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The Fr6chet Derivatives of Electromagnetic Induction 

ALAN D. CHAVE 

Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography 

The Frbchet derivatives of the fundamental toroidal and poloidal magnetic modes of electromag- 
netic induction are examined in detail. The response functions for both modes are shown to be 
Fr6chet differentiable in an L 2 norm for general conductivity structures and arbitrary source 
frequency-wavenumber morphology. Perturbation forms of the modal Green functions are derived 
and used to examine the Fr6chet kernels for a seafloor controlled source and a Kelvin wave model. 
In both cases, the TM mode possesses superior resolution ability, especially for low relative conduc- 
tivity contrasts at depth. The results suggest that induction by the ocean tides can see details of the 
lithospheric structure at depths of at least 50 km. 

INTRODUCTION 

Inverse theory is the use of observational data to make 
inferences about the physical system producing them. A 
general mathematical framework for linear inverse prob- 
lems is given by the work of Backus and Gilbert [1967, 
1968, 1970]. Most inverse problems of geophysical 
interest are functionally nonlinear and are usually treated 
by linearization about some base model. To quantify this 
statement, suppose the j th component of an N vector y 
and a possibly infinite dimensional model vector rn are 
related by a nonlinear functional F which contains the 
physics governing the problem: 

= 

If a small perturbation am to the model produces a small 
change •, in the data, and the relation 

8yj =• Dj (rn,z)Srn (z)clz + 0[llamll 2] (1) 
is valid, then D is called the Fr•chet derivative or kernel 
of the functional F at rn in the L: norm. The concept of a 
Fr6chet derivative lies at the heart of linear inverse 

theory. It is quite important to actually prove that the 
remainder term in (1) is second order in the model pertur- 
bation; this is problem dependent and often neglected. 
The linearization implicit in (1) breaks down if the last 
term is not small, and this is observed in geophysical 
inverse problems. Woodhouse [1976] showed that first- 
rather than second-order error terms result for the seismic 
normal mode Fr6chet kernels when the model contains 

discontinuities, invalidating some earlier applications. 
Backus-Gilbert linear inverse methods have been widely 

utilized in all fields of the earth sciences. Their first appli- 
cation in electromagnetic induction was Parker's [1970] 
inversion of a set of global geomagnetic sounding data. 
They have subsequently found use for the one- 
dimensional magnetotelluric problem [Oldenburg, 1979, 
1981] and on DC resistivity sounding [Oldenburg, 1978]. 
Parker [1977] proved that the magnetotelluric problem is 
Fr6chet differentiable in the usual least squares or L: 
norm, but more general electromagnetic induction 
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phenomena, and especially the toroidal magnetic mode of 
which resistivity methods are a special case, have not been 
examined in detail. Frbchet kernels are frequently used as 
sensitivity functions to indicate penetration depth and gain 
a qualitative feel for resolution ability, especially in the 
exploration literature [e.g., G6rnez-Treviho and Edwards 
1983]. While considerable progress in solving the fully 
nonlinear form of the simplest, zero-wave number magne- 
totelluric inverse problem has been made [Parker, 1980; 
Parker and Whaler, 1981], extension of these methods to 
sources with more complex frequency-wave number struc- 
ture is not straightforward. This suggests that a more 
complete examination of the Frbchet differentiability of 
generalized electromagnetic induction is needed as a 
prelude to the actual application of linear methods. 

In this paper, a similar approach to that of Parker 
[1977] is applied to the electromagnetic response functions 
for the toroidal magnetic (TM) and poloidal magnetic 
(PM) modes, as given by Chave [1983a] (hereinafter 
called paper 1). Both the magnetotelluric and DC resis- 
tivity problems are special cases of PM and TM modes; 
thus the result is quite general. The two response func- 
tions are shown to be Frbchet differentiable in an L2 norm 
for a very general class of conductivity models. By the use 
of a straightforward perturbation procedure on Green 
function expressions from paper 1, changes in the 
observed electromagnetic fields at the surface of the earth 
(or the seafloor) may be related to changes in the subsur- 
face conductivity structure for an arbitrary source wave 
number morphology. This is illustrated by examining the 
Frbchet kernels for induction by a seafloor-based horizon- 
tal electric dipole controlled source and a Kelvin wave 
model of the ocean tides. The results suggest greater 
resolution capability for the TM mode, especially if low 
rather than high conductivity zones (in a relative sense) 
exist at depth. 

