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INTRODUCTION

This report constitutes an attempt to review the major
developments and identify important trends in the broad
field of geophysical electromagnetic induction and related
phenomena over the past four years. Following in the
spirit of previous reports of this type le.g., Filloux, 1979,
Hermance, 1983b], the work of US researchers will be
emphasized, although we will cover foreign research when
appropriate. Many of the recent theoretical developments
and the largest EM field program ever (EMSLAB) are the
direct result of international cooperation, and strict adher-
ence to the concept of national boundaries would result in
an uninformative and incomplete review.

Due to the fact that readers of this paper have diverse
interests ranging from theory through field to laboratory
studies, we have attempted to treat a variety of topics in
EM induction and electrical geophysics. We begin by
reviewing the state-of-the-art in data collection, including
new instrumentation. We continue by examining data
analysis methods, with an emphasis on noise and bias
reduction in the computation of the magnetotelluric and
magnetic variations response functions. We then treat
forward modelling developments, especially for two- and
three-dimensional induction problems. Recent progress
has been made in EM induction inverse problems, and we
assess the impact of this on the field. An overview of
field measurements in North America is given, including
the recent EMSLAB experiment which was carried out in
1985—1986 in the northwest US, southwest Canada, and
contiguous offshore regions. This is followed by a review
of developments in oceanic applications of EM principles.

The reference list is believed to be complete through
June 1986. In the interest of brevity, only refereed publi-
cations or works in press are included, and meeting
abstracts or technical reports are generally not cited.
Nevertheless, the number of references exceeds 600,
attesting to the health of the discipline. Additional infor-
mation on EM induction research may be found in the
proceedings of the most recent semiannual Workshops on
EM Induction held in Victoria, Canada, in 1982, Ile-Ife,
Nigeria, in 1984, and Neuchatel, Switzerland, in 1986.
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DATA COLLECTION AND INSTRUMENTATION

To a large extent, recent improvements in EM data
have come about through more sophisticated time series
analysis methods rather than from changes in instrumen-
tation. Data analysis is covered in the next section. Pro-
gress in the quality of the sensors themselves has been
more gradual.

It has been the general experience of US research
groups that SQUID magnetometers do not achieve their
laboratory potential in field situations, and this has led to a
trend back to induction coils for wide-band MT work.
Coils have become much lighter as amplifier technology
has improved, and are easily constructed. However,
developments in fluxgate design may soon produce a sen-
sor that is comparable in sensitivity to coils in the dead
band around 1 Hz and that has a far better long-period
response. A fluxgate instrument would also be easier to
deploy in the field. Theoretical analyses that elucidate
some important design criteria for sensitive, low noise
fluxgates are given by Russell et al. [1983] and Narod and
Russell [1984]. Three companies are now manufacturing
ring-core fluxgates similar to those flown in MAGSAT.
One obstacle to making these instruments much better
than their predecessors is the limited availability of the
best core materials. Narod et al. [1985] present an experi-
mental study of amorphous alloys which shows that
fluxgate noise depends on material properties that have
not been considered before. This gives some hope that
materials can be found that are easily manufactured and
that will deliver very good performance.

As in most branches of the physical sciences, micro-
computer technology is having an enormous impact on
induction work. Long-period data are now almost always
collected digitally, and solid-state data loggers and high
density redundant tape recording is offering much higher
reliability and larger capacity than before. Even the vener-
able Gough-Reitzel magnetometer is receiving new life
through image processing which allows easy digitization of
the film records. Wide-band MT data are now routinely
processed on site. It is possible to build and operate large
arrays of sensors that can map the electric field in great
detail and overcome the effects of local distortion. It is
also feasible to make wide-band MT (and controlled
source) equipment so portable that it can be taken virtu-
ally anywhere.

One of the most significant developments of the past
four years has been the realization by US and Canadian
workers that group field efforts are essential to the study
of many relevant large-scale problems. The desire to
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upgrade field equipment for academic research is also sup-
plying an impetus to work in groups. The equipment that
is currently available to academic scientists lags far behind
what is possible with current technology. New equipment
will require a substantial capital investment which can be
minimized by careful sharing of resources.

RESPONSE FUNCTION ESTIMATION

The estimation of EM response functions or
impedances from data is of central importance to the
natural source EM methods, and especially for MT.
Increasingly more sophisticated ways to reduce the
influence of noise on the response functions have evolved
over the past four years. In addition, new ways to inter-
pret the full response tensor are being developed.

Most of the methods for computing response functions
in current use are based on least squares principles, and
share the inherent advantages and limitations of that tech-
nique. An important requirement for the proper operation
of least squares is that the residuals or errors from the fit
be uncorrelated and of equal variance or power. Data that
produce residuals which fail to meet this condition may be
termed outliers, and least squares estimates are very sensi-
tive to their presence. This type of outlier, as well as ordi-
nary Gaussian noise, can induce serious bias and distor-
tion into EM response functions. OQutliers in EM data
may be caused by a variety of instrumental, cultural, and
natural processes, many of which are not well understood,
and a myriad of procedures to reduce their impact con-
tinue to be proposed.

Recognition that the predominant source of outliers in
MT data was inherent in the measurements rather than in
the measuring devices led to the development of the
remote reference method. The success of remote refer-
ence methodology is attested to by its nearly universal
adoption in terrestrial MT, and improvements continue to
be introduced. Clarke et al. [1983] give a recent review of
remote reference equipment and procedures. Kriger et al.
[1983] discuss the bias effects of coherent and incoherent
noise on local and remote estimates of the response func-
tion. Goubau er al. [1984] conducted an experimental
investigation of the correlation scale of MT noise by com-
paring a standard remote reference response function,
where the separation between measurements was several
km, to a local reference result using a third magnetometer
and shorter spacings. They obtained the surprising result
that separations of as little as 200 m were adequate to
remove outlier bias at periods longer than 1 s, suggesting
local nonplanar source fields as the contaminant. At
shorter periods, the noise appears to be instrumental, ori-
ginating in the shields of the SQUID magnetometers, and
could be removed by a reference only 2 m from the base.
This study indicates how little is known about how and
why the remote reference method works. While it is clear
that the technique is effective against many types of MT
outliers, its limitations are not so obvious, and further
work like that of Goubau et al. [1984] should be
encouraged.

