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Summary. Many geophysical regression problems require the analysis of large (more than 104

values) data sets, and, because the data may represent mixtures of concurrent natural pro-
cesses with widely varying statistical properties, contamination of both response and predictor
variables is common. Existing bounded influence or high breakdown point estimators frequent-
ly lack the ability to eliminate extremely influential data and/or the computational efficiency to
handle large data sets. A new bounded influence estimator is proposed that combines high
asymptotic efficiency for normal data, high breakdown point behaviour with contaminated data
and computational simplicity for large data sets. The algorithm combines a standard M-estima-
tor to downweight data corresponding to extreme regression residuals and removal of overly
influential predictor values (leverage points) on the basis of the statistics of the hat matrix
diagonal elements. For this, the exact distribution of the hat matrix diagonal elements pii for
complex multivariate Gaussian predictor data is shown to be β.pii , m, N � m/, where N is the
number of data and m is the number of parameters. Real geophysical data from an auroral zone
magnetotelluric study which exhibit severe outlier and leverage point contamination are used
to illustrate the estimator’s performance. The examples also demonstrate the utility of looking
at both the residual and the hat matrix distributions through quantile–quantile plots to diagnose
robust regression problems.

Keywords: Bounded influence estimator; Hat matrix; Projection matrix; Robust regression;
Time series analysis; Transfer function estimation

1. Introduction

The application of regression methods to large (more than 104 values) data sets is increasingly
common in the geophysical sciences. In many of these problems, the data are complex in the
mathematical sense of having real and imaginary parts. Complex data arise either because the
original data consist of time series measurements, but the data used in the regression problem
consist of windowed Fourier transforms of them, or when quantities such as wind velocity that
are a dominantly two-dimensional vector are best described and analysed as complex numbers
(e.g. Calman (1978)). Complex data are also common in other areas of science and technology,
notably communications and electronic engineering. Further, geophysical data are typically
direct measurements of natural processes collected with limited control of environmental sys-
tematics, in contrast with the standard situation in the laboratory sciences. As a result, the
measurable quantities may be the result of mixtures of distinct but concurrent processes with
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widely varying statistical properties, some of which may be non-stationary, so that violations of
the standard regression conditions are commonplace. Inmany cases, standard robust estimators
fail on geophysical data, and new approaches are necessary which are both computationally
efficient and robust to a large fraction of outliers in all the variables.
This situation is typified bymagnetotelluric studies of the electrical structure of Earth through

measurements of its response to variations of natural electromagnetic sources in the ionosphere
and magnetosphere (e.g. Vozoff (1972)). Magnetotelluric data consist of time series of the vari-
ations of the horizontal electric and magnetic fields at Earth’s surface at a variety of locations.
They are usually collected for days to months at sample rates of 1 Hz or more and hence consti-
tute large data sets. In the regression context, the magnetic fields are the input, or predictor, and
the electric fields are the output, or response, variables. Further, the input–output relationship
is derived from the Maxwell equations and so is not in doubt. Data are typically analysed site
by site, although they are interpreted collectively. The diffusive form of electromagnetic waves
in a conductive medium results in the information contained in them being spread out smoothly
over a wide range of frequencies, and hence data are typically treated in the frequency domain
rather than in the time domain.
The impulsive and non-stationary behaviour of natural source electromagnetic fields is epit-

omized by (although not limited to) familiar auroral and geomagnetic storm phenomena. The
latter can at times interfere with power and telecommunications systems (e.g. Lanzerotti et al.
(1999)) and hence constitute physical as well as statistical outliers. Human activity such as the
transients from switching direct current trains also produces impulsive and non-stationary elec-
tromagnetic fields (e.g. Egbert et al. (2000)); since this type of source is at ground level, it does
not give the same field configuration as the ionospheric sources assumed in magnetotellurics.
These can lead to serious outlier and, in the most severe cases, leverage problems. Over the
past decade, conventional robust methods have revolutionized the use of magnetotellurics in
geophysics (Chave and Thomson, 1989; Jones et al., 1989; Egbert, 1997) and are now applied
routinely and automatically, producing reliable magnetotelluric responses in most instances.
However, at sites within the auroral zone at high latitudes where source field non-stationarity is
especially severe, robust methods frequently break down (often spectacularly) owing to
extremely influential predictor data (Garcia et al., 1997). Other situations where leverage prob-
lems are important include geomagnetic storms at mid-latitudes and any point within 100 km
of a direct current train track (i.e. most of western Europe). The interpretation of data from
these regions is problematical unless reliable and automatic methods to remove influential data
effects from large data sets can be devised.
The bounded influence (BI) estimator that is presented in this paper provides the required reli-

ability for extreme magnetotelluric data and has proven to be more generally applicable to a
variety of other situations. This estimator combines high asymptotic efficiency for normal data,
high breakdown point performance with contaminated data and computational simplicity that
is suitable for large data sets. It is based on the combination of a standard M-estimator to re-
move data corresponding to large regression residuals with leverage point removal based on the
statistics of the hat matrix diagonal, for which the exact distribution given complex multivariate
Gaussian data is derived. Its performance is illustrated with both standard data and a large,
severely contaminated magnetotelluric data set from central British Columbia.