GOVERNING EQUATIONS 

The detailed framework for the theory of electromag- 
netic induction to be used in this paper was constructed in 
paper 1. The governing equations are those of Maxwell i n 
the quasistatic limit 

v x E + = o (2) 

V x - o-E = 
3373 



3374 CHAVE: FR•CHET DERIVATIVES OF EM INDUCTION 

where • and/• are the induced electric field and magnetic 
induction, o- is the electrical conductivity,/x is the mag- 
netic permeabfi•ty of free space, and •/' is the impressed 
source electric current density. Choose a Cartesian coordi- 
nate system with • positive upward and zero at the earth's 
surface. By virtue of the first of (2), the magnetic induc- 
tion may be written as 

•=•x (•)+•x•x (•) (3) 

wh•r• H and ß ar• scalar functions which r•pr•s•nt th• 
TM and PM mod•s. • sourc• curr•nt in (2) may b• 
•xpr•ss•d as th• sum of a v•rtical component, a tang•n- 
tially irrotational part, and a sol•noidal part 

y0= d• + • T + • x (Y•) (4) 

If • is taken to vary only with the vertical coordinate, 
differential equations for H and ß may be derived from 
first principles 

V•H +•Oz (OzH/•)-g•OtH=-gJ•+g•Oz (T/•) (5) 

•2•_ •ff0t• =--•Y (6) 

where the electric field is 

E=-W•H/•+Jf)/•+•n [(OzH/•-T)/•]-•x (0,.•) 
(7) 

Note that the TM mode magnetic and PM mode electric 
fields have no vertical components. •e differential equa- 
tions (5)--(6) are easily solved if sinusoidal time depen- 
dence is assumed and the horizontal components are 
expressed as spatial Fourier transforms; the conventions 
to be used are e -i•t time dependence and equation (20) in 
paper 1. 

The scalar functions T and Y are solutions of the Pois- 

son equations 

= Vn ß y0 (8) 
• y = -• x y0. • (9) 

Details on their form for electromagnetic induction by 
moving, conducting seawater are given in paper 1. 

The usual conditions on the electric and magnetic fields 
at horizontal boundaries follow from (3) and (7). In 
paper 1 the boundary conditions were summarized in the 
TM and PM mode response functions defined by 

K = [•fl/Ozfl]z-, (10) 

A = •/Oz•]z-, (1•) 

where the • denotes the wave number domain and z = b 

corresponds either to the earth's surface (z= O) or the 
seafloor (z=-H). •e response functions are easily 
computed for layered media by using continued fraction 
expansions or by solving nonlinear Riccati eouations 
numerically for continuous conductivity profiles. The PM 
mode function (11) is related to the more familiar E over 
B magnetotelluric impedance by Z = i•A/g. The 
Fr•chet kernels for (10) and (11) are of central interest in 
this paper and are derived in the next section. 

The modal equation solutions may be expressed in gen- 
eral terms by using Green functions. In paper 1, Green 

functions for the Fourier transforms of (5) and (6) and a 
source confined to the ocean in-H •< z •< 0 were given 
and may be written as 

fI - -Ix •.z'• (z,z'))zø(Z')+Oz,g• (z,z')•'(z')] (12) 
• = --tx •ft dz 'g,I, (z ,z 9? (z ') (13) 

where ga and g, are complex expressions involving 
reflection coefficients containing (10) and (11) and have 
all of the information on self and mutual induction neces- 

sary to solve (5) and (6). These Green functions are 
easily converted to forms suitable for induction by sources 
external to the earth by replacing z and z' with z- H and 
z'-H, where H is redefined as the scale distance of the 
ionospheric electric currents. The TM mode magnetic 
field vanishes at insulating boundaries, and no TM mode 
may be induced by a source that is not in electrical contact 
with the earth, as was first demonstrated by Price [1950]. 
Since the actual electromagnetic fields are related to (12) 
and (13) by linear differential operators, expressions for 
perturbations to (12) and '(13) caused by subsurface con- 
ductivity variations are equivalent to perturbation forms 
for the fields themselves. These are discussed in a later 
section. 