Chave et al. [1986] and Egbert and Booker [1986] have
proposed new procedures to eliminate the effect of outliers
on response functions. Such methods are modifications of
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proven ones from the field of robust statistics, and are
based on iterative re-weighting of the data during regres-
sion. The weights are automatically chosen by comparing
the regression residuals to a predicted value obtained from
the appropriate statistical distribution, and the influence of
data corresponding to large residuals is reduced. This
gives unbiased response functions as well as meaningful
estimates of their error. These methods are still undergo-
ing development and testing using a variety of EM data.
However, we predict that robust estimation of the
response functions will yield substantially smoother and
more precise results under contamination by a broad class
of outliers. When combined with the remote reference
technique and instrument arrays, this method should
prove very powerful.

Park and Chave [1984] have presented a rigorous
derivation of the singular value decomposition (SVD)
method for estimating the response function and its asso-
ciated errors. While other least squares approaches
assume that Gaussian noise is present in only part of the
data (e.g., the electric or magnetic field), SVD treats the
more realistic case where noise is distributed among all of
the data. Since the relative amounts of noise in the data
are rarely known a priori, Park and Chave [1984] derive a
statistical test that helps to establish the correct relative
noise level, and show how the response function varies as
this quantity is altered. This approach is useful in dealing
with the well-known bias effect of Gaussian noise in MT
data, and could easily be combined with robust statistical
methods to remove additional Gaussian or non-Gaussian
outliers.

Gamble et al. [1982] address the problem of defining a
unique coordinate system over three-dimensional (3D)
structures, and note that the usual practice of finding indi-
vidual strike directions using separate principal axis
transformations at each frequency often breaks down.
They propose a new empirical method, called regional
strike determination, that is based on minimization of
weighted sums of squares of the response functions over
all frequencies, with the weights chosen to accentuate the
most precisely known data. They also present examples
which demonstrate the consistency of this approach and
the inconsistency of the more standard one.

Eggers [1982] gives a thorough discussion of the param-
eters studied in MT, and shows that the conventional
ones—the amplitude and phase of the off-diagonal tensor
components, principal direction of the response tensor,
skew, and ellipticity—are incomplete, since the full tensor
possesses 8 degrees of freedom while these quantities
have only 6.5. He then derives an alternate and complete
set of parameters using an eigenvalue-eigenvector decom-
position of the tensor, and shows how they provide addi-
tional insight for interpretation purposes. In particular,
the polarization ellipse display of the eigenstates can indi-
cate the form of the 3D structure. Spitz [1985] addresses
the problem of defining coordinate systems for this type of
response function formulation.

Response functions also are important in the GDS
method. Gough and Ingham [1983] present a thorough
review of single- and multiple-station methods to get the
GDS response, and give a variety of ways to present the
results. Beamish and Banks [1983] discuss the use of a
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common reference site to study regional structure using a
limited set of instrumentation, and claim to get results
comparable to those from larger arrays. Richmond and
Baumjohann [1983] present a new method to treat magne-
tometer array data, and address the more general problem
of inferring spatially continuous patterns from finite sets
of point observations. In contrast to most earlier studies,
in which a small set of parameters are fit to a large set of
data (e.g., spherical harmonic fits with truncation at low
order), they propose the use of a large set of interpolating
functions and apply constraints from the governing physics
to regularize the result. Their examples of field mapping
and internal/external part separation are quite encourag-
ing, and this paper deserves serious attention. Future pro-
gress in GDS requires the application of more sophisti-
cated analysis techniques, especially frequency-
wavenumber and polarization processing to better quantify
source field structure.

FORWARD MODELLING

Forward modelling—the prediction of an EM response
for a specified earth model—is of central importance in all
of the EM disciplines. A notable amount of progress in
handling two-dimensional (2D) and (3D) models has been
made over the past four years. This has led to improved
insight into the effects of complex sub-surface structures
on the observed response. In addition, better ways of
computing and viewing one-dimensional (1D) models are
evolving.

Many types of EM problems require the numerical
approximation of integral transforms. Most 1D controlled
source models use the Hankel transform. Anderson [1982]
has produced software based on the digital filter method
for the computation of Hankel transforms that is substan-
tially faster and more accurate than previous implementa-
tions. Chave [19834] has reported a direct numerical
integration scheme with Padé convergence acceleration
that is generally slower than a digital filter formulation,
but that is very accurate and capable of handling integrals
having formally divergent integrands. Time domain EM
computations require the numerical inversion of the
Laplace transform. Knight and Raiche [1982] discuss the
Gaver-Stehfest algorithm, a procedure which is simple,
more computationally efficient than discrete Fourier
transform approaches, and which requires a knowledge of
the integrand only for real values of the transform vari-
able. An alternate view of Laplace transform inversion
based on first kind Fredholm integral equation theory is
given in Pike et al. [1984], and deserves greater attention.

Forward modelling in 1D is straightforward for MT and
GDS, and little purpose is served by the continued publi-
cation of analytic solutions for specialized conductivity
profiles. However, considerable insight into controlled
source and time domain applications continues to come
from 1D models, but even relatively simple cases can
rarely be expressed in analytic form. While many
mathematical approaches to 1D problems exist, the use of
a formulation involving poloidal and toroidal modes is
especially useful. Backus [1986] gives a thorough and
rigorous derivation of this Mie representation of the EM
field on a sphere that is readily extended to the plane.
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Several investigators have stressed the importance of
placing equal emphasis on the theoretical behavior of the
EM field and on the theoretical resolution of a given mea-
surement. The 1D Fréchet derivatives of the fields are
especially useful in this context. The use of Fréchet
derivatives as sensitivity functions is discussed by Gomez-
Trevifio and Edwards [1983], Chave [1984al, and Edwards
et al. [1984].