2. Regression and robustness

The standard linear regression model relates the N × 1 vector y of observations of the response
(sometimes called dependent) variable to the N × m, rank m matrix X of predictors (some-
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times called explanatory, regressor or carrier variables) through the m × 1 vector of unknown
parameters β:

y = Xβ + " .1/

where " is anN×1 vector of random errors. For complex response and predictor data, the least
squares solution for model (1) is

β̂ = .XHX/−1XHy .2/

where the superscript H denotes the Hermitian transpose. The predicted values of the response
variable from the regression are derived from the observed values by

ŷ = Py .3/

where the N ×N prediction or hat matrix is given by

P = X.XHX/−1XH: .4/

The regression residuals r are the differences between the observed y and predicted ŷ response
variables.
The classical Gauss–Markov theorem gives the conditions on the response, predictor and

residual variables and their moments under which the least squares estimator will be the best
unbiased linear estimator, and the high efficiency of least squares when these are met is well
known. In geophysical applications, the predictor as well as the response variables are typical-
ly random rather than fixed. Shaffer (1991) has shown that the Gauss–Markov theorem also
holds when the joint distribution of X and y is multivariate normal with unknown parameters,
the distribution of X is continuous and non-degenerate but otherwise unknown or, under mild
conditions, if X is a realization of a random sample from a finite population. It is in this sense
that model (1)–(2) will be considered in this paper.
Regardless of whether X is fixed or random, problems with the least squares estimator when

the regression residuals are markedly heteroscedastic and heavy tailed and/or when some of the
points in X are unduly influential have been extensively documented. Typically, these result in
both a loss of efficiency and substantial errors in statistical inference about the parameters in
β̂. Over the past three decades, this has led to the development of robust regression methods
which, in varying ways and to different degrees, automatically reduce the influence of a small
fraction of data which cause problems for least squares. Recent reviews of this topic appear in
Ryan (1997) and Wilcox (1997).
A simple robust regression method is theM-estimator which systematically reduces the effect

of data on the basis of the size of the elements of r.M-estimators may not be sensitive to overly
influential predictors (usually termed leverage points), depending on whether they produce un-
usual residuals or not. In fact, M-estimators have a breakdown point of only 1=N so a single
leverage point can completely dominate the ensuing estimate, and their influence functions as
defined by Hampel (1974) are unbounded. These limitations have led to the development of
estimators that bound the influence of any single element or row of X, so that they guard
against leverage points as well as regression outliers. These will be called BI estimators,
although the term generalizedM- or GM estimator is often used as well. Indeed, a good GM
estimator has BI, but a poor choice of leverage downweighting strategy can result in GM esti-
mates that are not bounded. A standard statistical measure of leverage is the size of the diagonal
elements of the hat matrix, and many estimators use this quantity to detect and downweight
leverage values (e.g. Mallows (1975), Handschin et al. (1975) and Krasker and Welsch (1982)).
These BI estimators have a breakdown point of at most 1=m (Ryan, 1997). In practice, standard
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BI estimators have proven to be less than satisfactory in the face of multiple, large leverage
values, as is typical of geophysical data, in part because downweighting of bad data typically is
mild and limited rather than aggressive. More capable, high breakdown point (up to 0.5), esti-
mators such as the least median of squares and least trimmed sum of squares (Rousseeuw, 1984)
have been developed, and hybrid combinations with BI estimators have also been proposed (e.g.
Coakley and Hettmansperger (1993)). However, both of these approaches entail a substantial
increase in computational complexity that limits their applicability to large data sets and would
have to be adapted to complex data and the method of instrumental variables to be widely
useful in the earth sciences. Moreover, although advances in computing have been substantial,
we concur with the conclusion of Hawkins andOlive (2002) that high breakdown estimators are
impractical to compute exactly for large samples, and hence we regard computational efficiency
to be an important consideration.

3. Statistics of the hat matrix diagonal

The hat matrix is an important auxiliary quantity in regression theory and is a standard mea-
sure of predictor influence (e.g. Hoaglin and Welsch (1978), Belsley et al. (1980) and Chatterjee
and Hadi (1988)). The ith diagonal element of P (denoted by pii) is a measure of the potential
influence or leverage of the ith predictor observation. Because it is a projection matrix, P is
symmetric and idempotent, so that 0 � pii � 1. The eigenvalues of a projection matrix are
either 0 or 1, and the number of non-zero eigenvalues equals its rank; hence the trace of P is m
and the expected value of pii ism=N. The factor by which the hat matrix diagonal estimate must
exceed the expected value to be considered a leverage point is not well defined, but statistical
lore suggests that values which are more than 2 or 3 times m=N are problematic.
It is often reasonable to assume that the rows ofX aremultivariate normal, although this is not