THE FRI•CHET DERIVATIVES 

The derivation of expressions for the Fr•chet kernels of 
(10) and (11) follows the procedures used in Parker 
[1977] quite closely. The PM mode kernel is a straightfor- 
ward extension of Parker's result when wave number 

effects are included and will only be outlined. The TM 
mode result is more complex and has not previously been 
examined in detail, although the form of the Fr•chet 
derivative is similar to that obtained by Oldenburg [1978] 
for DC resistivity sounding. 

TM Mode 

The horizontal Fourier transform of (5) for the source- 
free conducting region below z--b can be written in the 
self-adjoint form 

Oz (OzfI/o')- fl2/rrfI: 0 (14) 
where 

fl2(z) = k 2- io•l•O'(Z) (15) 

and k is the composite horizontal wave number. The con- 
ducting zone is assumed to be confined to a •< z •< b, 
where a may be taken as arbitrarily large albeit finite. 
Note that (14) is valid for discontinuous but nonvanishing 
o- on the open interval (a,b); the more general case 
where o- and f12/o- are only required to be Lebesque 
integrable is treated by Atkinson [1964, chap.8]. Define 
the new variable 

= tI (z)/OztI 

which obeys (14) with boundary conditions a (a) = 0, 
a'(b) -- 1, and yields the response function (10) as 
K = o- (b)a (b). The lower (z = a) boundary condition 
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corresponds to termination in a perfect insulator where the 
TM mode magnetic field vanishes; if a is taken to be 
sufficiently large (i.e., many skin depths for the 
frequency-wave number of interest), then the lower 
boundary is electrically isolated from the surface and this 
condition is not restrictive. 

Consider two conductivity profiles 0.• and 0':2, with 
150. -- 0.:2- 0.•, and let a• and a:2 be the corresponding 
solutions to the differential equation for the two conduc- 
tivity structures, with •Sa as their difference. A differential 
equation for 15a can be obtained from (14) by subtraction 

Oz (Oz•.1o'•) - 

-- Ozlog(1 +80./0.•)0zal/0.2 - iootxot180./0.2 (16) 

where/3] is given by (15) with 0.--0'2. Equation (16) 
obeys the homogeneous boundary conditions 
8a (a) -- 8a'(b) -- 0, and is easily solved by constructing a 
Green function F,• by the method of variation of parame- 
ters 

$a(z) -- ) dyr,(z ,y) [Oy log(1 + •0./0.1)0yt21/0. 2 
- io••0'/0':2] (17) 

where 

r. (z •v) = 4• (z>)4• (z<) 

and z> (z<) denotes the larger (smaller) of z and y. The 
two functions •bl and •b:2 are linearly independent solutions 
of (14) for 0'--0':2 with the Wronskian condition 

(•'•-•'•)/•= 1 

and the boundary conditions cb•'(b) -- •b:2(a) -- 0. The 
second term may be taken equal to a:2 since they obey the 
same equation and boundary values, and substitution into 
the Wronskian yields 

r. (b •v) = -•r•(b)a•(y) 

The first term in (17) may be integrated by parts with 
(14) applied to the integrand to yield 

dy [F=Oy• •/0' :2]Oy 1og(1+•0'/0'•) 
-• F=Oy• • log( l+•0'/0' •)/0':21y• 

- ) dy (0•r.0•a•+•i%a•) 1o•(1+ •* )/.• 
a 0'1 

+ •A.• dy [F,d}yal/0':2]/}y [log(1 + •0' )]:2 
a 0'1 

The last term may again be integrated by parts, and 
repeating this yields a convergent power series in 
log(1 +•0'/0'•), reducing (17) to 

• (z ) = Oy• • (y )r. (z •v)•. (y)/.l(y).•(y) lye;. 

