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INTRODUCTION 

This report constitutes an attempt to review the major 
developments and identify important trends in the broad 
field of geophysical electromagnetic induction and related 
phenomena over the past four years. Following in the 
spirit of previous reports of this type [e.g., Filloux, 1979; 
Hermance, 1983b], the work of US researchers will be 
emphasized, although we will cover foreign research when 
appropriate. Many of the recent theoretical developments 
and the largest EM field program ever (EMSLAB) are the 
direct result of' international cooperation, and strict adher- 
ence to the concept of national boundaries would result in 
an uninformative and incomplete review. 

Due to the fact that readers of this paper have diverse 
interests ranging from theory through field to laboratory 
studies, we have attempted to treat a variety of topics in 
EM induction and electrical geophysics. We begin by 
reviewing the state-of-the-art in data collection, including 
new instrumentation. We continue by examining data 
analysis methods, with an emphasis on noise and bias 
reduction in the computation of' the magnetotelluric and 
magnetic variations response functions. We then treat 
forward modelling developments, especially for two- and 
three-dimensional induction problems. Recent progress 
has been made in EM induction inverse problems, and we 
assess the impact of this on the field. An overview of 
field measurements in North America is given, including 
the recent EMSLAB experiment which was carried out in 
1985--1986 in the northwest US, southwest Canada, and 
contiguous offshore regions. This is followed by a review 
of developments in oceanic applications of EM principles. 

The reference list is believed to be complete through 
June 1986. In the interest of brevity, only refereed publi- 
cations or works in press are included, and meeting 
abstracts or technical reports are generally not cited. 
Nevertheless, the number of references exceeds 600, 
attesting to the health of the discipline. Additional infor- 
mation on EM induction research may be found in the 
proceedings of the most recent semiannual Workshops on 
EM Induction held in Victoria, Canada, in 1982, Ile-Ife, 
Nigeria, in 1984, and Neuch•.tel, Switzerland, in 1986. 
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DATA COLLECTION AND INSTRUMENTATION 

To a large extent, recent improvements in EM data 
have come about through more sophisticated time series 
analysis methods rather than from changes in instrumen- 
tation. Data analysis is covered in the next section. Pro- 
gress in the quality of the sensors themselves has been 
more gradual. 

It has been the general experience of US research 
groups that SQUID magnetometers do not achieve their 
laboratory potential in field situations, and this has led to a 
trend back to induction coils for wide-band MT work. 

Coils have become much lighter as amplifier technology 
has improved, and are easily constructed. However, 
developments in fluxgate design may soon produce a sen- 
sor that is comparable in sensitivity to coils in the dead 
band around 1 Hz and that has a far better long-period 
response. A fluxgate instrument would also be easier to 
deploy in the field. Theoretical analyses that elucidate 
some important design criteria for sensitive, low noise 
fluxgates are given by Russell et al. [1983] and Narod and 
Russell [1984]. Three companies are now manufacturing 
ring-core fluxgates similar to those flown in MAGSAT. 
One obstacle to making these instruments much better 
than their predecessors is the limited availability of the 
best core materials. Narod et al. [1985] present an experi- 
mental study of amorphous alloys which shows that 
fluxgate noise depends on material properties that have 
not been considered before. This gives some hope that 
materials can be found that are easily manufactured and 
that will deliver very good performance. 

As in most branches of the physical sciences, micro- 
computer technology is having an enormous impact on 
induction work. Long-period data are now almost always 
collected digitally, and solid-state data loggers and high 
density redundant tape recording is offering much higher 
reliability and larger capacity than before. Even the vener- 
able Gough-Reitzel magnetometer is receiving new life 
through image processing which allows easy digitization of 
the film records. Wide-band MT data are now routinely 
processed on site. It is possible to build and operate large 
arrays of sensors that can map the electric field in great 
detail and overcome the effects of local distortion. It is 

also feasible to make wide-band MT (and controlled 
source) equipment so portable that it can be taken virtu- 
ally anywhere. 

One of the most significant developments of the past 
four years has been the realization by US and Canadian 
workers that group field efforts are essential to the study 
of many relevant large-scale problems. The desire to 
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upgrade field equipment for academic research is also sup- 
plying an impetus to work in groups. The equipment that 
is currently available to academic scientists lags far behind 
what is possible with current technology. New equipment 
will require a substantial capital investment which can be 
minimized by careful sharing of resources. 

RESPONSE FUNCTION ESTIMATION 

The estimation of EM response functions or 
impedances from data is of central importance to the 
natural source EM methods, and especially for MT. 
Increasingly more sophisticated ways to reduce the 
influence of noise on the response functions have evolved 
over the past four years. In addition, new ways to inter- 
pret the full response tensor are being developed. 

Most of the methods for computing response functions 
in current use are based on least squares principles, and 
share the inherent advantages and limitations of that tech- 
nique. An important requirement for the proper operation 
of least squares is that the residuals or errors from the fit 
be uncorrelated and of equal variance or power. Data that 
produce residuals which fail to meet this condition may be 
termed outliers, and least squares estimates are very sensi- 
tive to their presence. This type of outlier, as well as ordi- 
nary Gaussian noise, can induce serious bias and distor- 
tion into EM response functions. Outliers in EM data 
may be caused by a variety of instrumental, cultural, and 
natural processes, many of which are not well understood, 
and a myriad of procedures to reduce their impact con- 
tinue to be proposed. 

Recognition that the predominant source of outliers in 
MT data was inherent in the measurements rather than in 

the measuring devices led to the development of the 
remote reference method. The success of remote refer- 

ence methodology is attested to by its nearly universal 
adoption in terrestrial MT, and improvements continue to 
be introduced. Clarke et al. [1983] give a recent review of 
remote reference equipment and procedures. Kr6ger et al. 
[1983] discuss the bias effects of coherent and incoherent 
noise on local and remote estimates of the response func- 
tion. Goubau et al. [1984] conducted an experimental 
investigation of the correlation scale of MT noise by com- 
paring a standard remote reference response f?nction, 
where the separation between measurements was several 
krn, to a local reference result using a third magnetometer 
and shorter spacings. They obtained the surprising result 
that separations of as little as 200 m were adequate to 
remove outlier bias at periods longer than 1 s, suggesting 
local nonplanar source fields as the contaminant. At 
shorter periods, the noise appears to be instrumental, ori- 
ginating in the shields of the SQUID magnetometers, and 
could be removed by a reference only 2 rn from the base. 
This study indicates how little is known about how and 
why the remot• reference method works. While it is clear 
that the technique is effective against many types of MT 
outliers, its limitations are not so obvious, and further 
work like that of Goubau et al. [1984] should be 
encouraged. 