required in least squares theory. Further, the normal assumption serves as a convenient base-line
for evaluating statistical entities (e.g. pii) derived frommeasured predictors which often contain
influential points, as will be demonstrated later. A derivation of the exact distribution of pii for
Gaussian predictors does not appear to have been published, although asymptotic forms for
real data are available (e.g. Rao (1973), Belsley et al. (1980) and Chatterjee and Hadi (1988)).
In Appendix A, the exact distribution of the diagonal elements of the hat matrix for complex
multivariate Gaussian predictors is shown to be β.pii,m,N − m/. This relationship has been
tested by extensive numerical simulation and holds for real data as a special case. Interestingly,
the exact derivation proves to be simple for complex data whereas it is not tenable for real data;
see Appendix A for details.
From the beta distribution, the expected value of pii is m=N, in agreement with the heu-

ristic value given above. The cumulative distribution function is the incomplete beta function
ratio Ix.m,N −m/. Appendix B gives an exact series expression for the cumulative distribution
function for integer m and N which is useful for computation.
Fig. 1 shows the percentile of the beta distribution scaled by N=m at the 0.90, 0.95 and 0.99

probability levels as a function of the regression orderm in the limitN � m. If a 5% penalty for
Gaussian data is acceptable, the 0.95-line is the approximate factor by which the expected value
m=N should be scaled to obtain a threshold value forpii to define leverage points. Note the rapid
decrease from a value of nearly 3 for simple regression .m = 1/ and the nearly constant value
of about 1.2 for m> 50. Defining leverage points to be those corresponding to pii > 2m=N
would carry a 5% penalty for Gaussian data only for m = 3, with a larger penalty obtaining
for smallerm and a rapidly decreasing value applying to larger regression problems. This would
inevitably leave an increasingly large fraction of potential leverage points in place asm increases.
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Fig. 1. Percentile of the beta distribution for .m, N � m/ degrees of freedom divided by its expected value
m=N as a function of log.m/ for the limit N � m at the 0.99- (- - - - - - - ), 0.95- ( ) and 0.90- ( . . . . . . .)
levels: see the text for discussion

For this reason, it is recommended that the common statistical practice of designating data with
pii >αm=N, where α is 2 or 3, as leverage points be discontinued. A better value for α is the
percentile of the beta distribution scaled byN=m at a suitable probability threshold. This ensures
that, on average, the same proportion of the population is flagged for any size regression prob-
lem. However, note that such statistical rules of thumb may be inappropriate for non-Gaussian
predictors which lead to a hat matrix diagonal which is systematically longer tailed than beta,
as is illustrated in Section 5.

4. The estimator

Consider the class of estimators defined by

N∑
i=1
wi Ψ

{
ri

τ .xi/d

}
xij = 0 .5/

for j = 1, . . . ,m, where ri is the ith regression residual, Ψ is the derivative of the loss function
(or the influence function), d is a robust estimate of the scale of the residuals, wi is a weight
which depends on a measure of leverage and τ .xi/ is a function of the ith row of the predictor
matrix. Two versions of equation (5) are in common use as BI estimators. If τ .xi/ = 1 and
wi = √

.1− pii/, then the form is that originally suggested by Mallows (1975), in which
leverage points are gently downweighted according to the size of the hat matrix diagonal,
whereas residual outliers are dealt with through a standard M-estimator. If τ .xi/ = wi, then
equation (5) uses Schweppe weights as originally suggested by Handschin et al. (1975). The
Schweppe approach is more efficient than the Mallows approach since large leverage points
corresponding to small residuals are not heavily penalized, but Carroll and Welsh (1988) have
shown under general conditions that it can lead to parameter estimates which are not consis-
tent.
In the authors’ experience with severely contaminated geophysical data, neither the Mallows

nor the Schweppe approach is adequate in the presence of strong leverage because they do not
eliminate influential data sufficiently aggressively. A similar comment pertains toM-estimators
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using non-descending loss functions such as the Huber type. Rather, it is essential to identify
and remove the most severe outliers and leverage points. For large data sets (104 values or more
per regression problem, with many such problems per application), it is also essential that this
be accomplished with high computational efficiency.
An algorithm which accomplishes these goals has been developed. As with most robust esti-

mators, the algorithm uses a base-line Gaussian model contaminated by a fraction of outlying
values. There are at least three reasons for using this approach, especially in a time series con-
text. First, windowed Fourier estimates are a linear transformation of time series data. The
narrow effective bandwidths employed conform to the requirements of the theorems in Mal-
lows (1967), and hence Fourier transforms must be approximately complex Gaussian in the
absence of outlying data. Second, the effectiveness of the Gaussian mixture model as a basis
for robust estimation on time series data in both the time and the frequency domains has been
repeatedly demonstrated in a wide range of situations (Thomson, 1977; Kleiner et al., 1979;
Chave et al., 1987; Chave and Thomson, 1989, 2003). Third, non-stationarity and contamina-
tion effects in time series data imply that the variance will be time dependent, suggesting that
the appropriate model is a Gaussian mixture.
For simplicity, reduced concern about high statistical efficiency given large data sets, and

the consistency issues raised by Carroll and Welsh (1988), only the Mallows (1975) approach
in equation (5) has been used, so that τ .xi/ = 1. This leads to the iteratively reweighted least
squares form