_ j' 
(18) 

This expression is exact. The leading term in (18) may be 
eliminated by requiring that 80'=0 at z--b; this is 
equivalent to knowledge of the surface conductivity. To 
place (18) in a more familiar form, substitute the surface 
value for F,• to yield 0'• (b)Sc• (b) -- 8K + R, where the 
first term is 

8K-- 0.•(b),f dy[k2o•(y)Jr(OyO•l(y))2]•0'(y)/0'•(y) (19) 

and the remainder term is 

R -- o' • (b)) dy [k:o• • (o' •io•-o• •io') 
a 

-[- C•yO• 1 (0' 1C•y•O•--C•yO• 1•0' ) ]/0' i20' :2 (20) 

Equation (19) is identical to that obtained by Oldenburg 
[1978] directly from the Riccati equation in K for the DC 
resistivity problem. 

To prove Fr•chet differentiability, it is necessary to 
show that (20) is second order in the conductivity pertur- 
bation as &0' becomes in some sense small. Rewrite (20) 
as the sum of four terms to simplify the algebra 

where 

R -- R• + R:2 + R3 + R4 

R :2 -- -0' • ( b ) k :2) 
a 

•4 • -*•(b)f dy (0•)•(•*)2/*•*• 
a 

•e size of functions will be defined by their L2 norm 

[Ifil • dy If I • 

(21) 

(22) 

(23) 

(24) 

By Minkowski's inequality, IIRII •< IIR•11 + IIR:211 + IIR311 
+ [IRnll and the four terms (21)--(24) may be considered 
individually. Applying Schwarz's inequality to (21) yields 

and from (18) (less the first term, which has been 
neglected) 

l II•all • k211a•/•11 & dy[F.(z•)l • 

1 + & dy Ior. (z 

Continuity of the tangential electric field requires con- 
tinuity of Ozfl/0' even in the presence of discontinuities in 
0'; the same must hold for OzOd0' or the terms O•cbi/0':2, 
i-- 1,2 in the Green function F•. Continuity of the nor- 
mal electric current and the magnetic induction requires 
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continuity of fI (or a or (•i, i----1,2). Any continuous 
function on a closed interval is bounded, so that 

Ilalll •< M• 

IIF•.11 • M2 

II•yF•/0.211 •< M4 

where M•- M4 are finite constants, and a finiteness con- 
dition will be imposed on the resistivity profile 

II 1/•11 • Ms 

Then (21) is bounded by 

IIR •11 • • •(b )k:M•M• (k:M•M:M• +MaM4)118•11: (25) 

which is O (118•11 :) in the limit of small 8•. 
The third term (23) can be treated in a similar way to 

(21), yielding 

IIRall • •(b)11•8•/•11 11•8•/•:11 

and taking the derivative of (18) 

•o•/•i• • ••/• • Io•F•(z•)/•:(z)l • 
a a 

• ••/• d• Ia•E•(z•)/•:(z)•:•)l • 
a 

This reduces to 

•Ra• • •(•)Ma(•:M•M•+MaM•)• • (•) 

which also is second order in the conductivity perturba- 
tion. The second and last remainder terms reduce very 
simply to 

•R:• • •(• )•:M•M•• • (•) 

IIR4II • •(b)M•MsIIS•II 2 (28) 

so that R is O(118o-II 2) in the limit of small 80-, and 
Fr6chet differentiability of the TM mode response func- 
tion is proved for an L2 norm. 

solutions of (29), with KE as their difference. The pertur- 
bation response satisfies 

0z•aZ -- fl•aZ ---- (30) 

where/• is given by (15) with 0- = 0-2, and (30) satisfies 
the homogeneous boundary conditions 8Z(a)= 8Z'(b) 
=0. 