Chave et al. [1986] and Egbert and Booker [1986] have 
proposed new procedures to eliminate the effect of outliers 
on response functions. Such methods are modifications of 

proven ones from the field of robust statistics, and are 
based on iterative re-weighting of the data during regres- 
sion. The weights are automatically chosen by comparing 
the regression residuals to a predicted value obtained from 
the appropriate statistical distribution, and the influence of 
data corresponding to large residuals is reduced. This 
gives unbiased response functions as well as meaningful 
estimates of their error. These methods are still undergo- 
ing development and testing using a variety of EM data. 
However, we predict that robust estimation of the 
response functions will yield substantially smoother and 
more precise results under contamination by a broad class 
of outliers. When combined with the remote reference 

technique and instrument arrays, this method should 
prove very powerful. 

Park and Chave [1984] have presented a rigorous 
derivation of the singular value decomposition (SVD) 
method for estimating the response function and its asso- 
ciated errors. While other least squares approaches 
assume that Gaussian noise is present in only part of the 
data (e.g., the electric or magnetic field), SVD treats the 
more realistic case where noise is distributed among all of 
the data. Since the relative amounts of noise in the data 

are rarely known a priori, Park and Chave [1984] derive a 
statistical test that helps to establish the correct relative 
noise level, and show how the response function varies as 
this quantity is altered. This approach is useful in dealing 
with the well-known bias effect of Gaussian noise in MT 

data, and could easily be combined with robust statistical 
methods to remove additional Gaussian or non-Gaussian 

outliers. 

Gamble et al. [1982] address the problem of defining a 
unique coordinate system over three-dimensional (3D) 
structures, and note that the usual practice of finding indi- 
vidual strike directions using separate principal axis 
transformations at each frequency often breaks down. 
They propose a new empirical method, called regional 
strike determination, that is based on minimization of 
weighted sums of squaresf'of the response functions over 
all frequencies, with the weights chosen to accentuate the 
most precisely known data. They also present examples 
which demonstrate the consistency of this approach and 
the inconsistency of the more standard one. 

Eggers [1982] gives a thorough discussion of the param- 
eters studied in MT, and shows that the conventional 
ones--the amplitude and phase of the off-diagonal tensor 
components, principal direction of the response tensor, 
skew, and ellipticity--are incomplete, since the full tensor 
possesses 8 degrees of freedom while these quantities 
have only 6.5. He then derives an alternate and complete 
set of parameters using an eigenvalue-eigenvector decom- 
position of the tensor, and shows how they provide addi- 
tional insight for interpretation purposes. In particular, 
the polarization ellipse display of the eigenstates can indi- 
cate the form of the 3D structure. Spitz [1985] addresses 
the problem of defining coordinate systems for this type of 
response function formulation. 

Response functions also are important in the GDS 
method. Gough and Ingham [1983] present a thorough 
review of single- and multiple-station methods to get the 
GDS response, and give a variety of ways to present the 
results. Beamish and Banks [1983] discuss the use of a 
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common reference site to study regional structure using a 
limited set of instrumentation, and claim to get results 
comparable to those from larger arrays. Richmond and 
Baumjohann [1983] present a new method to treat magne- 
tometer array data, and address the more general problem 
of inferring spatially continuous patterns from finite sets 
of point observations. In contrast to most earlier studies, 
in which a small set of parameters are fit to a large set of 
data (e.g., spherical harmonic fits with truncation at low 
order), they propose the use of a large set of interpolating 
functions and apply constraints from the governing physics 
to regularize the result. Their examples of field mapping 
and internal/external part separation are quite encourag- 
ing, and this paper deserves serious attention. Future pro- 
gress in GDS requires the application of more sophisti- 
cated analysis techniques, especially frequency- 
wavenumber and polarization processing to better quantify 
source field structure. 

FORWARD MODELLING 

Forward modelling--the prediction of an EM response 
for a specified earth model--is of central importance in all 
of the EM disciplines. A notable amount of progress in 
handling two-dimensional (2D) and (3D) models has been 
made over the past four years. This has led to improved 
insight into the effects of complex sub-surface structures 
on the observed response. In addition, better ways of 
computing and viewing one-dimensional (1D) models are 
evolving. 

Many types of EM problems require the numerical 
approximation of integral transforms. Most 1D controlled 
source models use the Hankel transform. Anderson [1982] 
has produced software based on the digital filter method 
for the computation of Hankel transforms that is substan- 
tially faster and more accurate than previous implementa- 
tions. Chave [1983b] has reported a direct numerical 
integration scheme with Pad6 convergence acceleration 
that is generally slower than a digital filter formulation, 
but that is very accurate and capable of handling integrals 
having formally divergent integrands. Time domain EM 
computations require the numerical inversion of the 
Laplace transform. Knight and Raiche [1982] discuss the 
Gaver-Stehfest algorithm, a procedure which is simple, 
more computationally efficient than discrete Fourier 
transform approaches, and which requires a knowledge of 
the integrand only for real values of the transform vari- 
able. An alternate view of Laplace transform inversion 
based on first kind Fredholm integral equation theory is 
given in Pike et al. [1984], and deserves greater attention. 

Forward modelling in 1D is straightforward for MT and 
GDS, and little purpose is served by the continued publi- 
cation of analytic solutions for specialized conductivity 
profiles. However, considerable insight into controlled 
source and time domain applications continues to come 
from 1D models, but even relatively simple cases can 
rarely be expressed in analytic form. While many 
mathematical approaches to 1D problems exist, the use of 
a formulation involving poloidal and toroidal modes is 
especially useful. Backus [1986] gives a thorough and 
rigorous derivation of this Mie representation of the EM 
field on a sphere that is readily extended to the plane. 

Several investigators have stressed the importance of 
placing equal emphasis on the theoretical behavior of the 
EM field and on the theoretical resolution of a given mea- 
surement. The 1D Fr6chet derivatives of the fields are 
especially useful in this context. The use of Fr6chet 
derivatives as sensitivity functions is discussed by G6mez- 
Trevi•o and Edwards [1983], Chave [1984a], and Edwards 
et al. [1984]. 