Most of the effort in 2D and 3D modelling of EM
phenomena over the past four years is based on the
integral equation (IE), finite element (FE), or thin sheet
approaches. The IE method is the most widely used and
thoroughly developed EM modelling technique for 3D
media. It is especially well-suited for treating isolated
bodies embedded in a simpler substrate, since the numeri-
cal complexity is limited to the body itself. Hohmann
[1983] reviews the formulation of IE problems and com-
putational procedures for their solution. Wannamaker et
al, [1984a] describe an IE algorithm for MT problems that
can handle a 3D body in an arbitrary layered 1D medium.

The FE method is also receiving increasing attention.
Lee and Morrison [1985a] derive the FE equations for a
2D problem with a finite (controlled) source from a varia-
tional principle. P.E. Wannamaker (private communica-
tion, 1986) has distributed a 2D FE code for MT, and has
applied it to a study of topographic effects on MT data
[Wannamaker et al., 1986]. Hybrid methods which com-
bine the FE and IE methods are also in use [Best et al.,
19851.

Over the past quadrennium, thin sheet modelling has
grown from a mathematical curiousity to a very viable
means for treating surface inhomogeneities. Dawson et al.
[1982] treated TM mode induction with two thin sheets
over a halfspace, where the thin sheets represent respec-
tively a conducting ocean adjoining a continent and a
resistive crust. Dawson [1983] extended this to include
the TE mode. Both of these models are substantially
more realistic than earlier ones. McKirdy and Weaver
[1984] developed the theory for a 2D variable conductance
sheet over a layered medium, and McKirdy et al. [1985]
generalized this to the 3D case. Applications of thin sheet
techniques include studies of regional induction in Scot-
land [Weaver, 1982] and of current channeling between
two oceans [McKirdy and Weaver, 1983].

The further development of 2D and 3D modelling
codes must involve checking for internal consistency and
cross validation with other algorithms or analytic solutions.
Weaver et al. [1985] have proposed a standard 2D MT
model consisting of three adjoining blocks of different
conductivities overlying a perfect conductor, along with a
closed form expression for the TM mode response func-
tion. Weaver et al. [1986] present a similar 2D control
result for the TE mode. There is a definite need for simi-
lar analytic or quasi-analytic solutions for simple 3D
bodies.

Numerical modelling has been applied to the study of
3D effects on the MT response functions. This is impor-
tant both to determine the possible biases caused by mul-
tidimensionality and to ascertain the limits where 1D or
2D models are suitable approximations to the 3D earth.
Hermance [1982d, 1983a] has used DC thin sheet models
to model telluric distortion effects from surface inhomo-
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geneities,. Park et al [1983] and Park [1985] have
identified three distortion mechanisms caused by 3D
media: coupling between the upper crust and mantle
across a resistive lower crust, resistive coupling of conduc-
tive features within the upper crust, and local induction of
current cells within finite-size, good conductors. The first
two of these produce telluric distortion that is frequency-
independent at low frequencies, while the latter is usually
frequency-dependent. In many cases, these mechanisms
can be differentiated by examining the spatial variation of
the response functions. Wannamaker et al. [1984b] used
an IE code to study the effect of a 3D body in a layered
host. They present a thorough discussion of the bias
effects on the MT apparent resistivity and phase, and con-
clude that, under certain circumstances, 1D or 2D model-
ling techniques are suitable for the study of real 3D struc-
tures. Newman et al. [1985] modelled crustal magma
chambers using the IE technique, and showed that the
effect of such a body was often surprisingly limited. For a
thorough review of 3D current channeling effects in MT,
see Jones [1983a].

As supercomputers and advanced computational algo-
rithms become more widely available, 2D and 3D model-
ling will become more common. However, it should be
remembered that approximate solutions to EM problems
are often as useful as the more complex, full solutions;
this type of approach has been emphasized and justified by
West and Edwards [1985].

INVERSION

Fischer and LeQuang [1982] state that the 1D magneto-
telluric inverse problem is essentially understood. Despite
this optimism and the fact that a 1D model is not
appropriate for most MT data, the 1D problem continues
to receive substantial attention, judging from the number
of papers devoted to it. To some extent, the MT inverse
problem is relatively easy when compared to other geophy-
sical inverse problems. EM data are Fréchet differentiable
[Parker, 1983; Chave, 1984a; Abramovici and Baumgarten,
1985; MacBain, 1986). Furthermore, there are existence
and uniqueness theorems for various sorts of ideal data;
the most recent of these is due to MacBain and Bednar
[1986]. Clever schemes to directly invert ideal induction
data ]continue to appear le.g., Barcilon, 1982; Coen et al.,
1983].

Real MT data are always discrete and have errors asso-
ciated with them. Most workers are aware of Parker’s
work on this type of data [Parker, 1983]. He has shown
conclusively that when no 1D model fits a data set exactly,
then the conductivity model with the smallest least
squares or y? misfit will always consist of a set of infinite
spikes or delta functions in conductivity. He called this
the D+ case. MacBain and Bednar [1986] claim that
Parker’s result is not rigorous, but this does not alter the
fact that practical schemes for inverting noisy data which
do not exclude the possibility of delta function models will
converge to these models as the misfit decreases. This
applies in particular to most least squares-based layered
model fitting routines. For a graphic example, see Smith
and Booker [1986]. It is extremely important to note that
this behavior requires that the data actually contain noise.
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Inverse schemes which are expected to operate with real
data simply cannot be tested with artificial data which
equal the response functions for any 1D model even when
the data are assigned an error. Synthetic data must have
noise added to them after they are generated.

Parker’s delta function models usually grossly overfit
the data, in the sense that x? is much smaller than its
expected value. It is then statistically valid to relax the fit
and achieve a larger x2. There are an infinite number of
possible models between the best-fitting D+ type and one
with any larger value of the misfit. Parker [1983] reviews
several ways of constructing families of models in which
the model space has been defined to exclude delta func-
tions. Hooshyar and Razavy [1982b] present related results
for the case where the data cover a range of spatial
wavenumbers at a fixed frequency. To choose among
these models, it is necessary to add a side or regularization
condition. Most regularization conditions in current use
involve some sort of smoothing. In the past, the most
common smoothing criteria involved expanding the model
in some finite parameterization (e.g., a small number of
layers). The criterion for choosing a specific model is still
minimization of the least squares misfit, as was the case
for D+, but the side condition prevents it from approach-
ing a global optimal fit. The best that can be said for this
approach is that, if the parameterization is essentially the
same as the truth which generated the data, the inversions
seem to work and will recover a reasonable facsimile of
the truth; see Fischer and LeQuang [1982) and Pedersen
and Hermance [1986] for examples. The interpretation of
such models is not clear if the truth happens to be
parameterized in some substantially different way.

