Scientific questions offshore complement of USArray could address

- Crustal Transition Oceanic to Continental
 - How does transition zone behave from oceanic crust to continent
 - Provide constraint for radial involvement to mantle flow
 - Understanding the variations strength of the lithosphere
 - What is the thermal structure
 - Can we learn anything about fluids?
- Mantle structure underneath the San Andreas transform boundary
 - What is the mantle flow field and how does it relate to the surface deformation
 - Does transform boundary extend into the mantle
 - How does asthenosphere-lithosphere system change outboard of the SA fault
 - Flexible array deployments to map block rotation flow fields
 - Understanding background seismicity to define and characterize fault structure
 - Is there any evidence of obducted Farallon slab in offshore lithosphere
- Mendocino triple junction region
 - Flow field under Gorda and North American plates
 - Understanding seismicity distribution
 - Understanding the strength of the Pacific plate in the corner

OMD Meeting

Scientific questions offshore complement of USArray could address

- Ridge to Subduction zone on the JDF thru Cascades as a complement to Neptune
 - What is the transition between one tectonic environment to another
 - How does mantle flow change from one tectonic environment to another
 - Structural control over intraplate seismicity in the down going plate
 - Location of JDF subducting slab
 - Creation to destruction of oceanic plate
 - Width of mantle upwelling zone
 - What is the thermal structure of a young plate
- Transition from oceanic asthenosphere-lithosphere to continental tectosphere at the east and gulf coasts passive margin within NA plate
 - How does mantle flow change from oceanic asthenosphere as it meets the continental tectosphere
 - Does any of the oceanic asthenosphere survive under the tectosphere
 - Mantle structure from Mid-Altantic Ridge to tectosphere
 - Cooling of the thermal boundary layer oldest oceanic crust?
 - Deepest compensated crust, lowest heat flow particularly the Gulf Coast
 - Surface waves

Scientific questions offshore complement of USArray could address

- Structure of Aleutian's mantle wedge
 - Thermal structure
 - Mantle flow in corner wedge
 - Interaction of subducted slab with transition zone
 - Examine upper mantle under extended continental crust (Bering Sea)
 - Is there a relationship between mantle flow field under Aleutians and block rotation
 - Along strike variation in coupling (Shumagin gap)
- Mantle flow associated with Queen Charlotte strike-slip fault and transition to subduction zone
- Gulf of California Baja California
 - Obvious target for flexible array
- Great Lakes
 - Obvious extension to webfoot especially if eastern Canada is covered by broadband instruments at Grand Pied station spacing

Model for OMD complement to USArray

- Series of process oriented focused experiments simultaneous with USArray.
 – USArray model
- Coupled to the uniform deployment along all 4 coasts and Great lakes
 - Might be easier to sell
 - Is more appealing

- Number of instruments in array
 - Webfoot
 - 150 instruments
 - 625 km offshore
 - 70 km station spacing
 - 2 deployments per coast
 - Buried broadband sensors
 - 75 days for deployment
 - 75 days for retrieval
 - 15-18 months
 - Need UNOLS large ships
 - Flexible
 - 50 instruments
 - Experiment driven durations, station locations, etc
 - Buried broadband sensors when used

- Technical Requirements
- Webfoot
 - Broadband
 - 8 mHz-16Hz
 - 40 sps, 1 sps
 - Buried
 - 3 component
 - Hydrophone
 - <125 Hz

- Flexible
 - Broadband
 - 8 mhz-40Hz
 - 100 sps, 40 sps, 1 sps
 - Buried
 - Short period
 - 1-100 Hz
 - Hydrophone
 - <125 Hz

- Seascan clocks are sufficient
- Active orientation system
- Instrument development
 - Efficient burial system for broadband sensors
 - Orientation system
 - Are clock drifts linear?
- Method of selecting individual sites in an array
 - Local multibeam survey

- When will instruments be needed
 - Webfoot concurrently deployed with Bigfoot
 - West Coast 2005-2007
 - Gulf Coast 2011-2012
 - East Coast 2013-2015
 - Alaska 2015-2017
 - Flexible arrays deployments determined through peer review process

Data management

- OMD Data Collection Center
 - Data quality control
 - Prepare waveforms and metadata
- Archive data at IRIS DMC
 - Data distribution
- Unrestricted data availability for all data

Management and Funding

- Management
 - Facilities management loosely coupled with scientific management
 - Flexible array use USArray workshops for experiment design
 - Individual PI experiments
 - Use OBSIP model?
 - Use RIDGE model?
 - Create new facility?
 - Paid staff, small office, works well
 - Coordinates with Earthscope
 - Coordinates community workshops
- Funding
 - Create new money
 - Design coherent program which will justify the use of future NSF funding augmentation
 - Sugar daddy

Webfoot Science

- Continental Oceanic transitions
 - Strike slip boundaries
 - San Andreas Fault
 - Queen Charlotte Fault
 - Subduction zones
 - Cascadia
 - Alaska Aleutians
 - Passive margins
 - Low heat flow, old oceanic crust
 - Strike-slip to subduction transition
 - Mendicino triple junction
 - Queen Charlotte Alaska subduction
 - Strike-slip to spreading center
 - San Andreas to Gulf of California
 - 410 and 670 Transition zones