Most of the effort in 2D and 3D modelling of EM 
phenomena over the past four years is based on the 
integral equation (IE), finite element (FE), or thin sheet 
approaches. The IE method is the most widely used and 
thoroughly developed EM modelling technique for 3D 
media. It is especially well-suited for treating isolated 
bodies embedded in a simpler substrate, since the numeri- 
cal complexity is limited to the body itself. Hohmann 
[1983] reviews the formulation of IE problems and com- 
putational procedures for their solution. Wannamaker et 
al. [1984a] describe an IE algorithm for MT problems that 
can handle a 3D body in an arbitrary layered 1D medium. 

The FE method is also receiving increasing attention. 
Lee and Morrison [1985a] derive the FE equations for a 
2D problem with a finite (controlled) source from a varia- 
tional principle. P.E. Wannamaker (private communica- 
tion, 1986) has distributed a 2D FE code for MT, and has 
applied it to a study of topographic effects on MT data 
[Wannamaker et al., 1986]. Hybrid methods which com- 
bine the FE and IE methods are also in use [Best et al., 
19851. 

Over the past quadrennium, thin sheet modelling has 
grown from a mathematical curiousity to a very viable 
means for treating surface inhomogeneities. Dawson et al. 
[1982] treated TM mode induction with two thin sheets 
over a halfspace, where the thin sheets represent respec- 
tively a conducting ocean adjoining a continent and a 
resistive crust. Dawson [1983] extended this to include 
the TE mode. Both of these models are substantially 
more realistic than earlier ones. McKirdy and Weaver 
[1984] developed the theory for a 2D variable conductance 
sheet over a layered medium, and McKirdy et al. [1985] 
generalized this to the 3D case. Applications of thin sheet 
techniques include studies of regional induction in Scot- 
land [Weaver, 1982] and of current channeling between 
two oceans [McKirdy and Weaver, 1983]. 

The further development of 2D and 3D modelling 
codes must involve checking for internal consistency and 
cross validation with other algorithms or analytic solutions. 
Weaver et al. [1985] have proposed a standard 2D MT 
model consisting of three adjoining blocks of different 
conductivities overlying a perfect conductor, along with a 
closed form expression for the TM mode response func- 
tion. Weaver et al. [1986] present a similar 2D control 
result for the TE mode. There is a definite need for simi- 
lar analytic or quasi-analytic solutions for simple 3D 
bodies. 

Numerical modelling has been applied to the study of 
3D effects on the MT response functions. This is impor- 
tant both to determine the possible biases caused by mul- 
tidimensionality and to ascertain the limits where 1D or 
2D models are suitable approximations to the 3D earth. 
Hermance [1982d, 1983a] has used DC thin sheet models 
to model telluric distortion effects from surface inhomo- 
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geneities. Park et al. [1983] and Park [1985] have 
identified three distortion mechanisms caused by 3D 
media: coupling between the upper crust and mantle 
across a resistive lower crust, resistive coupling of conduc- 
tive features within the upper crust, and local induction of 
current cells within finite-size, good conductors. The first 
two of these produce telluric distortion that is frequency- 
independent at low frequencies, while the latter is usually 
frequency-dependent. In many cases, these mechanisms 
can be differentiated by examining the spatial variation of 
the response functions. Wannamaker et al. [1984b] used 
an IE code to study the effect of a 3D body in a layered 
host. They present a thorough discussion of the bias 
effects on the MT apparent resistivity and phase, and con- 
clude that, under certain circumstances, 1D or 2D model- 
ling techniques are suitable for the study of real 3D struc- 
tures. Newman et al. [1985] modelled crustal magma 
chambers using the IE technique, and showed that the 
effect of such a body was often surprisingly limited. For a 
thorough review of 3D current channeling effects in MT, 
see Jones [1983a]. 

As supercomputers and advanced computational algo- 
rithms become more widely available, 2D and 3D model- 
ling will become more common. However, it should be 
remembered that approximate solutions to EM problems 
are often as useful as the more complex, full solutions; 
this type of approach has been emphasized and justified by 
West and Edwards [1985]. 

INVERSION 

Fischer and LeQuang [1982] state that the 1D magneto- 
telluric inverse problem is essentially understood. Despite 
this optimism and the fact that a 1D model is not 
appropriate for most MT data, the 1D problem continues 
to receive substantial attention, judging from the number 
of papers devoted to it. To some extent, the MT inverse 
problem is relatively easy when compared to other geophy- 
sical inverse problems. EM data are Fr6chet differentiable 
[Parker, 1983; Chave, 1984a; Abramovici and Baumgarten, 
1985; MacBain, 1986]. Furthermore, there are existence 
and uniqueness theorems for various sorts of ideal data; 
the most recent of these is due to MacBain and Bednar 

[1986]. Clever schemes to directly invert ideal induction 
data continue to appear [e.g., Barcilon, 1982; Coen et al., 
1983]. 

Real MT data are always discrete and have errors asso- 
ciated with them. Most workers are aware of Parker's 
work on this type of data [Parker, 1983]. He has shown 
conclusively that when no 1D model fits a data set exactly, 
then the conductivity model with the smallest least 
squares or X 2 misfit will always consist of a set of infinite 
spikes or delta functions in conductivity. He called this 
the D+ case. MacBain and Bednar [1986] claim that 
Parker's result is not rigorous, but this does not alter the 
fact that practical schemes for inverting noisy data which 
do not exclude the possibility of delta function models will 
converge to these models as the misfit decreases. This 
applies in particular to most least squares-based layered 
model fitting routines. For a graphic example, see Smith 
and Booker [1986]. It is extremely important to note that 
this behavior requires that the data actually contain noise. 

Inverse schemes which are expected to operate with real 
data simply cannot be tested with artificial data which 
equal the response functions for any 1D model even when 
the data are assigned an error. Synthetic data must have 
noise added to them after they are generated. 

Parker's delta function models usually grossly overfit 
the data, in the sense that X 2 is much smaller than its 
expected value. It is then statistically valid to relax the fit 
and achieve a larger X 2. There are an infinite number of 
possible models between the best-fitting D+ type and one 
with any larger value of the misfit. Parker [1983] reviews 
several ways of constructing families of models in which 
the model space has been defined to exclude delta func- 
tions. Hooshyar and Razavy [1982b] present related results 
for the case where the data cover a range of spatial 
wavenumbers at a fixed frequency. To choose among 
these models, it is necessary to add a side or regularization 
condition. Most regularization conditions in current use 
involve some sort of smoothing. In the past, the most 
common smoothing criteria involved expanding the model 
in some finite parameterization (e.g., a small number of 
layers). The criterion for choosing a specific model is still 
minimization of the least squares misfit, as was the case 
for D+, but the side condition prevents it from approach- 
ing a global optimal fit. The best that can be said for this 
approach is that, if the parameterization is essentially the 
same as the truth which generated the data, the inversions 
seem to work and will recover a reasonable facsimile of 

the truth; see Fischer and LeQuang [1982] and Pedersen 
and Hermance [1986] for examples. The interpretation of 
such models is not clear if the truth happens to be 
parameterized in some substantially different way. 