N∑
i=1
w[k]i v

[k]
i r

[k]
i xij = 0 .6/

for j = 1, . . . ,m, where the superscript [k] is the iteration number, r[0]i is a residual from the
ordinary least squares solution (2),

v
[k]
i = Ψ.r[k−1]i =d[k−1]/

r
[k−1]
i =d[k−1]

and d[k−1] is a robust estimate of scale computed from the [k − 1] order residuals. The {w[k]i }
and {v[k]i } will be termed leverage and residual weights as they downweight leverage points and
residual outliers respectively. The two sets of weights in equation (6) are decoupled and will be
considered separately.
Leverage weights are required which rapidly remove the effects of severe leverage points in a

smooth manner to maintain computational stability, which obviates against simple hard limit-
ing. A variant on the weight motivated by the form of the Gumbel extreme value distribution
that was originally suggested by Thomson (1977) takes the form

w[k]i = w[k−1]i exp{exp.−χ2/} exp[− exp{χ.ti − χ/}] .7/

where w[0]i = 1. This weight is especially suitable because the parameterization is both contin-
uous and continuously differentiable. In addition, the exponential terms in equation (7) have
a maximum value of 1, so the iteratively multiplicative nature of the procedure implies that,
once a given observation has been downweighted, the weight can only decrease on subsequent
iterations. For leverage point weighting, the statistic ti in equation (7) is the normalized hat
matrix diagonal elementM [k]p

[k]
ii =m with

p
[k]
ii = u

[k−1]
i xi.XHU[k−1]U[k−1]X/−1xHi u[k−1]i .8/
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where U[k] = W[k]V[k], W[k] and V[k] are diagonal leverage and residual weight matrices, W[0]

and V[0] are identity matrices and M [k] is the trace of U[k] which is initially the number of
data points N. The free parameter χ in equation (7) determines the point where leverage point
downweighting begins. Following on the discussion of Section 2, an empirical choice for χ is
the percentile of the beta distribution normalized by m=M at some specified probability level,
typically lying between 2 and 4. Using a 0.95-criterion results in a 5% leverage penalty with
Gaussian predictors, but less severe criteria may prove suitable for many data sets, especially
when the actual predictor distribution is longer tailed than Gaussian.
The residual weighting in equation (6) is based on the standard Huber approach parameter-

ized to a 5% penalty for Gaussian data for the initial few iterations, followed by more severe
outlier removal in the final iterations by using the weight function

v
[k]
i = exp{exp.−ξ2/} exp[− exp{ξ.|r[k−1]i |=d[k−1] − ξ/}] .9/

where ξ defines the point at which downweighting begins. Chave et al. (1987) suggested using
theMth quantile of the target distribution for the residuals as an empirical choice for ξ to allow
implicitly for increasing departure of some residuals from the population centre as the number
of data increases. They also noted that, although a Gaussian residual model is appropriate for
real data, the target distribution for complex data should be Rayleigh because the absolute
value of the complex residual is the most appropriate residual statistic. The robust scale d[k−1]
may be obtained for either a Gaussian or Rayleigh residual model in the standard way using
the residuals from the .k− 1/th iteration. For severely contaminated data, the median absolute
deviation offers good performance in estimating d[k−1]. The iterative solution of equation (6)
ends when the weighted sum of squared residuals does not change beyond a threshold value.
The difference between the forms of the weights in equations (7) and (9) is required because

of the well-known tendency forM-estimator residual-based weighting to increase leverage sig-
nificantly. If the leverage weights in equation (7) are recomputed at each iteration, instability
usually results due to interaction between the residual and leverage weights, especially in
severely contaminated data. Because the weights in a given iteration multiply those from pre-
vious iterations in equation (7), this instability is eliminated with only a slight decrease in
efficiency.
As a heuristic demonstration that the estimator proposed here is bounded, consider the sim-

ple case where the ith row of X contains one or more outliers but all the remaining rows are
uncontaminated.As inAppendixA, defineXÅ to beXwith the ith row removed and assume that
XÅ contains independent standardized complex random variables, so that XHÅXÅ ∼= .N − 1/I
where I is the m × m identity matrix. Further assume that XÅ is such that all the weights in U
except ui are 1. Let the ith row of X be xi = αx̃i where x̃i is uncontaminated so that ‖x̃i‖2 = m

and α is a measure of the degree of contamination. Then, the norm of the scaled and weighted
ith row of X is ‖xi‖2 = α2.ui/

