
DISCUSSION 

On: “Numerical integration of related Hankel trans- 
forms by quadrature and continued fraction expansion” 
by A. D. Chave (GEOPHYSICS, 48, p. 1671-1686, De- 
cember, 1983). 

Chave presents an excellent algorithm and computer subpro- 
gram that evaluate Hankel transforms by quadrature and con- 
tinued fraction summation. This subprogram would be a valu- 
able addition to any mathematical computer library. Chave 
refers to digital filter (convolution) methods as “the standard 
numerical approach to the computation of Hankel transforms,” 
and makes numerous references to my published work (Ander- 
son, 1979, 1982). However, some readers may misinterpret 
some of his statements regarding convolution methods, which I 
hope to clarify by this discussion. 

On p. 1671, Chave states (referring to Anderson, 1979) that 
“Reasonable (5-figure) accuracy is typically achieved for mono- 
tonic, rapidly decreasing kernel functions at moderate values of 
p.” This statement implies a stronger condition imposed on the 
kernels than defined in Anderson (1979, p. 1289), where only 
continuous, bounded kernels are required. Rapid convergence 
of the convolution sum is achieved if the kernel function is also 
decreasing (Anderson, 1982) but the rate of decrease is usually 
immaterial, inasmuch as extremely rapid decaying digital filter 
responses are used. The 5-figure accuracy is typical of single- 
precision (32 or 36-bit floating-point) implementations as 
exemplified in subprograms ZHANKS (Anderson, 1979) and 
HANKEL (Anderson, 1982), where the best relative errors are 
approximately 10m6. 

Chave’s brief reference on p. 1671 to “adaptive and lagged 
convolution” in Anderson (1982) failed to mention that a 
double-precision (64-bit floating-point) related and lagged 
con~d~tion subprogram (DHANKL) is available, where best 
relative errors are approximately IO- “. He further states on p. 
1671: “For some types of problems the digital filter method is 
less useful; examples occur at very small values of the range p, 

...> and when high numerical precision is required.” With either 
HANKEL or DHANKEL, very small values of p 2 0 can be 
accommodated by lagged convolution as discussed by Ander- 
son (1982, p. 366: “Proceeding to the limit”). 

In some applications the need for double-precision and very 
small arguments may be avoided by using suitable transforma- 
tions of the Hankel integral. For example, the electromagnetic 
(EM) induction problem discussed by Anderson (1979, p. 1292- 
1293) used a normalized induction number (B = p/6, where 6 is 
the skin depth of the medium) instead of the usual distance p 
parameter in the Bessel argument of the Hankel transform. 
This approach usually avoids small transform B arguments, 
where B is typically in the range [.Ol, lo] for the quasi-static 
assumption. Algebraically divergent Hankel transforms of the 
type discussed by Anderson (1979, p. 1293) and Frischknecht 

(1967, p. 67) can be replaced with rapidly convergent ones by 
subtracting a known homogeneous half-space term under the 
integral and adding an equivalent analytic expression outside 
the integral. For many practical EM problems, combining 
these two substitutions will result in Hankel transforms that 
converge rapidly for a moderate induction number range; they 
are therefore computationally tractable using the single- 
precision convolution subprograms ZHANKS, HANKEL, or 
similar routines. 

The oscillatory bounded kernels mentioned on p. 1674 can 
be transformed successfully with moderate to large arguments 
in ZHANKS, HANKEL, or DHANKL, if the highest fre- 
quency content of the kernel function does not approach or 
exceed the digital filter’s sampling or Nyquist frequency (see 
Anderson, 1982, p. 346, p. 362 regarding oscillating functions). 
Highly oscillatory kernels are rare in practice, but when they do 
occur, the quadrature algorithm Chave proposed would gener- 
ally be more useful and accurate than convolution methods. 

On p. 1674, the statement, “Only the first pair of integrals 
(6H7) can be handled by the digital filter method” is mislead- 
ing in view of the above discussion. Integrals (8)(9) and (12t 
(13) can also be numerically transformed using convolution 
methods, since the convolution input (kernel) functions meet 
the basic requirements defined in Anderson (1982, p. 346) and 
Anderson (1979, p. 1289). Equations (lO)(ll) have increasing 
(unbounded) kernels, and would certainly fail for any argument 
value if used directly in ZHANKS or DHANKL. Algebraically 
divergent integrals can often be converted to convergent form 
using transformations as previously mentioned; however, I will 
not consider (1 OH 11) any further. 