Recently, several groups have focused on choosing 
models which are extreme in some sense. A particularly 
fruitful criterion is the flattest or smoothest model fitting 
the data within some prescribed X 2 [Marchisio and Parker, 
1984; Constable et al., 1986; Smith and Booker, 1986]. 
These minimum structure inverses allow one to ascertain 

which features are actually required by a given data set. 
Furthermore, they turn out to be remarkably good at 
recovering the structure of synthetic models from noisy 
data for reasons that are not yet entirely clear. 

Whittal and Oldenburg [1986] present another type of 
extremal inversion in which the problem is cast in terms 
of inverse scattering. Estimation of the impulse response 
is analogous to the deconvolution of a seismogram and is 
a linear inverse problem which is solved by minimizing 
various norms of the response. This effectively limits the 
possible structure in the model. The conductivity itself is 
recovered from the impulse response by solving a non- 
linear Fredholm integral equation. Other types of 
extremal inversions are due to Oldenburg [1983] and 
Weidelt [1985], who bound functionals of the conductivity 
structure. 

Linearized Backus-Gilbert types of inversions have been 
used by Hobbs [1983], Hobbs et al. [1985], and Abramovici 
and Baumgarten [1985]. Oldenburg et al. [1984] have 
attacked this type of inversion on the grounds that models 
exist which fit the data and are not linearly close to those 
produced by the Backus-Gilbert technique. Smith and 
Booker [1986] show that a proper choice of datum and 
model variable can lead to a nearly linear inverse problem. 
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Unfortunately, the papers cited do not cast the problem in 
its nearly linear form, so that nonlinear errors may invali- 
date their conclusions. 

Two- and three-dimensional inversion of electromag- 
netic induction data is ultimately a more important prob- 
lem for investigating the earth, but is less advanced than 
its 1D counterpart. Most groups still rely on forward 
modelling to interpret data. We believe that rapid 
advances in 2D and 3D inversion techniques will be made 
in the next few years as modern algorithms and high 
speed processors become more widely available. 

Inverse schemes for 2D data fall into two classes. The 

first expands the model using a limited parameterization 
(i.e., a small number of conductive blocks), and adjusts 
the values of the parameters to fit the data to within some 
prescribed tolerance. All existing schemes involve lineari- 
zation about a starting model and some form of least 
squares fitting. Two strategies for parameterization are 
current. For instance, Zhdanov and Golubev [1983] advo- 
cate a particular function set which allows only seven 
parameters to describe a wide variety of shapes for an 
anomalous body. This means that the inverse problem 
will almost always be grossly overconstrained. The prob- 
lem with this strategy is that one has no rigorous way of 
examining nonuniqueness. The alternative is to use a 
large number of parameters. The most advanced scheme 
of this type is a proprietary program called ESP/MT 
developed by W.L. Rodi and colleagues at S 3 in San Diego 
and described by Jiracek et al. [1986]. The forward calcu- 
lation for the Fr6chet derivatives uses self-adjusting finite 
elements. The normal equations for an updated model are 
then inverted using a damping method which minimizes 
spatial derivatives of the model as well as the size of the 
perturbation. Other programs, such as the widely used 
Jupp-Vozoff code, minimize only the size of the perturba- 
tion. 

Minimum structure models are likely to be at least as 
beneficial in 2D as in 1D, and are essentidl if 3D inverses 
are to be obtained. Although existing and potential algo- 
rithms discretize the structure, the resolution matrix can 
be interpreted as digitized Backus-Gilbert windows if the 
discretization is on a finer scale than the true structure. 

The nonlinear errors inherent in interpreting the results in 
this way are just as important in 2D and 3D as in 1D. 

The second type of parameterization strategy picks one 
of the infinite number of possible 2D solutions by finding 
the one that is closest to some prescribed structure. The 
method of tightening of surfaces, applied to GDS data by 
Zhdanov and Varentsov [1983] and described in more detail 
by Berdichevsky and Zhdanov [1984], can be useful if the 
background conductivity is well-known, but could be quite 
misleading otherwise, especially if the measurements do 
not include the electric field. Solving the inverse problem 
for the flow of electric current [Berdichevsky and Zhdanov, 
1984] is also helpful, but displays similar dangers. These 
methods all involve some form of spatial filtering of the 
data. A serious problem with much existing work is that 
the fields, and especially the electric field, vary on scales 
shorter than the station spacing. This means that filtering 
operations are applied to aliased data sets. F.X. Bostick 
(private communication, 1986) has suggested that the 
electric field should be profiled, with each successive leg 

touching the previous one, and calls the method EMAP. 
With this type of data, prescribed structure methods such 
as the method of tightening of surfaces, may become quite 
useful. 

A final approach to 2D interpretation which shows some 
promise, especially for developing starting models for 
further 2D inversion, is the plotting of pseudo-sections of 
invariants of the MT response tensor [Ranganayaki, 
1984]. In particular, she found that the pseudo-section of 
the phase of the determinant looked remarkably like the 
structure. 

Developments in inversion of controlled source data 
parallel those for induction by natural fields to some 
extent. Parker [1984] has derived a result for DC resis- 
tivity methods which is analogous to the delta function or 
D+ model in MT. He finds that the best-fitting 1D model 
always contains an arbitrarily thin but complex surface 
layer. Work by Lang [1986] relevant to borehole resis- 
tivity concludes that resistivity variability explodes as the 
layers are allowed to become thin near the hole. This is 
presumably closely related to Parker's result. Smith and 
Vozoff [1984] have developed a 2D inverse code for 
dipole-dipole resistivity data which expands the model in 
boxes and is generically related to earlier MT work. Tripp 
et al. [1984] used a similar philosophy for their 2D DC 
inverse. 