2m. Scaling pii byM=m, whereM = tr.U/ = N − 1+ ui, yields

Mpii

m
∼= α2.ui/

2

1+ α2.ui/2m=.N − 1/
: .10/

Because ui always lies between 0 and 1, for small values of α, Mpii=m ≈ α2.ui/
2, whereas

for very large values Mpii=m ≈ .N − 1/=m. Since typical values of χ range from 2 to 4, the
leverage weight in equation (7) decreases at an exponential rate with α, and hence the influence
is bounded. Further, the weights in equation (7) are the product of the present value of the
exponential term and the previous weight, so once a point has been downweighted because of
excess leverage it stays that way for subsequent iterations.
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Diagnostic plotting in regression has been extensively described in Belsley et al. (1980) and
Chatterjee andHadi (1988), and an extension of some standard approaches to robust regression
is treated inMcKean et al. (1993), who focused primarily on inferences about model order from
residual plots. Inmost geophysical situations, the form of themodel is prescribed by the relevant
physics, and hence greater attention should be paid to the estimators’ statistical performance,
and especially to whether outliers and leverage points have been adequately removed through
the iterative solution of equation (6). For this, the most useful diagnostic plots are quantile–
quantile (q–q-) plots of both the weighted regression residuals against the appropriate target
distribution quantiles (truncated Gaussian for real and truncated Rayleigh for complex data)
and of the weighted hat matrix diagonal (8) against the truncated beta distribution quantiles.
The residual q–q-plot should be reasonably straight and free of extreme values when using the
final weights from equation (6). The hat matrix diagonal q–q-plot should be consistent with
the conditions defined by Shaffer (1991); note that these do not require that the hat matrix
diagonal be beta distributed unless the predictors are actually Gaussian. However, even when
the predictor distribution is markedly non-Gaussian, a plot of the hat matrix diagonal against
the beta distribution quantiles (or, in some cases, log-beta quantiles) is effective in detecting
extreme outliers, as shown in the next section. Note also that it is essential to use the quantiles
from the truncated form of the original residual or hat matrix distribution, or else the result will
inevitably appear short tailed; see Appendix C for details.

5. Examples

In this section, the performance of the BI estimator described in Section 4 will be illustrated
by using two physical data sets. The first of these is the star data set from Rousseeuw and
Leroy (1987), Table 3. Although not complex, this data set is intended to be illustrative and
has become a bench-mark for testing robust regression methods. The second data set con-
sists of several components from the frequency domain analysis of a very large (more than
700000 points each) group of time series of the electric and magnetic field variations from west-
ern Canada reported by Jones (1993). These data show especially severe leverage and outlier
contamination.
The star data consist of 47 measurements of the logarithms of the effective surface tempera-

ture and light intensity of stars from the cluster Cygnus OB1. A plot of the data shows a direct
relationship between the two variables except for four red giant stars (points 11, 20, 30 and 34)
which are outlying with low temperatures and a high output of light (Fig. 2); these represent a
different population rather than bad data. An ordinary least squares (OLS) estimator (equation
(2)) including an intercept applied to the data (the broken line in Fig. 2; β̂ = [−0:4133, 6:7935])
is badly pulled by the four red giant stars, crossing the bulk of the population obliquely and
fitting nothing very well, as was previously shown by Rousseeuw and Leroy (1987).
Fig. 3 shows a q–q-plot of the diagonal elements of equation (4) from the OLS solution. The

result is long tailed, and the five most extreme values are, in decreasing order, data points 30,
34, 20, 11 and 7. A q–q-plot of the regression residuals (not shown) is somewhat short tailed
and does not suggest the presence of serious outliers. The first four extreme values in Fig. 3
correspond to the red giant stars in Fig. 2, whereas datum 7 has an intermediate temperature
between this group and the main population. Fig. 3 graphically illustrates the ability of a hat
matrix q–q-plot to identify multiple leverage points, although the well-known masking and
swamping phenomena do occur and hence there is no guarantee that all leverage points can
be identified at one time with this diagnostic. However, an iterative approach, in which the
most extreme leverage values are removed, the least squares line and hat matrix are recomputed
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Fig. 2. Star data taken from Rousseeuw and LeRoy (1987) with selected data points highlighted, together
with an OLS fit to the data (- - - - - - - ) and a BI fit ( ) by using the estimator proposed in this paper

Fig. 3. Beta quantiles (scaled by M=2) plotted against the ranked hat matrix diagonal (also scaled by M=2)
for the star data of Fig. 2 (see the text for discussion): �, OLS hat matrix for which M D N and the target
distribution is β.2, N � 2/; �, BI hat matrix for which M is the number of data points after censoring and the
quantiles are those of the truncated β.2, N � 2/ distribution

and a new q–q-plot is generated, has proven very effective in the face of multiple leverage
points.
The BI estimator was applied to the star data set with the leverage point rejection threshold