Recently, several groups have focused on choosing
models which are extreme in some sense. A particularly
fruitful criterion is the flattest or smoothest model fitting
the data within some prescribed x2 [Marchisio and Parker,
1984; Constable et al., 1986; Smith and Booker, 1986].
These minimum structure inverses allow one to ascertain
which features are actually required by a given data set.
Furthermore, they turn out to be remarkably good at
recovering the structure of synthetic models from noisy
data for reasons that are not yet entirely clear.

Whittal and Oldenburg [1986] present another type of
extremal inversion in which the problem is cast in terms
of inverse scattering. Estimation of the impulse response
is analogous to the deconvolution of a seismogram and is
a linear inverse problem which is solved by minimizing
various norms of the response. This effectively limits the
possible structure in the model. The conductivity itself is
recovered from the impulse response by solving a non-
linear Fredholm integral equation. Other types of
extremal inversions are due to Oldenburg [1983] and
Weidelr [1985], who bound functionals of the conductivity
structure.

Linearized Backus-Gilbert types of inversions have been
used by Hobbs [1983], Hobbs et al. [1985], and Abramovici
and Baumgarten [1985]. Oldenburg et al. [1984] have
attacked this type of inversion on the grounds that models
exist which fit the data and are not linearly close to those
produced by the Backus-Gilbert technique. Smith and
Booker [1986] show that a proper choice of datum and
model variable can lead to a nearly linear inverse problem.
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Unfortunately, the papers cited do not cast the problem in
its nearly linear form, so that nonlinear errors may invali-
date their conclusions.

Two- and three-dimensional inversion of electromag-
netic induction data is ultimately a more important prob-
lem for investigating the earth, but is less advanced than
its 1D counterpart. Most groups still rely on forward
modelling to interpret data. We believe that rapid
advances in 2D and 3D inversion techniques will be made
in the next few years as modern algorithms and high
speed processors become more widely available.

Inverse schemes for 2D data fall into two classes. The
first expands the model using a limited parameterization
(i.e., a small number of conductive blocks), and adjusts
the values of the parameters to fit the data to within some
prescribed tolerance. All existing schemes involve lineari-
zation about a starting model and some form of least
squares fitting. Two strategies for parameterization are
current. For instance, Zhdanov and Golubev [1983] advo-
cate a particular function set which allows only seven
parameters to describe a wide variety of shapes for an
anomalous body. This means that the inverse problem
will almost always be grossly overconstrained. The prob-
lem with this strategy is that one has no rigorous way of
examining nonuniqueness. The alternative is to use a
large number of parameters. The most advanced scheme
of this type is a proprietary program called ESP/MT
developed by W.L. Rodi and colleagues at S° in San Diego
and described by Jiracek et al. [1986). The forward calcu-
lation for the Fréchet derivatives uses self-adjusting finite
elements. The normal equations for an updated model are
then inverted using a damping method which minimizes
spatial derivatives of the model as well as the size of the
perturbation. Other programs, such as the widely used
Jupp-Vozoff code, minimize only the size of the perturba-
tion.

Minimum structure models are likely to be at least as
beneficial in 2D as in 1D, and are essential if 3D inverses
are to be obtained. Although existing and potential algo-
rithms discretize the structure, the resolution matrix can
be interpreted as digitized Backus-Gilbert windows if the
discretization is on a finer scale than the true structure.
The nonlinear errors inherent in interpreting the results in
this way are just as important in 2D and 3D as in 1D.

The second type of parameterization strategy picks one
of the infinite number of possible 2D solutions by finding
the one that is closest to some prescribed structure. The
method of tightening of surfaces, applied to GDS data by
Zhdanov and Varentsov [1983] and described in more detail
by Berdichevsky and Zhdanov [1984], can be useful if the
background conductivity is well-known, but could be quite
misleading otherwise, especially if the measurements do
not include the electric field. Solving the inverse problem
for the flow of electric current [Berdichevsky and Zhdanov,
1984] is also helpful, but displays similar dangers. These
methods all involve some form of spatial filtering of the
data. A serious problem with much existing work is that
the fields, and especially the electric field, vary on scales
shorter than the station spacing. This means that filtering
operations are applied to aliased data sets. F.X. Bostick
(private communication, 1986) has suggested that the
electric field should be profiled, with each successive leg
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touching the previous one, and calls the method EMAP.
With this type of data, prescribed structure methods such
as the method of tightening of surfaces, may become quite
useful.

A final approach to 2D interpretation which shows some
promise, especially for developing starting models for
further 2D inversion, is the plotting of pseudo-sections of
invariants of the MT response tensor [Ranganayaki,
1984]. In particular, she found that the pseudo-section of
the phase of the determinant looked remarkably like the
structure.

Developments in inversion of controlled source data
parallel those for induction by natural fields to some
extent. Parker [1984] has derived a result for DC resis-
tivity methods which is analogous to the delta function or
D+ model in MT. He finds that the best-fitting 1D model
always contains an arbitrarily thin but complex surface
layer. Work by Lang [1986] relevant to borehole resis-
tivity concludes that resistivity variability explodes as the
layers are allowed to become thin near the hole. This is
presumably closely related to Parker’s result. Smith and
Vozoff [1984] have developed a 2D inverse code for
dipole-dipole resistivity data which expands the model in
boxes and is generically related to earlier MT work. Tripp
et al. [1984] used a similar philosophy for their 2D DC
inverse.