The inversion of time-domain electromagnetic data is in 
a relatively crude state. Virtually all existing algorithms 
are based on the assumption of an extremely limited 
parameterization which forces the problem to be overcon- 
strained. Although perhaps useful in an exploration con- 
text, these inverses hardly qualify for the name since they 
allow no exploration of model space. In contrast to this 
type of modelling, there is the electromagnetic migration 
technique of Zhdanov and Frenkel [1983]. This technique, 
which is analogous to seismic migration and closely related 
to the analytic continuation of fields in the frequency 
domain, is actively being pursued by groups in the US and 
Canada. It remains to be seen whether migrated data can 
be reliably inverted for material properties. In any case, it 
is likely to give useful structural information. 

EARTH STRUCTURE 

Deep Sounding 

Over the past decade, the ELAS program has focused 
the efforts of the international EM community on deter- 
mining electrical properties below the lithosphere. Follow- 
ing on earlier work, several recent papers have examined 
global averages of deep conductivity. Campbell and 
Anderssen [1983] analyzed the harmonics of the solar daily 
variation Sq. Their results appear to imply conductivity 
increases which correlate with the seismic discontinuities 

at about 400 and 600 km, but no resolution or uniqueness 
analysis was presented. Winch [1984] also looked at Sq 
and included corrections for a highly conductive ocean. 
His results are not clearly interpretable in terms of any 
single model, although the principal concern of the work 
was possible contamination of the internal part of the 
magnetic field by the dynamo effect of ocean tides. Jady 
and Patterson [1983] applied three inversion schemes to 



994 CHAVE AND BOOKER: ELECTROMAGNETIC INDUCTION STUDIES 

the construction of models using disturbed time data in 
the frequency range 0.07--2 cpd. They conclude that a 
steep conductivity increase occurs near a depth of 
1000 km. A subsequent paper by Jady et al. [1983] gen- 
erated a large family of models using Parker's layered and 
continuous inverses fitting essentially the same data. This 
time, they concluded that the sharp conductivity increase 
was more probably at about 700 kin. In a different 
approach to global sounding, Didwall [1984] used OGO 
satellite data from disturbed times to derive a transfer 

function which is broadly averaged in both time and space. 
However, she was only able to interpret it in terms of a 
constant conductivity shell of prescribed thickness. 

A dominant trend in recent deep soundings has been 
the search for lateral conductivity variations in the mantle. 
Since conductivity is highly temperature dependent, global 
tectonics virtually guarantees lateral changes in the con- 
ductive structure of the earth. Roberts [1983, 1986a, 
1986b] reviews a variety of evidence for lateral conduc- 
tivity changes in the upper mantle. Vanyah [1984] argues 
for deep differences between cratons and younger zones 
based simply on gross differences in the long period 
response. More detailed studies are beginning to appear. 
Schultz and Larsen [1983, 1986a, b] find equivalent MT 
responses for a variety of three component magnetic 
observatories assuming a p•0 source. They find that many 
of these responses can individually be fit with a 1D model 
within the expected value of X 2. However, there exist 
pairs of these stations whose data cannot be jointly fit by 
any 1D model and must have different local structures. 

We expect to see significant progress in this area in the 
near future. It is probable that electrical structure infor- 
mation in the upper 1000 km of the earth comparable in 
resolution to seismic normal modes will shortly be avail- 
able. 

Regional Studies 

Induction and related techniques have been used in vir- 
tually every area of North America and on scales ranging 
from magnetometer arrays covering 100 square degrees in 
the EMSLAB project to outlining the building foundations 
at an archaeological site using DC methods [Young and 
Droege, 1986]. The largest concentration of effort has 
occurred in the northwestern US and southwestern 

Canada. EM induction offers a tool which may provide 
information about the structure and physical properties of 
the active subduction zone in the region which have 
eluded seismologists because of the generally low historic 
seismicity. The largest coordinated EM induction experi- 
ment ever, EMSLAB (ElectroMagnetic Study of the Litho- 
sphere and Asthenosphere Beneath the Juan de Fuca 
Plate), has as its major goal the delineation of the com- 
plete conductivity structure of the Juan de Fuca plate and 
underlying asthenosphere from its birth at the ridge to its 
consumption under North America. The EMSLAB main 
experimental phase occurred in the summer of 1985. The 
land-based part of the experiment involved a 67-station 
magnetometer array stretching from northern California to 
southern British Columbia and from the coast eastward to 

Idaho and Nevada, a 15-station MT array on a profile 
stretching 170 km in from the central Oregon coast which 

extends a similar offshore profile described under Oceanic 
Studies, a large number of wide-band MT sites along or 
near the same profile, and 75 very closely spaced (• 3 km) 
magnetometer sites along a similar parallel profile. Most 
of the equipment ran for the months of August and Sep- 
tember. A second phase of the field project in the sum- 
mer of 1986 involved 4 wide-band MT systems using in- 
field processing and occupying many additional sites along 
and near the central EMSLAB profile. The total data set 
is of unprecedented size and quality, and its full analysis 
will occupy several years. 

Earlier work offers supporting data for the EMSLAB 
goals. DeLaurier et al. [1983] used magnetometer data 
from Vancouver Island (VI) and the adjacent seafloor to 
construct a model with a good conductor at depth, a thick 
sedimentary wedge at the coast, and a mid-crustal conduc- 
tor under the British Columbia (BC) mainland. A con- 
ducting slab dipping eastward under VI is consistent with, 
but not required by, the data. Land-based magnetometer 
data further south in Oregon [Neumann and Hermance, 
1985] also require a thick sedimentary wedge, but do not 
extend to long enough periods to provide any information 
on the existence of a conducting slab. Nienaber et al. 
[1982] used only land magnetometer data and analog 
modelling to place a dipping conductor under VI which 
subsequently rises under the mainland. One could simply 
interpret their model as a resistive root for VI. However, 
in recent work performed in conjunction with the Cana- 
dian Lithoprobe program, which did detailed seismic 
profiling across VI, Kurtz et al. [1986a] collected some 
very exciting MT data. A 1D inversion of their most iso- 
tropic station shows a conducting layer whose top is coin- 
cident with the seismic reflector that has been interpreted 
as the upper surface of the subducted Juan de Fuca plate. 
They also present a 2D model which is consistent with 
their MT and earlier magnetometer array data, and inter- 
pret the results as strong evidence that substantial sedi- 
ment is being subducted. 

The mid-crustal conductor under BC extends eastwards 
as far as the Rocky Mt. Trench, where it terminates shar- 
ply [Bingham et al., 1985; Gough et al., 1982]. A conduc- 
tive ridge rising to the shallow crust lies just east of the 
Rocky Mt. trench. Its relationship to the mid-crustal con- 
ductor is uncertain, but its structure is quite sinuous, and 
it passes close to a known geothermal area studied with a 
concentrated magnetometer array by Ingham et al. [1983]. 
The southern extent of the mid-crustal conductor in BC 
may be determined by EMSLAB. 