set to the percentile of the beta distribution with parameters (2,45) at the 0.99-level. The Huber
stage converged to within a 1% change in the sum of squared residuals after five iterations,
and one additional iteration using equation (9) did not change the fit significantly, reflecting
the weakness of outlying response data. The final BI estimate is β̂ = .3:2038,−9:1905/ and is
shown by the full line in Fig. 2. The 95% confidence intervals on this estimate easily intersect
the least median of squares result given in Rousseeuw and Leroy (1987). The leverage weights
have eliminated points 7, 11, 20, 30 and 34 (see Fig. 2) and downweighted point 14 (w[6]14 =
0:14). The final hat matrix q–q-plot is shown in Fig. 3 and is reasonably free of extreme values.
The second data set consists of a 732160-point magnetotelluric time series of the vector hor-

izontal electric and magnetic field variations recorded at a sampling rate of 12 Hz at site 006 in
central British Columbia, as described by Jones (1993). The magnetotelluric statistic of interest
is the second rank tensor Z relating the horizontal electric and magnetic fields (E and B) as a
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function of frequency given by

E = ZB: .11/

At a given frequency, this is equivalent to estimating the rows of Z by solving two independent
regressions relating either the north or east electric field response variable simultaneously to the
north and east magnetic field predictor variables.
The data series were prewhitened by using a short robust autoregressive filter, subdivided

into sections whose length is of the order of the inverse of the frequency of interest, windowed
by using a Slepian sequence data window of unity time bandwidth, and Fourier transformed
by using an overlapped section averaging approach (Percival and Walden (1993), section 6.17).
After correction for prewhitening, the frequencies of interest are obtained from each section and
become complex data to which the BI estimator is applied. Because noise in the magnetic field
data produces downward bias in the tensor elements, a geophysical adaptation of the method
of instrumental variables called the remote reference method (Gamble et al., 1979) was used
effectively to replace all autocovariance terms in equation (2) or (6) involving the local magnetic
fieldwith cross-covariance terms involving a referencemagnetic field. Finally, the standard error
on the response tensor elements was estimated by using the jackknife, as described by Thomson
and Chave (1991).
Fig. 4 compares the magnitude and phase of the response tensor element between the north

electric and east magnetic field .Zxy/, which is expected to be the dominant component
involving this electric field element according to magnetotelluric theory. This quantity has been
computed by using an M-estimator (the estimator of Section 4 with the leverage weights
always fixed to 1, hereafter called the ordinary robust (OR) estimator) and the BI estimator. In
conformity with geophysical practice, the magnitude has been expressed as apparent resistivity
in ohm-metres, which is 2 × 10−4 times the period in seconds times the absolute square of a
given response tensor element when the electric andmagnetic fields are in Système International
units; this corresponds to the true subsurface resistivity if it is depth independent. The BI result
has been computed with the cut-off parameter in equation (7) taken as the 0:99999-point of
the appropriate beta distribution; this choice reflects the inherent very long-tailed nature of the
predictor distribution and, as will be demonstrated, is not especially critical. In general, the OR
and BI results are similar, although there are subtle but significant differences at short (below 1
s) periods and substantial differences between 2 and 20 s. The latter are marked by substantial
heteroscedasticity of the OR result due to leverage which is reflected in amuch larger confidence
limit estimate.
Fig. 5 is a complex plane view of the response tensor element at a period of 5.3 s. The OLS

estimate has 8694 degrees of freedom. Both the OLS and the OR estimates display large uncer-
tainties, reflecting heteroscedasticity that is not removed by using weights based entirely on the
size of the residuals despite the elimination of about 7.2% of the data, or about 313 values. This
heteroscedasticity is reflected in both the residual and the hat matrix diagonal q–q-plots from
the OLS solution (Fig. 6) which suggest the presence of severe multiple outliers and extreme
leverage. The most serious outliers are about 50 standard deviations from the Rayleigh mean,
and the most serious leverage points are over 1000 times the expected value of the hat ma-
trix diagonal for Gaussian predictors. Note that the hat matrix distribution is approximately a
long-tailed version of a log-beta rather than beta distribution. Ionospheric and magnetospheric
processes are highly non-linear, and hence their electromagnetic effects are the result of many
multiplicative steps. This means that the statistical distribution of the magnetic variations will
tend towards log-normal rather than normal (Lanzerotti et al., 1991), and hence the resulting
hat matrix diagonal will tend towards log-beta rather than beta. The q–q-plot for the hat matrix
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(a) (b)

Fig. 4. (a) Apparent resistivity and (b) phase as a function of period in seconds for the magnetotelluric
response tensor element between the north electric and east magnetic field .Zxy/ for the BC87 data de-
scribed in the text; ��, double-sided 95% confidence limits computed by using the jackknife; �, M-estimator;
�, BI results described in the text (the BI estimates have been offset to slightly longer periods for clarity of
presentation)

(a) (b)