Equation (30) is solved by constructing a Green func- 
tion F. to yield 

8Z(z)-- -io#z) dyF.(z,y)Z•(y)80-(y) (31) 
a 

where 

r. (z •v)= 

and X• and X2 are linearly independent solutions of (29) 
with the Wronskian condition 

X•'X2- X2'Xl- 1 

and boundary conditions X•'(b) = x2(a) --0. The second 
term X2 may be set equal to Z2, and the surface value of 
the Wronskian gives 

r. (b •) = -z•) 

• surface solution can be written as the sum of 

8A = im•• dy X•)8•) (32) 
and a remainder term 

R = i•2• dy z,•)az•)a•) (33) 
•e remainder (33) is identical to that obtained by Parker 
[1977], and his proof of Fr•chet differentiability is valid 
for nonzero wave numbers. The PM mode Fr•chet 

derivative is defined by (32). A bound on (33) may easily 
be computed using the eigenfunction approach in Parker 
[•977] 

• IAl[•118•11 • 
I•1 • 

•min 

PM Mode where 0-min is the minimum value along the profile 0- 2 (z). 

The horizontal Fourier transform of (6) for the source- 
free earth is 

Oz• _/•2•_ 0 (29) 

As for the TM mode, the conducting region is assumed to 
be finite, occupying a •< z •< b. Define a new variable 

Z(z) = •(z)lOz•(t,) 

PERTURBATION FORM OF THE GREEN FUNCTIONS 

The Green function expressions (12) and (13) contain 
information on mutual induction with the earth through 
the TM and PM mode reflection coefficients 

R[M __-- 
/•oK/0-o- 1 
•oK/ 0- o+ 1 

and take the boundary conditions to be Z(a)= 0, 
Z'(b) -- 1. The PM mode response function (11) is given 
by A =lx•(b). The bottom boundary condition is 
equivalent to termination by a perfect conductor. Con- 
sider two conductivity profiles 0-• and 0-2, with 
80- = 0-2 - 0-• and let Z• and Z2 be the corresponding 

R[ M = /3oA//a- 1 
/3oA//z+ 1 

where K and A are givem by (10) and (11), 0-0 is the con- 
ductivity of the ocean, and fl• is given by (15) with 
0- = 0-0. By considering the response functions 



CHAVE: FRI•CHET DERIVATIVES OF EM INDUCTION 3377 

corresponding to two conductivity profiles trl and tr2 and 
the associated forms for the reflection coefficients, the per- 
turbations to them may be written 

8RffM _- 2flo•K/tro (fl0K/tr0+ 1) 2 (34) 

8R•f•r = 2,flo•A/ix (35) 
OoA/+ 

where 8K and 8A are given by (19) and (32), and (34)-- 
(35) are accurate to first order in 8K and 8A; since these 
functions are good to first order in the conductivity pertur- 
bation &r, the remainder is O (ll&rll2). 

Perturbation forms of (12) and (13) are also obtained 
by subtracting their forms for two conductivity profiles and 
using (34)--(35). After some algebra, the desired equa- 
tions are 

0 

(z) = jnaz, [gn 
(36) 

0 

8• (z) = -Ix f1•dz'Sg. (z,z')• (z') (37) 
where 8gn -- 8RLTM•n and 8g,i, = 8R•M•., with 

•n=_ e-•øH[e-/Sø(z+z')--{e-/Sølz-z'l+?ølz-z'l--etSø(z+z')]] 
2,8011+Rt•TMe-Z•0H] 2 

(38) 

•,i, = 

-2fl0H[ -fi0(z+z')' '• PM { -fi0 Iz-z'l . fi0 Iz-z'l. -- PM fin(z+z')} _ e [e -I-_n• [e -I-e -I-_n• e" J] 
•0[ 1--R yMRi•'Me-•øn} 2 

(39) 

The sea surface reflection coefficient for the PM mode is 
given by equations (22) and (32) in paper 1. The per- 
turbed Green functions for barotropic ocean flow, where 
the velocity is independent of depth, are obtained by 
integrating (38), its z' derivative, and (39) across the 
water column, and are analogous to (36)--(37) in paper 1. 
These will be denoted by (•n, (•_=, and (•., respectively. 