Proceeding eastwards, the next major conductive struc- 
ture in North America is the Central Plains Anomaly 
(NACP), which begins in southwest Wyoming and 
proceeds northwards up the Montana-Dakota boundary 
into Saskatchewan. Handa and Camfield [1984] trace it 
into northern Saskatchewan, where it bends eastwards, 
and interpret it as a manifestation of a Proterozoic conver- 
gent plate boundary. Gupta et al. [1985] track the NACP 
further eastwards into the Hudsons Bay region. 

Another region of probable ancient convergence occurs 
in the Grenville province of eastern Canada. Again, there 
is a deep crustal conductor which Kurtz [1982] ascribes to 
pore fluids. This conductor may extend down the 
Appalachians. Mareschal et al. [1983] found that a major 
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conductor paralleling the trend of the mountains must 
exist west of a magnetometer profile collected in 
northwestern Georgia. An interesting active source exper- 
iment in the same area by Thompson et al. [1983] using a 
1 km diameter loop source reported a conductor beneath 
the station at depths coincident with the base of the 
megathrust discovered by COCORP. This lends support 
to the COCORP interpretation of a sedimentary structure 
beneath the crystalline rocks of the overthrust. An exam- 
ple of a conductor in a Tertiary convergent zone is 
presented in Stanley's [1984] interpretation of the Cascade 
geomagnetic anomaly. 

An ancient divergent plate boundary sometimes called 
the Keweenawan Rift is responsible for the mid-continent 
gravity high several hundred km east of the NACP. 
Young and Rogers [1985] and Young and Repasky [1986] 
have used MT to investigate small scale structures associ- 
ated with this ancient rift. However, Prugger and Woods 
[1984] reexamined old magnetometer array data over this 
feature, and concluded that no major conductivity struc- 
ture was involved. It is probable that virtually all of the 
deep, cratonic conductivity structures are associated with 
old convergent boundaries [Gough, 1983]. It is presum- 
ably only there that conductive sediments and pore fluids 
can be carried to great depths. 

Modern rifts are quite different from the ancient ones, 
and most of the induction research in the southwestern 
US has focused on the Rio Grande Rift and associated 
structures. Ander et al. [1984] briefly outline a large MT 
data base collected under the auspices of DOE in New 
Mexico and Arizona, and then present a detailed discus- 
sion of 119 audiomagnetotelluric (AMT) and 25 MT sta- 
tions in a 161 km: region of the Jemez Lineament. A 2D 
modelling effort leads them to the conclusion that a highly 
conductive body rises to within 20 km of the surface. 
They interpret this as evidence for partial melt. However, 
Jiracek et al. [1983] argue against partial melt as the direct 
cause of high crustal conductivity in the nearby Rift, and 
find that the crust is less conductive in a zone interpreted 
as containing partial melt by seismic reflection profiling 
than in nearby regions which appear not to have melt. 
They suggest that the conductor is probably hot water and 
that partial melt has actually disrupted a cap rock which 
traps the hot water. A final paper on the Rio Grande Rift 
by Keshet and Hermance [1986] reconciles older magne- 
tometer array data which were previously interpreted as 
requiring a deep conductor with more recent MT data 
which require a shallower structure. 

Another large AMT data set in the Questa Caldera of 
northern New Mexico is presented by Long [1985]. It 
consists of stations every 3 km in a 318 km • region which 
are interpreted by patching together and contouring 1D 
Bostick inversions of the logarithmic average of the 
response functions. This paper, as well as Ander et al. 
[1984], demonstrate the need to find better ways to fully 
present the information contained in very large data sets. 

Most of the work in the western US and particularly in 
the Great Basin between the Sierras and the Rockies 

reported in the literature has been concentrated on geoth- 
ermal targets. It ranges from the reconnaissance study of 
the Long Valley caldera and environs by Hermance et al. 
[1984] and work at Coso Hot Springs reviewed by Wright 

et al. [1985] through controlled source work at Roosevelt 
Hot Springs, UT, covered by Ward [1983]. Other geother- 
mal work in the general area includes the MT survey at 
Cerro Prieto just south of the California-Mexico border by 
Araki [1982] and a variety of other examples treated by 
Berktold [1983]. Examples of non-geothermal work in the 
western US are given by Frischknect and Raab [1984], who 
demonstrate the superiority of time-domain EM over con- 
ventional resistivity techniques to detect fault structures at 
the Nevada Test Site, a magnetometer array study by 
Towle [1984], which demonstrates the existence of a con- 
ductive zone associated with the Mesa Butte fault system 
in north central Arizona, and the examination of the 
channeling of current at tidal periods in the San Andreas 
fault zone [Johnston et al., 1983]. Prieto et al. [1985] 
present an interesting study in which MT and potential 
field data are integrated to produce a regional model of the 
Columbia River basalt plateau. 

OCEANIC STUDIES 

Over the past four years, the nature of oceanic EM 
induction studies has undergone some substantial changes, 
and new directions and applications for this type of 
research are now reaching fruition. The use of controlled 
sources to sound the sediments, crust, and uppermost 
mantle beneath the sea is yielding unique information 
about the electrical conductivity in this virtually unex- 
plored region of the earth. The application of EM princi- 
ples to the study of ocean water motions holds the prom- 
ise of new insight into heat transport and barotropic flow. 
In addition, the more traditional MT method continues to 
be applied in new locales, giving valuable measurements 
of deeper structure. 

The Scripps MT results from the Marianas region and 
on the East Pacific Rise were summarized in the last qua- 
drennial report, and have subsequently been published 
[Filloux, 1982a, 1982b]. Other recent seafloor MT work 
has been performed east of Japan in 1981, in the Bay of 
Plenty near New Zealand in 1982, in the Tasman Sea off 
of Australia in 1984, and in conjunction with EMSLAB in 
1985. 

The Japan MT profile, located between the island and 
the Japan Trench was reviewed by Yukutake et al. [1983]. 
Four magnetometer-electrometer pairs were deployed by 
the Scripps group for two months at distances of up to 
600 km from Honshu, while new seafloor fluxgate magne- 
tometers [Segawa et al., 1982, 1983] were placed nearer 
the Japanese coast. A notable feature of the data is the 
strong coast effect, marked by large vertical magnetic 
fluctuations on the shelf and slope and very small ones on 
the deep seafloor. Parkinson vectors with an amplitude of 
1.9 were seen on the slope, and the peak values occurred 
at periods near 50 minutes. It is probable that this is the 
result of electric currents flowing both above and beneath 
the seafloor observation point. It is interesting to note 
that a typical oceanic conductivity profile with a rise in 
conductivity below 100 km is seen at the deepest site, yet 
a tectonically-similar location in the Marianas [Filloux, 
1982a] does not contain this feature. 