The inversion of time-domain electromagnetic data is in
a relatively crude state. Virtually all existing algorithms
are based on the assumption of an extremely limited
parameterization which forces the problem to be overcon-
strained. Although perhaps useful in an exploration con-
text, these inverses hardly qualify for the name since they
allow no exploration of model space. In contrast to this
type of modelling, there is the electromagnetic migration
technique of Zhdanov and Frenkel [1983]. This technique,
which is analogous to seismic migration and closely related
to the analytic continuation of fields in the frequency
domain, is actively being pursued by groups in the US and
Canada. It remains to be seen whether migrated data can
be reliably inverted for material properties. In any case, it
is likely to give useful structural information.

EARTH STRUCTURE

Deep Sounding

Over the past decade, the ELAS program has focused
the efforts of the international EM community on deter-
mining electrical properties below the lithosphere. Follow-
ing on earlier work, several recent papers have examined
global averages of deep conductivity. Campbell and
Anderssen [1983] analyzed the harmonics of the solar daily
variation S;. Their results appear to imply conductivity
increases which correlate with the seismic discontinuities
at about 400 and 600 km, but no resolution or uniqueness
analysis was presented. Winch [1984] also looked at S,
and included corrections for a highly conductive ocean.
His results are not clearly interpretable in terms of any
single model, although the principal concern of the work
was possible contamination of the internal part of the
magnetic field by the dynamo effect of ocean tides. Jady
and Patterson [1983] applied three inversion schemes to
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the construction of models using disturbed time data in
the frequency range 0.07—2 cpd. They conclude that a
steep conductivity increase occurs near a depth of
1000 km. A subsequent paper by Jady et al. [1983] gen-
erated a large family of models using Parker’s layered and
continuous inverses fitting essentially the same data. This
time, they concluded that the sharp conductivity increase
was more probably at about 700 km. In a different
approach to global sounding, Didwall [1984] used OGO
satellite data from disturbed times to derive a transfer
function which is broadly averaged in both time and space.
However, she was only able to interpret it in terms of a
constant conductivity shell of prescribed thickness.

A dominant trend in recent deep soundings has been
the search for lateral conductivity variations in the mantle.
Since conductivity is highly temperature dependent, global
tectonics virtually guarantees lateral changes in the con-
ductive structure of the earth. Roberts [1983, 1986a,
19865] reviews a variety of evidence for lateral conduc-
tivity changes in the upper mantle. Vanyan [1984)] argues
for deep differences between cratons and younger zones
based simply on gross differences in the long period
response. More detailed studies are beginning to appear.
Schultz and Larsen {1983, 19864,b] find equivalent MT
responses for a variety of three component magnetic
observatories assuming a P source. They find that many
of these responses can individually be fit with a 1D model
within the expected value of x2. However, there exist
pairs of these stations whose data cannot be jointly fit by
any 1D model and must have different local structures.

We expect to see significant progress in this area in the
near future. It is probable that electrical structure infor-
mation in the upper 1000 km of the earth comparable in
resolution to seismic normal modes will shortly be avail-
able.

Regional Studies

Induction and related techniques have been used in vir-
tually every area of North America and on scales ranging
from magnetometer arrays covering 100 square degrees in
the EMSLAB project to outlining the building foundations
at an archaeological site using DC methods [Young and
Droege, 1986]. The largest concentration of effort has
occurred in the northwestern US and southwestern
Canada. EM induction offers a tool which may provide
information about the structure and physical properties of
the active subduction zone in the region which have
eluded seismologists because of the generally low historic
seismicity. The largest coordinated EM induction experi-
ment ever, EMSLAB (ElectroMagnetic Study of the Litho-
sphere and Asthenosphere Beneath the Juan de Fuca
Plate), has as its major goal the delineation of the com-
plete conductivity structure of the Juan de Fuca plate and
underlying asthenosphere from its birth at the ridge to its
consumption under North America. The EMSLAB main
experimental phase occurred in the summer of 1985. The
land-based part of the experiment involved a 67-station
magnetometer array stretching from northern California to
southern British Columbia and from the coast eastward to
Idaho and Nevada, a 15-station MT array on a profile
stretching 170 km in from the central Oregon coast which
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extends a similar offshore profile described under QOceanic
Studies, a large number of wide-band MT sites along or
near the same profile, and 75 very closely spaced (=3 km)
magnetometer sites along a similar parallel profile. Most
of the equipment ran for the months of August and Sep-
tember. A second phase of the field project in the sum-
mer of 1986 involved 4 wide-band MT systems using in-
field processing and occupying many additional sites along
and near the central EMSLAB profile. The total data set
is of unprecedented size and quality, and its full analysis
will occupy several years.

Earlier work offers supporting data for the EMSLAB
goals. DeLaurier et al. [1983] used magnetometer data
from Vancouver Island (VI) and the adjacent seafloor to
construct a model with a good conductor at depth, a thick
sedimentary wedge at the coast, and a mid-crustal conduc-
tor under the British Columbia (BC) mainland. A con-
ducting slab dipping eastward under VI is consistent with,
but not required by, the data. Land-based magnetometer
data further south in Oregon [Neumann and Hermance,
1985] also require a thick sedimentary wedge, but da not
extend to long enough periods to provide any information
on the existence of a conducting slab. Nienaber et al.
[1982] used only land magnetometer data and analog
modelling to place a dipping conductor under VI which
subsequently rises under the mainland. One could simply
interpret their model as a resistive root for VI. However,
in recent work performed in conjunction with the Cana-
dian Lithoprobe program, which did detailed seismic
profiling across VI, Kurtz et al. [1986a] collected some
very exciting MT data. A 1D inversion of their most iso-
tropic station shows a conducting layer whose top is coin-
cident with the seismic reflector that has been interpreted
as the upper surface of the subducted Juan de Fuca plate.
They also present a 2D model which is consistent with
their MT and earlier magnetometer array data, and inter-
pret the results as strong evidence that substantial sedi-
ment is being subducted.

The mid-crustal conductor under BC extends eastwards
as far as the Rocky Mt. Trench, where it terminates shar-
ply [Bingham et al., 1985; Gough et al., 1982]. A conduc-
tive ridge rising to the shallow crust lies just east of the
Rocky Mt. trench. Its relationship to the mid-crustal con-
ductor is uncertain, but its structure is quite sinuous, and
it passes close to a known geothermal area studied with a
concentrated magnetometer array by Ingham et al. [1983].
The southern extent of the mid-crustal conductor in BC
may be determined by EMSLAB.

