(RaNwr)'?, where r~Ra”. This results in a normal
stress in the corner regions which depends on Ra’®. The
surface topography above the ascending and descending
plumes will have this same Ra-dependence. Our numerical
results, shown in Figures 3 and 4 agree well with the

scaling predicted by boundary layer approximations.
Gravity Undulations and Small-scale Convection

Viscous shearing due to plate motion may cause small-
scale convection beneath the oceanic lithosphere to have the
form of two-dimensional rolls oriented in the direction of
plate motion (Richter and Parsons, 1975). The observed
gravity undulations are consistent with convection of this
form showing generally periodic variations of relatively con-
stant wavelength in a direction perpendicular to plate motion
and being relatively persistent in the direction of plate
motion (Haxby and Weissel, 1983). To explain the
relatively constant wavelength observed, we consider small-
scale convection confined to a layer at the base of the litho-
sphere. A layer thickness of one-half the wavelength of

gravity undulations is assumed since this is approximately
the wavelength at which convective instabilites will grow
most rapidly. To estimate gravity anomalies as a function of
convective heat flux, we use results for a constant viscosity
fluid in a layer with no-slip boundaries. For moderate vis-
cosity variation, the magnitude of the normalized
topography and the value of Nu are reasonably close to
those for constant viscosity (Figures 3). We choose
plausible values of other parameters as given by McKenzie,
et al. (1974) and a layer thickness of 100 km.

Our model consists of an elastic plate which overlies the
convecting layer. Convection exerts a normal stress 0, on
the overlying plate. The vertical deflection of the plate is
controlled by its flexural rigidity D and the amplitude and
wavelength of the normal stress variation. A flexural rigidity
of 2x10% N-m is adopted for Central Pacific Ocean
(Forsyth, 1979). The gravity anomaly and heat flux can be
calculated if the viscosity and temperature difference across
the convecting layer are prescribed. In Figure 5 we plot the
amplitude of gravity anomaly as a function of the
convective heat flux and viscosity. Isoviscosity lines and
lines of constant temperature difference across the layer are
shown. The shaded area indicates those combinations of vis-
cosity and temperature difference which lead to Ra less than
a critical value of 1707.8. This provides an upper limit on
the range of possible viscosity values.

The layer viscosity can be estimated by requiring that the
theoretically calculated gravity anomaly and heat flux match
those observed in Central Pacific Ocean: peak to trough
gravity anomaly 8-20 mgal (Haxby and Weissel, 1983),
heat flux 60 mW/m’ (Sclater and Francheteau, 1970). Since
sea floor depth in this part of the ocean is nearly constant,
the observed seafloor heat flux is approximately that trans-
ferred across the convecting layer. As can be seen in Figure
5, the acceptable values of viscosity are limited to a range
from 10" Pa-s to 10% Pa-s with a temperature difference
of 300-500°C. Other values could not produce either the
observed gravity anomaly or the inferred convective heat
flux. This conclusion is not significantly changed by varyin
the layer depth (75 km to 125 km) or flexural rigidity (10
N-m to 10” N-m).

The viscosity inferred on this basis is very close to that
determined from post-glacial rebound studies (Cathles,

Fig. 4. Nusselt number and normal stress magnitude as a
function of Ra for no-slip boundaries and constant viscosity.
Calculations were carried out on 28 X 28 grids. Lines repre-
sent the boundary layer scaling discussed in the text.
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Fig. 5. Gravity anomaly amplitude at sea surface as a func-
tion of the heat flux transported by small-scale convection in
a 100 km thick layer at the base of the lithosphere. Solid
lines show different viscosity values and dashed lines show
the temperature difference across the layer. The shaded area
represents the combination of viscosity and temperature dif-
ference for which the layer is not convectively unstable.
Note that a heat flux in the Central Pacific Ocean of about
60 mW/m®> would produce gravity anomalies with the
observed amplitude of 4 to 10 mgals (half the peak to
trough value) for a viscosity in the range of 10" to 107
Pa-s.
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1975) which predict a value of 5X 10" Pa-s in a low vis-
cosity layer beneath the lithosphere. Our conclusion is that
for plausible viscosity values, small-scale convection in a
layer at the base of the lithosphere can produce the observed
gravity anomalies in the Central Pacific Ocean.

However, the viscosity variation with depth inferred
from post-glacial rebound or estimated on the basis of lab-
oratory measurements of creep in olivine does not appear to
be sufficient to confine small-scale convection to a layer at
the base of the lithosphere. Fleitout and Yuen (1984) and
Buck and Parmentier (submitted for publication) have also
considered small-scale convection in an upper mantle with a
temperature and pressure-dependent viscosity consistent with
laboratory measurements. The time-dependent models of
Buck and Parmentier (submitted for publication) predict that
both the horizontal and vertical scale of convective motion
increases as the thermal boundary layer thickens with age or
distance from the spreading center. To explain the relatively
constant wavelength observed, they propose that gravity
undulations may result from seafloor topography frozen into
the plate at a young age.

If the gravity undulations are dynamically supported by
convection, the viscosity beneath a low viscosity zone at the
bottom of the lithosphere must be greater than inferred from
post-glacial rebound or there must be some other
mechanism for confining small-scale convection to a thin
layer. Compositional stratification of the mantle is one pos-
sibility. Anderson (1984) suggests that a mantle
stratification consisting of peridotite overlying a denser eclo-
gite layer beginning at a depth of about 200 km is consis-
tent with models of seismic velocity structure and mineral
equation of state data. Alternatively, partial melting of peri-

dotite and the extraction of basaltic magma beneath a mid-
ocean ridge should generate a layer of residual mantle

which is less dense than the underlying undepleted mantle
(Oxburgh and Parmentier, 1977). The thickness of this layer
is controlled by the depth to which partial melting extends.
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If this depth is as large as 150-200 km, a low density
depleted layer of the required thickness may result.
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