In 1984, a set of eight sites in the Tasman Sea were 
occupied by the Scripps group during a joint investigation 
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with the Australian National University. The results from 
a single site have been published [Ferguson et al., 1985]. 
The Tasman Sea electric field data are contaminated by a 
large component of oceanic origin, presumably associated 
with nearby western boundary currents that are dynami- 
cally analogous to the Gulf Stream. As a result, good MT 
response functions could be obtained only in the period 
range of 20 minutes to 10 hours, reducing the resolving 
power of the data. The response functions also exhibit 
substantial skew and anisotropy. Inversion of the 
response functions suggests unusually high conductivity at 
shallow depths, although the lack of any resolution 
analysis makes this result difficult to assess. 

In the summer and fall of 1985, an oceanic component 
of EMSLAB involving 40 seafloor pressure, vertical and 
horizontal electric, and magnetic instruments from the 
US, Canada, Japan, and Australia was deployed between 
the coast of Oregon and Washington and the Juan de Fuca 
Ridge about 500 km offshore. Three east-west lines of 
instruments were laid out, and the middle one coincided 
in latitude with the MT profile in central Oregon. The 
seafloor data are being analyzed in conjunction with the 
land array described earlier. 

A number of workers have suggested a correlation of 
the depth to conductor inferred from seafloor MT and 
lithospheric plate age, usually based on linearized model 
fitting or inversion of the data. Oldenburg et al. [1984] 
reanalyzed the response functions from three seafloor sites 
of different age using the nonlinear inversion algorithms 
of Parker. They showed conclusively that distinct models 
were required by the data from different age regions of the 
plate, but the monotonic trend of increasing depth to con- 
ductor with age Could not be fully supported. This was 
due in large part to unexpectedly low resolving power for 
the data, as evidenced by the diversity of models that fit 
them equally well. Oldenburg [1983] used a new extremal 
inversion method to further quantify the low resolving 
power of seafloor MT data. This problem is due to the 
narrow, two decade range of usable frequencies in seafloor 
MT. It is not likely that improvements in instrumentation 
will dramatically improve this situation, and other methods 
will be required to investigate shallow electrical conduc- 
tivity in particular. Future applications of seafloor MT in 
the oceans will probably be aimed at the delineation of 
tectonic structure using arrays of instruments in the spirit 
of EMSLAB. Array deployments also allows the use of 
GDS, which is not as limited as MT by low frequency oce- 
anic noise. 

Geomagnetic induction in transoceanic telecommunica- 
tions cables has been studied extensively by a group at 
AT&T Bell Labs [Lanzerotti et al., 1985, 1986; Meloni et 
al., 1983, 1984; Thomson et al., 1986]. A review of the 
subject appears in Meloni et al. [1983]. In the most recent 
of these papers, Lanzerotti et al. [1986] note a high correla- 
tion of the voltage in a nearly E-W cable with the E-W 
magnetic field. They suggest a N-S flowing telluric current 
off of the coast to explain the data. This is probably 
another manifestation of the enhanced coast effect noted 

by Yukutake et al. [1983], with electric current flowing in 
both the ocean and underlying rock on the continental 
shelf and slope. Contemporaneous seafloor magnetic and 
cable observations would be inval•able in sorting this out. 

New information on the conductivity of the oceanic 

crust has come from the application of controlled source 
induction methods. Becker et al. [1982] and Becker [1985] 
describe several experiments using a large scale resistivity 
method in a deep (• 1500 m) DSDP borehole on the 
Costa Rica Rift. The method is useful for the inference of 

conductivity in a zone of 20--50 m radius about the hole. 
Conductivities of •0.1 S/m were found in the upper pil- 
low lavas of the oceanic crust, decreasing sharply to 
•0.002 S/m in the underlying dike complex near the base 
of seismic layer 2. Using Archie's Law, the inferred 
apparent porosity varies from 10% in the pillow lavas to 
about 2% at depth, and three porosity zones were 
observed which correspond roughly in location to seismic 
layers 2A, 2B, and 2C. 

Frequency-domain controlled source measurements in 
the sea are being performed by groups in both Canada and 
the US. The former work is based on a vertical wire 

source extending from seafloor to sea surface and ener- 
gized by a surface ship together with a series of seafloor 
horizontal magnetic receivers. The method is a variant of 
the magnetometric resistivity method. Edwards et al. 
[1985] describe the first use of the method in an inlet off 
of British Columbia, in which a conductivity profile 
through a thick sedimentary section was obtained. Nobes 
et al. [1986] give results from a similar sounding in the 
Middle Valley of the Juan de Fuca Ridge through a thick 
hemipelagic sequence overlying basaltic basement. 

Cox et al. [1986] present some preliminary results from 
a deep controlled source sounding using a seafloor hor- 
izontal electric dipole source and a series of horizontal 
electric field receivers placed up to 70 km away. Signals 
were quite identifiable at the longest ranges at frequencies 
up to 24 Hz. A series of simple models could be fit to the 
data and are typified by a 5 km crustal layer of moderate 
(•0.001 S/m) conductivity overlying a resistive halfspace 
of conductivity 5x 10 -5 S/m. The low conductivity in the 
uppermost mantle requires a low volatile content in the 
rocks to be consistent with laboratory data. However, the 
conductivity of the oceanic lithosphere cannot be this 
small everywhere, or the resulting electrical isolation of 
the ocean from the conductive deeper mantle would pro- 
duce large electrostatic fields at the ocean boundaries 
extending well into the ocean basins that are not observed. 
Chave and Cox [1983] used a simple model of this effect 
and measured oceanic MT responses to show that the 
average conductivity of the oceanic lithosphere is 
•.001 S/m. This suggests that high conductivity paths 
must exist within the ocean basins which short circuit a 

resistive ocean-deep mantle path, assuming the Cox et al. 
[1986] results are typical of the oceanic lithosphere away 
from tectonic complications. These high conductivity 
pathways are probably associated with mid-ocean ridges or 
continental shelves. 