Proceeding eastwards, the next major conductive struc-
ture in North America is the Central Plains Anomaly
(NACP), which begins in southwest Wyoming and
proceeds northwards up the Montana-Dakota boundary
into Saskatchewan. Handa and Camfield [1984] trace it
into northern Saskatchewan, where it bends eastwards,
and interpret it as a manifestation of a Proterozoic conver-
gent plate boundary. Gupta et al. [1985] track the NACP
further eastwards into the Hudsons Bay region.

Another region of probable ancient convergence occurs
in the Grenville province of eastern Canada. Again, there
is a deep crustal conductor which Kurtz [1982] ascribes to
pore fluids. This conductor may extend down the
Appalachians. Mareschal et al. [1983] found that a major
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conductor paralleling the trend of the mountains must
exist west of a magnetometer profile collected in
northwestern Georgia. An interesting active source exper-
iment in the same area by Thompson et al. [1983] using a
1 km diameter loop source reported a conductor beneath
the station at depths coincident with the base of the
megathrust discovered by COCORP. This lends support
to the COCORP interpretation of a sedimentary structure
beneath the crystalline rocks of the overthrust. An exam-
ple of a conductor in a Tertiary convergent zone is
presented in Stanley’s [1984] interpretation of the Cascade
geomagnetic anomaly.

An ancient divergent plate boundary sometimes called
the Keweenawan Rift is responsible for the mid-continent
gravity high several hundred km east of the NACP.
Young and Rogers [1985] and Young and Repasky [1986]
have used MT to investigate small scale structures associ-
ated with this ancient rift. However, Prugger and Woods
[1984] reexamined old magnetometer array data over this
feature, and concluded that no major conductivity struc-
ture was involved. It is probable that virtually all of the
deep, cratonic conductivity structures are associated with
old convergent boundaries [Gough, 1983]. It is presum-
ably only there that conductive sediments and pore fluids
can be carried to great depths.

Modern rifts are quite different from the ancient ones,
and most of the induction research in the southwestern
US has focused on the Rio Grande Rift and associated
structures. Ander et al. [1984] briefly outline a large MT
data base collected under the auspices of DOE in New
Mexico and Arizona, and then present a detailed discus-
sion of 119 audiomagnetotelluric (AMT) and 25 MT sta-
tions in a 161 km? region of the Jemez Lineament. A 2D
modelling effort leads them to the conclusion that a highly
conductive body rises to within 20 km of the surface.
They interpret this as evidence for partial melt. However,
Jiracek et al. [1983] argue against partial melt as the direct
cause of high crustal conductivity in the nearby Rift, and
find that the crust is less conductive in a zone interpreted
as containing partial melt by seismic reflection profiling
than in nearby regions which appear not to have melt.
They suggest that the conductor is probably hot water and
that partial melt has actually disrupted a cap rock which
traps the hot water. A final paper on the Rio Grande Rift
by Keshet and Hermance [1986] reconciles older magne-
tometer array data which were previously interpreted as
requiring a deep conductor with more recent MT data
which require a shallower structure.

Another large AMT data set in the Questa Caldera of
northern New Mexico is presented by Long [1985]. It
consists of stations every 3 km in a 318 km? region which
are interpreted by patching together and contouring 1D
Bostick inversions of the logarithmic average of the
response functions. This paper, as well as Ander et al.
[1984], demonstrate the need to find better ways to fully
present the information contained in very large data sets.

Most of the work in the western US and particularly in
the Great Basin between the Sierras and the Rockies
reported in the literature has been concentrated on geoth-
ermal targets. It ranges from the reconnaissance study of
the Long Valley caldera and environs by Hermance et al.
[1984] and work at Coso Hot Springs reviewed by Wright
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et al. [1985] through controlled source work at Roosevelt
Hot Springs, UT, covered by Ward [1983]. Other geother-
mal work in the general area includes the MT survey at
Cerro Prieto just south of the California-Mexico border by
Araki [1982] and a variety of other examples treated by
Berktold [1983]. Examples of non-geothermal work in the
western US are given by Frischknect and Raab [1984], who
demonstrate the superiority of time-domain EM over con-
ventional resistivity techniques to detect fault structures at
the Nevada Test Site, a magnetometer array study by
Towle [1984], which demonstrates the existence of a con-
ductive zone associated with the Mesa Butte fault system
in north central Arizona, and the examination of the
channeling of current at tidal periods in the San Andreas
fault zone [Johnston et al., 1983). Prieto et al. [1985]
present an interesting study in which MT and potential
field data are integrated to produce a regional model of the
Columbia River basalt plateau.

OCEANIC STUDIES

Over the past four years, the nature of oceanic EM
induction studies has undergone some substantial changes,
and new directions and applications for this type of
research are now reaching fruition. The use of controlled
sources to sound the sediments, crust, and uppermost
mantle beneath the sea is yielding unique information
about the electrical conductivity in this virtually unex-
plored region of the earth. The application of EM princi-
ples to the study of ocean water motions holds the prom-
ise of new insight into heat transport and barotropic flow.
In addition, the more traditional MT method continues to
be applied in new locales, giving valuable measurements
of deeper structure.

The Scripps MT results from the Marianas region and
on the East Pacific Rise were summarized in the last qua-
drennial report, and have subsequently been published
[Filloux, 1982a, 1982b]. Other recent seafloor MT work
has been performed east of Japan in 1981, in the Bay of
Plenty near New Zealand in 1982, in the Tasman Sea off
of Australia in 1984, and in conjunction with EMSLAB in
1985.

The Japan MT profile, located between the island and
the Japan Trench was reviewed by Yukutake et al. [1983].
Four magnetometer-electrometer pairs were deployed by
the Scripps group for two months at distances of up to
600 km from Honshu, while new seafloor fluxgate magne-
tometers [Segawa et al., 1982, 1983] were placed nearer
the Japanese coast. A notable feature of the data is the
strong coast effect, marked by large vertical magnetic
fluctuations on the shelf and slope and very small ones on
the deep seafloor. Parkinson vectors with an amplitude of
1.9 were seen on the slope, and the peak values occurred
at periods near 50 minutes. It is probable that this is the
result of electric currents flowing both above and beneath
the seafloor observation point. It is interesting to note
that a typical oceanic conductivity profile with a rise in
conductivity below 100 km is seen at the deepest site, yet
a tectonically-similar location in the Marianas [Fillowx,
19824] does not contain this feature.