To illustrate the above discussion, subprogram DHANKL 
(Anderson, 1982) was run on a VAX-l l/780 VMS3.5 system in 
double-precision complex arithmetic (COMPLEX*16) for the 
same examples presented in Chave’s Table 2. The divergent 
types (lO)( 11) were excluded, as well as the oscillating types 
(12)(13) for argument R = 0.05. My DHANKL results are 
listed in Table I. 

The tolerance factor (TOL) used in Table I was selected the 
same as parameter RERR in Chave’s Table 2. The number of 
kernel function evaluations used in DHANKL for direct 
convolution is denoted by NF in Table I, and NF = 0 denotes 
related convolution was used. Note that the accuracy in 
NUMERR for oscillatory integrals NN = 7 and NN = 8 at 
R = 2.0 is only good to about three figures; however, these 
same integrals at R = 100.0 are nearly equivalent to those in 
Chave’s Table 2. All remaining results in Table I clearly show 
comparable accuracy with Chave’s Table 2 and with respect to 
the computed exact values and requested accuracy (see TOL in 
Anderson, 1982, p. 352 and double-precision version, p. 364). 

It is stated on p. 1674 that “Table 2 shows similar compu- 
tations [as in Table I] with RERR = lo- lo, a far more strin- 
gent requirement with a concomitant increase in compu- 
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Table 1. VAX-11/780 results using double-precision DHANKL (Anderson, 1982). 

NN K T 0 L NUMEKK NUMEKI EXACTK EXACT1 NF 

I U.05 u. LU-09 0.3535533216 -0.3532409598 U.3535533216 -0.3532409596 340 

2 0.05 0. In-o9 0.2495322253E-Ul 0.0000000000E+00 0.2495322244E-01 u .UUuu000000E+00 236 

3 u.05 0.111-09 19.99999999 0.0000000000E+00 20.00000000 0.0000000000E+00 719 

4 U.Cl5 0. IU-09 19.29318260 -0.6824013725 19.29318268 -0.6824013726 478 

1 2.00 
2 2.00 

3 2.00 

4 2.00 

7 2.00 

8 2.00 

1 lUO.00 

2 1 u U . 0 U 
3 lOU.UU 

4 100 .UU 
7 lUU.OU 
8 100.00 

O.lD-09 0.2457792119 
O.lU-09 0.2763932020 
0. LU-09 0.4999999998 

0. ID-09 O.l895626027E-01 
U.iU-09 0.4992191583 
O.LD-09 0.8659400089 

-------_- ---_-________------ 

o.iu-09 -0.996375.8581E-11 
U.lU-09 0.9900004998E-02 
0. ID-09 0.9999999997E-02 
O.lU-09 -0.4365570173E-11 
0. III-09 0.9999804157E-02 
0. ID-09 0.9999499931 

-U.l928177160E-01 0.2457791604 O.l928:80249E-01 

O.OUUUUOOOUOE+UO 0.2763932023 U .0000000000E+00 

0.0000000000E+00 0.5000000000 0.0000000000E+00 

-U.l2UU712143 O.l895626091E-01 - U.1200712156 

0.0000000000E+00 0.5000U00000 0.0000000000E+00 

U.OUOOOOOUOOE+00 0.8660254038 o.O000000000E+00 

0.6355519647~-12 0 .OOUUOUUUOOE+OO 0.0000000000E+u0 

U.UUOUOOUOOOE+UU 0.99UU005OUOE-02 u .0000000000E+00 

0.0000000000E+00 o.lOOOOOOUUuE-01 0.00u000uoOOE+uu 

U.l988721242E-12 -0.4851871203E-34 - ~0.19525791416-32 

0.0000000000E+00 O.lOOOOUOOUOE-01 0.0000000000E+U0 

U.OUUUOOOOOUE+UO 0.9999499987 0.0000000000E+00 

157 
156 

719 
470 

394 

0 
.---- 

158 
180 

719 

487 

391 
0 

tational overhead.” Of course this is the price paid for double- 
precision accuracy, but it also includes the cost of computing 
more Bessel functions, as required by direct quadrature meth- 
ods. To compare computer processing unit (CPU) times fairly 
between direct quadrature and convolution methods, I repro- 
duced Chave’s Tables 1 and 2 (using his published program and 
IMSL Bessel function subprograms), excluding the same lines 
as in my Table I, and reran DHANKL using TOL = .lD-5. 
For brevity, the latter results are not given, but commensurate 
accuracy was obtained as in Chave’s Table 1. Total VAX 
execution CPU times (seconds) for all integration subprograms 
in each table, excluding most of the driver and all I/O-times, 
plus total functions calls (Sum NF), are summarized in Table II. 