There has also been a substantial rise in interest in EM 

induction by ocean water currents in recent years, both 
due to its possible role as a noise source for seafloor MT 
and for oceanographic applications. Chave [1984b] investi- 
gated EM induction by oceanic internal waves. Oceanic 
internal wave model spectra are similar in magnitude to 
seafloor magnetic field spectra at frequencies between 0.2 
and 1 cph, depending on ionospheric activity and latitude, 
and could serve as a source of contamination in seafloor 

data. The effect is more severe in the vertical magnetic 
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component and at high latitudes, hence may be more seri- 
ous in a GDS than in an MT context. 

Chave and Filloux [1985] and Bindoff et al. [1986] have 
examined a usually neglected portion of the seafloor EM 
field, the vertical electric component. In the absence of 
marked structural heterogeneity, this part of the EM field 
is entirely of oceanic origin, reflecting the east-west water 
velocity at the point of measurement, and has no counter- 
part on land. Both of these studies showed that the verti- 
cal electric field spectrum can be explained by the internal 
wave model of Chave [1984b] between about 1 cph and 
1 cpd. At longer periods, mesoscale oceanic motions 
dominate the data, and the ocean tides are also prominent. 
This type of measurement will undoubtedly find increased 
application in oceanography, particularly in the study of 
long-period, bottom-trapped wave phenomena. 

The induction of electric currents in submarine cables 

by ocean flows, and especially intense western boundary 
currents like the Gulf Stream, has been known for many 
years. Sanford [1982a] provides a thorough review of 
theoretical and observational aspects of cable measure- 
ments. Larsen and Sanford [1985] report on the analysis 
of long-term measurements collected on a cable under the 
Florida Current. After correction for geomagnetic and 
tidal induction, they found agreement of the cable and 
more conventional oceanographic measurements of tran- 
sport to within 2%. 

At periods of several days to months, the baroclinic 
(i.e., depth-dependent) variability of the ocean is larger 
than the barotropic (i.e., depth-independent) variability, 
and hence dominates conventional point measurements 
made in the deep ocean. The seafloor horizontal electric 
field yields a depth-averaged estimate of the water velo- 
city, and is well-suited to studies of the poorly understood 
barotropic component. Sanford [1986] reviews the use of 
EM principles to examine barotropic flow. A major exper- 
iment to use EM methods for oceanographic purposes is 
now being conducted by Scripps. In the summer of 1986, 
44 seafloor pressure recorders, magnetometers, and hor- 
izontal and vertical electric field instruments were 

deployed in a 1500 km by 800 km array for one year to 
study the wavenumber structure of barotropic wind-forced 
flow, as well as pursue a variety of other oceanographic 
and geophysical objectives. This experiment, called BEM- 
PEX (Barotropic ElectroMagnetic and Pressure EXperi- 
ment), is the first use of EM techniques in the deep ocean 
basins for oceanographic purposes at long periods. 

MISCELLANEOUS TOPICS 

Most natural source EM studies are concerned with 

induction in the conducting earth by external current sys- 
tems. At very long periods, induction from the core 
dynamo below the earth's surface may also be important. 
Backus [1983] determined the weighted averages of man- 
tle conductivity that can be inferred by considering the 
earth as a linear filter, with a geomagnetic jerk as input at 
the core-mantle boundary and an output at the earth's 
surface. Lanzerotti et al. [1985] used a •4500km 
telecommunications cable to determine the DC component 
of the earth potential, obtaining a nearly null result. This 
may require nearly equal toroidal and poloidal parts for the 

geomagnetic field at the core-mantle boundary. However, 
Backus [1982] showed that a critical layer will exist in the 
mantle that screens out an internal electric field if a con- 

ductivity minimum occurs between the earth's surface and 
the core-mantle boundary, complicating the interpretation 
of the cable data. 

Time domain or transient EM methods have received 

an increasing amount of attention, mostly concentrated on 
shallow exploration targets of industrial interest. The 
advantages of time domain over frequency domain EM 
include reduced sensitivity to near-surface lateral hetero- 
geneity and freedom from contamination by the portion of 
the signal travelling through air, since measurements are 
typically made when the transmitter is off. Hoversten and 
Morrison [1982] derived the transient magnetic fields of a 
loop source inside of a 1D layered medium, demonstrating 
graphically the "smoke ringS' diffusion form of the induced 
fields and giving a simple picture of the effects that struc- 
ture has on surface observations. Oristaglio and Hohmann 
[1984] give a similar view of some 2D time domain prob- 
lems. Keller et al. [1984] describe an electric dipole 
source, loop receiver system designed for deep sounding. 
Fitterman and Stewart [1986] present a time domain model 
study of four groundwater exploration situations. Edwards 
and Chave [1986] and Cheesman et al. [1986] suggest some 
systems and applications for transient EM on the seafloor. 
A variety of other time domain problems are covered in a 
special issue of Geophysics [Nabighian, 1984]. Numerical 
models for 2D/3D time domain EM are also appearing 
[Adhl'djaja et al., 1985; SanFilipo and Hohmann, 1985; San- 
Filipo et al., 1985; Newman et al., 1986], and will provide 
insight for the interpretation of field data, although the 
difficulty of obtaining such solutions cannot be overem- 
phasized. 

Laboratory measurements of crust and mantle materials 
are reviewed by Hinze [1982], Duba [1982], and 
L•stovicVkovd [1983]. The complicating effects of inade- 
quate sample characterization and physiochemical changes 
during the measurement process are emphasized by Duba 
[1982]. Recent work on olivine has revealed that point 
defects play a crucial role in determining its electrical con- 
ductivity [Schock et al., 1984; $chock and Duba, 1985; 
Sato, 1986]. 

Kariya and Shankland [1983] compiled laboratory con- 
ductivity measurements for dry mafic and silicic lower cru- 
stal rocks as a function of temperature. Using best-fitting 
curves of conductivity against temperature, they showed 
that the results could be used to infer an upper bound to 
in situ temperature from MT measurements. Building on 
this study, Shankland and Artder [1983] expanded the data 
base and compared the results to field EM and heat flow 
measurements. They showed that plots of conductivity 
against reciprocal temperature were reasonably ordered, 
but that all of the field data had conductivity values orders 
of magnitude above the laboratory ones, suggesting the 
presence of volatiles. They also found that the inferred 
temperatures for tectonically-active areas were systemati- 
cally above those under shields, and suggested that EM 
surveys could be used to predict regional geotherms. 
These results provide considerable encouragement that 
EM field data can be interpreted in terms of fundamental 
physical parameters. 
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