In 1984, a set of eight sites in the Tasman Sea were
occupied by the Scripps group during a joint investigation
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with the Australian National University. The results from
a single site have been published [Ferguson et al., 1985].
The Tasman Sea electric field data are contaminated by a
large component of oceanic origin, presumably associated
with nearby western boundary currents that are dynami-
cally analogous to the Gulf Stream. As a result, good MT
response functions could be obtained only in the period
range of 20 minutes to 10 hours, reducing the resolving
power of the data. The response functions also exhibit
substantial skew and anisotropy. Inversion of the
response functions suggests unusually high conductivity at
shallow depths, although the lack of any resolution
analysis makes this result difficult to assess.

In the summer and fall of 1985, an oceanic component
of EMSLAB involving 40 seafloor pressure, vertical and
horizontal electric, and magnetic instruments from the
US, Canada, Japan, and Australia was deployed between
the coast of Oregon and Washington and the Juan de Fuca
Ridge about 500 km offshore. Three east-west lines of
instruments were laid out, and the middle one coincided
in latitude with the MT profile in central Oregon. The
seafloor data are being analyzed in conjunction with the
land array described earlier.

A number of workers have suggested a correlation of
the depth to conductor inferred from seafloor MT and
lithospheric plate age, usually based on linearized model
fitting or inversion of the data. Oldenburg et al. [1984]
reanalyzed the response functions from three seafloor sites
of different age using the nonlinear inversion algorithms
of Parker. They showed conclusively that distinct models
were required by the data from different age regions of the
plate, but the monotonic trend of increasing depth to con-
ductor with age could not be fully supported. This was
due in large part to unexpectedly low resolving power for
the data, as evidenced by the diversity of models that fit
them equally well. Oldenburg [1983] used a new extremal
inversion method to further quantify the low resolving
power of seafloor MT data. This problem is due to the
narrow, two decade range of usable frequencies in seafloor
MT. 1t is not likely that improvements in instrurmentation
will dramatically improve this situation, and other methods
will be required to investigate shallow electrical conduc-
tivity in particular. Future applications of seafloor MT in
the oceans will probably be aimed at the delineation of
tectonic structure using arrays of instruments in the spirit
of EMSLAB. Array deployments also allows the use of
GDS, which is not as limited as MT by low frequency oce-
anic noise.

Geomagnetic induction in transoceanic telecommunica-
tions cables has been studied extensively by a group at
AT&T Bell Labs [Lanzerotti et al., 1985, 1986; Meloni et
al., 1983, 1984; Thomson et al., 1986]. A review of the
subject appears in Meloni et al. [1983]. In the most recent
of these papers, Lanzerotti et al. [1986] note a high correla-
tion of the voltage in a nearly E-W cable with the E-W
magnetic field. They suggest a N-S flowing telluric current
off of the coast to explain the data. This is probably
another manifestation of the enhanced coast effect noted
by Yukutake et al. [1983], with electric current flowing in
both the ocean and underlying rock on the continental
shelf and slope. Contemporaneous seafloor magnetic and
cable observations would be invaluable in sorting this out.

New information on the conductivity of the oceanic
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crust has come from the application of controlled source
induction methods. Becker et al. [1982] and Becker [1985]
describe several experiments using a large scale resistivity
method in a deep (=1500 m) DSDP borehole on the
Costa Rica Rift. The method is useful for the inference of
conductivity in a zone of 20—50 m radius about the hole.
Conductivities of =0.1 S/m were found in the upper pil-
low lavas of the oceanic crust, decreasing sharply to
==(0.002 S/m in the underlying dike complex near the base
of seistnic layer 2. Using Archie’s Law, the inferred
apparent porosity varies from 10% in the pillow lavas to
about 2% at depth, and three porosity zones were
observed which correspond roughly in location to seismic
layers 2A, 2B, and 2C.

Frequency-domain controlled source measurements in
the sea are being performed by groups in both Canada and
the US. The former work is based on a vertical wire
source extending from seafloor to sea surface and ener-
gized by a surface ship together with a series of seafloor
horizontal magnetic receivers. The method is a variant of
the magnetometric resistivity method. Edwards et al.
[1985] describe the first use of the method in an inlet off
of British Columbia, in which a conductivity profile
through a thick sedimentary section was obtained. Nobes
et al. [1986] give results from a similar sounding in the
Middle Valley of the Juan de Fuca Ridge through a thick
hemipelagic sequence overlying basaltic basement.

Cox et al. [1986] present some preliminary results from
a deep controlled source sounding using a seafloor hor-
izontal electric dipole source and a series of horizontal
electric field receivers placed up to 70 km away. Signals
were quite identifiable at the longest ranges at frequencies
up to 24 Hz. A series of simple models could be fit to the
data and are typified by a 5 km crustal layer of moderate
(=0.001 S/m) conductivity overlying a resistive halfspace
of conductivity 5x10~° S/m. The low conductivity in the
uppermost mantle requires a low volatile content in the
rocks to be consistent with laboratory data. However, the
conductivity of the oceanic lithosphere cannot be this
small everywhere, or the resulting electrical isolation of
the ocean from the conductive deeper mantle would pro-
duce large electrostatic fields at the ocean boundaries
extending well into the ocean basins that are not observed.
Chave and Cox [1983] used a simple model of this effect
and measured oceanic MT responses to show that the
average conductivity of the oceanic lithosphere is
=,001 S/m. This suggests that high conductivity paths
must exist within the ocean basins which short circuit a
resistive ocean-deep mantle path, assuming the Cox et al.
[1986] results are typical of the oceanic lithosphere away
from tectonic complications. These high conductivity
pathways are probably associated with mid-ocean ridges or
continental shelves.