Table II shows, for equal tolerances, that the direct quadra- 
ture method requires significantly more computer time than 
convolution, rather than “slightly more” as stated on page 
1674. The single-precision convolution routines HANKEL and 
ZHANKS were also run, yielding results of lower accuracy 
(about four-five figures) than those obtained from DHANKL, 
but execution times were much smaller. The tabulated compu- 
tational speed variations would be quite important in programs 

needing many hundreds or thousands of Hankel transforms, 

such as in one-dimensional inversion of EM sounding data 

over layered media, or in three-dimensional EM integral equa- 
tion modeling. 

Chave’s direct quadrature algorithm is an important comple- 
ment to the digital filter method, especially when double- 
precision Hankel transforms are needed which contain difficult 
kernels or extreme argument ranges. A hybrid procedure that 
exploits the best features of both algorithms--thereby obtain- 
ing an efficient and accurate method suitable to a larger class of 
problems-would be a valuable future contribution. 

WALTER L. ANDERSON 
U.S. Geological Survey 
Mail Stop 964, Box 25046 
Denver Federal Center 
Denver, CO 80225 
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Table II. Comparison of VAX-11/780 total CPU times (s). 
============================================================= 

Table TOL or Quadrature DHANKL..... HANKEL or ZHANKS 
no. RERR time Sum(NF) time Sum(NF) time Sum(NF) 

============================================================= 

* 1 .lE-5 4.54 3649 1.68 3254 .42 1365 
* 2 .lE-9 9.59 7646 

I .lD-9 2.66 5604 
============================================================= 

* Tables 1 and 2 had same lines excluded as in Table I above. 
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Reply by the author to W. L. Anderson 

Anderson presents an interesting comparison of my direct 
quadrature Hankel transform algorithm with a high precision 
(- 12 significant figures) digital filter procedure that he publish- 
ed recently. His clarifications regarding lagged convolution are 
important. However, two of his major points may be mislead- 
ing, and require a more careful examination. 

From Anderson’s Table II, one would conclude that the 
direct quadrature algorithm generally requires more kernel 
function evaluations, and hence a higher computational 
burden, than the digital filter method. A more careful examina- 
tion of my Table 2 and Anderson’s Table I shows that this is 
quite problem dependent, and both algorithms display marked 
advantages for specific combinations of the functional form of 
the kernel and the range parameter. A thorough comparison of 
the two algorithms would include the cost of computing the 
Bessel functions for the direct quadrature case, and this is 
dependent on the method used to obtain them, which Anderson 
does not specify. Finally, the amount of CPU time required for 
a numerical procedure is hardware dependent, especially with 
the advent of vector pipeline architecture (e.g., CRAY). My 
conclusion is that the relative advantages of the two algorithms, 
assuming that computer usage is the predominant criterion, 
should be evaluated for any problem of interest to the user. 

My second comment concerns the statements that Anderson 

makes concerning transformations of the kernel function so 
that standard numerical quadrature, or the digital filter algo- 
rithm, will work on formally divergent integrals. These methods 
often work, although care is usually required to avoid loss of 
significance because the transformed numerical result and the 
analytic term that is added to it often have similar magnitudes 
and opposite signs. In some cases, it is quite difficult to deter- 
mine the proper asymptotic form of the kernel; an example 
occurs for the Frechet derivatives of electromagnetic induction 
that are required for Backus-Gilbert inversion of field data. 
Finally, except in those cases where computer usage is an 
overwhelming consideration, the labor involved in correctly 
applying kernel transformations may not be worthwhile. 

The direct quadrature algorithm was not intended as a re- 
placement for the digital filter method, but was offered as an 
alternate way to solve difficult problems. I agree with Anderson 
that a hybrid approach is probably best; this is the manner in 
which I have solved sea floor controlled source problems. I am 
grateful to Anderson for his comments, and for the valuable 
contributions he has made to the solution of electromagnetic 
induction problems. 

ALAN D. CHAVE 
Institute of Geophysics and 

Planetary Physics 
University of California at San Diego 
La Jolla, CA 92093 