Fig. 5. (a) Complex plane view of the estimate in Fig. 4 at a period of 5.3 s (each symbol is plotted with
the jackknife standard error) for the β.2, N � 2/ distribution, where N is the number of estimates, and (b) a
magnified view with different x- and y-axis limits showing the three BI estimates at the left-hand side of (a): },
OLS estimate .N D 4342/;�, OR estimate; �, BI estimate with cut-off parameter χ at the 0:99999-percentile;
�, BI estimate with cut-off parameter χ at the 0.9999-percentile; 4, BI estimate with cut-off parameter χ at
the 0.999-percentile

diagonal is virtually unchanged for the OR solution, although the residual q–q-plot is slightly
long tailed, reflecting pervasive though weak residual heteroscedasticity. The BI estimates for
different values of the cut-off parameter in equation (7) are indistinguishable in Fig. 5; these are
based on the 0:99999-, 0.9999- and 0.999-points on the beta distribution, resulting in the rejec-
tion of 14% (608 values), 15.7% (682 values) and 18.7% (813 values) of the data respectively. The
three BI estimates are statistically identical despite the wide range in data elimination, and hence
the choice of the cut-off point in equation (7) is not critical. A value of 0:99999 was selected for
production because a smaller value results only in reduced efficiency with no improvement in
performance. The standard error on the 0:99999 BI result is reduced by more than a factor of
34 compared with that from the OR estimator. In fact, the strong bias in the regression solution
and its error estimate is caused by approximately 300 data points, amounting to about 7% of the
total. The final residual q–q-plot for the BI estimate is slightly long tailed and upwardly concave
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(a) (b)

Fig. 6. q–q-plots for (a) the regression residuals and (b) the hat matrix diagonal for the OLS solution of
Fig. 5: the absolute value of the regression residuals are scaled to have a variance of 2 and plotted against
the Rayleigh quantiles in (a), whereas the hat matrix diagonal elements are scaled by N=2, converted to log-
arithms and plotted against β.2, N � 2/ quantiles, also scaled by N=2, in (b); note the extremely long-tailed
form of both quantiles

(a) (b)

Fig. 7. q–q-plots for (a) the regression residuals and (b) the hat matrix diagonal for the 0:99999 BI solution
in Fig. 5 (see the caption to Fig. 6 for the plotting details): the target distributions are the truncated forms of the
Rayleigh and β-distributions; the residual distribution is slightly longer tailed than the Rayleigh distribution,
whereas the hat matrix diagonal is approximately log-β with some extreme values at the lower end

compared with the Rayleigh distribution (Fig. 7), and the upward concavity of the result is
indicative of a residual distribution which is slightly longer tailed than the Rayleigh rather than
the presence of significant outliers. The final hat matrix q–q-plot is approximately log-beta with
a larger fraction of lower end values than would be expected. It is easy to modify the estimator
of Section 4 to eliminate unusual data at both the lower and the upper ends of the distribution,
but this has no significant effect on the result.
Fig. 8 shows the solutions for the same data components at a period of 0.89 s, for which the

OLS solution has 69577 degrees of freedom. In this instance, the OR solution displays a sub-
stantially smaller standard error than the OLS value but is also markedly offset compared with
the BI result. The OR solution differs from the BI result by more than 6 standard errors of the
latter. A comparison of the OLS and OR q–q-plots for the hat matrix diagonal (Fig. 9) shows
that robust weighting has not improved things, and in fact the most extreme OR values are
increased. The BI method controls the leverage and eliminates this problem. Residual q–q-plots
for these data are qualitatively like those in Figs 6 and 7, and are not shown.
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(a) (b)

Fig. 8. (a) Complex plane view of the estimate in Fig. 4 at a period of 0.89 s (each symbol is plotted with
the jackknife standard error) for the β.2, N � 2/ distribution, where N is the number of estimates, and (b) a
magnified view with different x- and y-axis scales showing the three BI estimates at the bottom of (a): }, OLS
estimate .N D 34788/ ; �, OR estimate; �, BI estimate with cut-off parameter χ at the 0:99999-percentile;
�, BI estimate with cut-off parameter χ at the 0.9999-percentile; 4, BI estimate with cut-off parameter χ at
the 0.999-percentile

(a) (b)

Fig. 9. q–q-plots for the hat matrix diagonal elements for (a) the OLS and (b) the OR estimates of Fig. 5:
note that robust weighting in (b) has increased the size of the leverage points

The sort of behaviour that is seen in Figs 4, 5 and 8 is not unusual with magnetotelluric data,
especially when they come from a high geomagnetic latitude where auroral effects can be severe
or when cultural noise is a problem. Further examples showing the importance of robustness
and leverage control in magnetotellurics may be found in Jones et al. (1989), Garcia et al. (1997)
and Chave and Thomson (2003). In fact, part of the motivation for developing this algorithm
was that earlier approaches performed unsatisfactorily. One of the advantages of working in
the frequency domain is that regression estimation is done independently at many frequencies.
For stationary processes, the data at different frequencies are strictly uncorrelated. Empirically,
this still holds approximately in the observed mixtures; the magnitudes of the data at different
frequencies are partially correlated, but the phases remain approximately independent. Con-
sequently, if regression estimates at some frequencies follow the outliers rather than the data,
the result can be physically impossible changes in slope for the apparent resistivity and phase
curves.
The authors have not seen any magnetotelluric situation where BI estimation using the ap-

proach in this paper causes problems, and the computational overhead is only slightly larger than
for ordinary M-estimation. With magnetotelluric data, an empirical breakdown point for the
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method approaching 0.5 is routinely achieved. However, as with other high breakdown estima-
tors, when the fraction of unusual data exceeds 0.5, the ensuing estimate can reflect the extreme
data rather than the underlying, presumably good, data; this is illustrated in a magnetotelluric
context for some extremely energetic auroral events by Garcia et al. (1997).
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Appendix A: Derivation of the hat matrix diagonal distribution