There has also been a substantial rise in interest in EM
induction by ocean water currents in recent years, both
due to its possible role as a noise source for seafloor MT
and for oceanographic applications. Chave [1984b] investi-
gated EM induction by oceanic internal waves. Oceanic
internal wave model spectra are similar in magnitude to
seafloor magnetic field spectra at frequencies between 0.2
and 1 cph, depending on ionospheric activity and latitude,
and could serve as a source of contamination in seafloor
data. The effect is more severe in the vertical magnetic
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component and at high latitudes, hence may be more seri-
ous in a GDS than in an MT context.

Chave and Filloux [1985] and Bindoff et al. [1986] have
examined a usually neglected portion of the seafloor EM
field, the vertical electric component. In the absence of
marked structural heterogeneity, this part of the EM field
is entirely of oceanic origin, reflecting the east-west water
velocity at the point of measurement, and has no counter-
part on land. Both of these studies showed that the verti-
cal electric field spectrum can be explained by the internal
wave model of Chave [1984b] between about 1 cph and
1 cpd. At longer periods, mesoscale oceanic motions
dominate the data, and the ocean tides are also prominent.
This type of measurement will undoubtedly find increased
application in oceanography, particularly in the study of
long-period, bottom-trapped wave phenomena.

The induction of electric currents in submarine cables
by ocean flows, and especially intense western boundary
currents like the Gulf Stream, has been known for many
years. Sanford [1982a] provides a thorough review of
theoretical and observational aspects of cable measure-
ments. Larsen and Sanford [1985] report on the analysis
of long-term measurements collected on a cable under the
Florida Current. After correction for geomagnetic and
tidal induction, they found agreement of the cable and
more conventional oceanographic measurements of tran-
sport to within 2%.

At periods of several days to months, the baroclinic
(i.e., depth-dependent) variability of the ocean is larger
than the barotropic (i.e., depth-independent) variability,
and hence dominates conventional point measurements
made in the deep ocean. The seafloor horizontal electric
field yields a depth-averaged estimate of the water velo-
city, and is well-suited to studies of the poorly understood
barotropic component. Sanford [1986] reviews the use of
EM principles to examine barotropic flow. A major exper-
iment to use EM methods for oceanographic purposes is
now being conducted by Scripps. In the summer of 1986,
44 seafloor pressure recorders, magnetometers, and hor-
izontal and vertical electric field instruments were
deployed in a 1500 km by 800 km array for one year to
study the wavenumber structure of barotropic wind-forced
flow, as well as pursue a variety of other oceanographic
and geophysical objectives. This experiment, called BEM-
PEX (Barotropic ElectroMagnetic and Pressure EXperi-
ment), is the first use of EM techniques in the deep ocean
basins for oceanographic purposes at long periods.

MISCELLANEOUS ToPICS

Most natural source EM studies are concerned with
induction in the conducting earth by external current sys-
tems. At very long periods, induction from the core
dynamo below the earth’s surface may also be important.
Backus [1983] determined the weighted averages of man-
tle conductivity that can be inferred by considering the
earth as a linear filter, with a geomagnetic jerk as input at
the core-mantle boundary and an output at the earth’s
surface. Lanzerotti et al. [1985] used a ==4500 km
telecommunications cable to determine the DC component
of the earth potential, obtaining a nearly null result. This
may require nearly equal toroidal and poloidal parts for the
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geomagnetic field at the core-mantle boundary. However,
Backus [1982] showed that a critical layer will exist in the
mantle that screens out an internal electric field if a con-
ductivity minimum occurs between the earth’s surface and
the core-mantle boundary, complicating the interpretation
of the cable data.

Time domain or transient EM methods have received
an increasing amount of attention, mostly concentrated on
shallow exploration targets of industrial interest. The
advantages of time domain over frequency domain EM
include reduced sensitivity to near-surface lateral hetero-
geneity and freedom from contamination by the portion of
the signal travelling through air, since measurements are
typically made when the transmitter is off. Hoversten and
Morrison [1982] derived the transient magnetic fields of a
loop source inside of a 1D layered medium, demonstrating
graphically the "smoke ring" diffusion form of the induced
fields and giving a simple picture of the effects that struc-
ture has on surface observations. Oristaglio and Hohmann
[1984] give a similar view of some 2D time domain prob-
lems. Keller et al. [1984] describe an electric dipole
source, loop receiver system designed for deep sounding.
Fitterman and Stewart [1986] present a time domain model
study of four groundwater exploration situations. Edwards
and Chave [1986] and Cheesman et al. [1986] suggest some
systems and applications for transient EM on the seafloor.
A variety of other time domain problems are covered in a
special issue of Geophysics [Nabighian, 1984]. Numerical
models for 2D/3D time domain EM are also appearing
[Adhidjaja et al., 1985, SanFilipo and Hohmann, 1985, San-
Filipo et al., 1985; Newman et al., 1986], and will provide
insight for the interpretation of field data, although the
difficulty of obtaining such solutions cannot be overem-
phasized.

Laboratory measurements of crust and mantle materials
are reviewed by Hinze [1982], Duba [1982], and
Ldstovitkovd [1983]. The complicating effects of inade-
quate sample characterization and physiochemical changes
during the measurement process are emphasized by Duba
[1982). Recent work on olivine has revealed that point
defects play a crucial role in determining its electrical con-
ductivity [Schock et al., 1984; Schock and Duba, 1985;
Sato, 1986].

Kariya and Shankland [1983] compiled laboratory con-
ductivity measurements for dry mafic and silicic lower cru-
stal rocks as a function of temperature. Using best-fitting
curves of conductivity against temperature, they showed
that the results could be used to infer an upper bound to
in situ temperature from MT measurements. Building on
this study, Shankland and Ander [1983] expanded the data
base and compared the results to field EM and heat flow
measurements. They showed that plots of conductivity
against reciprocal temperature were reasonably ordered,
but that all of the field data had conductivity values orders
of magnitude above the laboratory ones, suggesting the
presence of volatiles. They also found that the inferred
temperatures for tectonically-active areas were systemati-
cally above those under shields, and suggested that EM
surveys could be used to predict regional geotherms.
These results provide considerable encouragement that
EM field data can be interpreted in terms of fundamental
physical parameters.
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