An approximate distribution for the diagonal elements of the hat matrix for real Gaussian predictor data
is given in Chatterjee and Hadi (1988), section 2.3.7. The derivation for complex Gaussian data follows
similar reasoning but yields a simpler and exact result. A major complication with real data is the ubiqui-
tous column of 1s in most predictor matrices; this has no equivalent in the complex data matrices that are
used here. The diagonal elements of equation (4) may be written

pii = xi.XHX/−1xHi .12/

where xi denotes the ith row of X. Because X contains xi, a direct statistical characterization of equation
(12) is difficult. Chatterjee and Hadi (1988) suggested simplifying it by replacing X by the .N − 1/ × m
matrix XÅ which has the ith row deleted. Under this assumption, XH

ÅXÅ will have a complex Wishart
distribution with 2.N − 1/ degrees of freedom (Srivastava, 1965). Further, because xi is independent of
XH
ÅXÅ, the Mahalanobis distance from xi to the remainder of the sample, as described by XÅ, is given by

pÅii = xi.XH
ÅXÅ/−1xHi .13/

where the notation pÅii denotes the corresponding hat matrix diagonal elements. These will have a complex
Hotelling T 2-distribution. Expressing the inverse of XHX by using the Sherman–Morrison formula to
update that of XH

ÅXÅ gives

pii = pÅii
1+ pÅii

.14/

and hence the distribution of equation (12) follows from that of equation (13). The complex Hotelling
T 2-distribution is given by Giri (1965) and, together with an expression for the distribution of T 2 in terms
of the central F -distribution (Muirhead (1982), page 98), it can be shown that the statistic

f = N −m

m

pii

1− pii
.15/

will be distributed as F2m,2.N−m/. Further simplification is possible through the usual transformation from
anF - to a beta distribution (Johnson et al. (1995), page 327) by letting n = N−m and n=.n+mf/ = 1−pii.
From this, it is easy to show that the hat matrix diagonal elements have a beta distribution with parameters
m and N −m, which has probability density function

ρ.pii/ = 1
B.m,N −m/

pm−1
ii .1− pii/

N−m−1 .16/

where B.a, b/ is the beta function. The cumulative distribution function is the incomplete beta function
ratio Ix.m,N −m/ obtained by integration of equation (16) and given in closed form in Appendix B.

Appendix B: Closed form expression for the beta cumulative distribution function

A closed form series expression for the incomplete beta function ratio Ix.a, b/may be derived directly from
the integral definition when a and b are integers. The definition is
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Ix.a, b/ = 1
B.a, b/

∫ x

0
ta−1.1− t/b−1 dt: .17/

Integrating by parts a times and substituting b = N − a yields the series expansion

Ix.a,N − a/ = 1− 1
B.a,N − a/

a∑
i=1

Ai

Bi
xa−i.1− x/N−a+i−1 .18/

where

Ai =
i−1∏
j=1
.a− j/,

Bi =
i−1∏
j=0
.N − a+ j/

and A1 = B1 = 0. The beta function is given by

B.a,N − a/ = .a− 1/!
/

a∏
i=1
.N − i/: .19/

The quantiles may be obtained numerically by solving Ix.a,N−a/ = .j− 1
2 /=N for x, and other statistical

quantities of interest follow directly.

Appendix C: Quantiles of a truncated distribution

Suppose that data are censored in the process of robust or BI weighting by using an estimator such as that
described in Section 4. The target distribution for the relevant statistics must then be truncated to reflect
data censoring. Let fX.x/ be the probability density function of a random variable X before censoring;
in the present context, this may be the Gaussian or Rayleigh distribution for the residuals or the beta
distribution for the hat matrix diagonal. After truncation, the probability density function of the censored
random variable X′ is

fX′.x′/ = fX.x
′/

FX.d/− FX.c/
.20/

where c � x′ � d and FX.x/ is the cumulative distribution function for fX.x/. LetN be the original andM
be the final number of data, so thatM = N−m1 −m2, wherem1 andm2 are the numbers of data censored
from below and above respectively. Suitable choices for c and d are the m1th and .N −m2/th quantiles of
the original distribution fX.x/. TheM-quantiles of the truncated distribution can then be computed from
that of the original distribution by using

∫ Qj

−∞
fX.x/ dx = {FX.d/− FX.c/}

j − 1
2

M
+ FX.c/: .21/
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