By using (36) and (37) along with (38)--(39), (34)-- 
(35), (19), and (32), the Frbchet derivatives of the elec- 
tromagnetic fields for any oceanic source type, as specified 
by )z ø, •, and •, can be obtained. Frbchet kernels for the 
electromagnetic induction fields produced by sources at or 
above the earth are easily derived by transforming the z 
and z' coordinates, and setting fl0 = k and o'0 =-0 in the 
atmosphere. H becomes an appropriate vertical scale 
length and may often be taken as infinite, in which case 
reflections from an upper boundary, such as the iono- 
sphere, are neglected. Note that the TM mode expression 
(38), which is proportional to the horizontal magnetic 
induction, vanishes at the earth's surface, but its vertical 
derivative, which is proportional to the horizontal electric 
field, does not. 

FRI•CHET KERNELS FOR OCEANIC SOURCES 

Seafloor Controlled Source 

Chave and Cox [1982] discussed the forward problem 
and possible geophysical applications for a seafloor-based 
horizontal electric dipole (HED) source. A detailed look 
at the inverse problem and a sensitivity analysis for the 
method is in progress and will be reported elsewhere, and 
only some of the more fundamental properties will be 
illustrated. 

Consider a point source of moment p A-m, located at 
(0, 0,z'), and oriented along the x axis, so that the source 
current density is 

y0 = (x (y 

The Fr&het kernels are most easily derived by solving the 
monopole problem and computing the necessary deriva- 
tives at the end: let Y= OyY', ß =Oy,', T= OxT', 
H=0xH', and solve (8)--(9) and (36)--(37) for the 
primed variables. The wave number domain expressions 
analogous to (36)--(37) are converted to the spatial 
domain by using the inverse Fourier transform; owing to 
the cylindrical symmetry of the primed variables, this may 
be cast into a Hankel transform by converting to cylindri- 
cal coordinates. Using these substitutions in (36) and 
changing back to the unprimed coordinates gives 

8II = txp Ox I dk Jo(kp)•R•MOz,•n (z ,z')/k (40) 2w 

and using (37) yields 

8• = txP Oy fo die Jo(kp)SR•Mg,,i,(z,z')/k (41) 

where p is the horizontal range, 8RL TM and 8R[ M are 
given by (34)--(35), •n and •,i, are given by (38) and 
(39), and J0 is a Bessel function of the first kind of order 
zero. These results may be cast into the more familiar 
form of a Frbchet derivative by substituting (19), (32), 
(34), and (35) into (40)--(41), transforming the z vari- 
ables to one where z = 0 corresponds to the seafloor as in 
Chave and Cox [1982], and neglecting sea surface effects 
to get 

[ a 27FO'0 
dk Jo(kp ) 

flO ( k27r2 (S)+ (•s 7r (S))2) 
(0)/r0+Oz (0)) 

8o' (s) (42) 

a --iøaix2P Oy I dk Jo(kp) 2w 

, •0:(s) 
k (rio0 (0)+0zO (0)) 2 

8o' (s) (43) 

where fl0 is given by (15) with tr = tr0, the conductivity of 
seawater and ;r and q• are solutions of (14) and (29) at 
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Fig. 1. Fr6chet kernels as a function of depth for the horizontal 
electric field from a unit HED source at a range of 7 km and fre- 
quency of 1 Hz. The ocean has a conductivity of 3.2 S/m, while 
the earth has a conductivity of 0.005 S/m and contains 1-km-thick 
zones centered on 3 km (solid) and 6 km (dashed). The right 
panels show results for low conductivity (0.0005 S/m) inclusions, 
while the left panels show those for high conductivity (0.05 S/m) 
material. 
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Fig. 3. Fr6chet derivatives for the offshore magnetic field at 
ranges of 250 km (solid) and 3050 km (dashed) for electromag- 
netic induction by a Kelvin wave. The ocean is a 4-km-thick 
region of conductivity 3.2 S/m and overlies a 100-km-thick litho- 
sphere of conductivity 0.005 S/m and a 0.05 S/m half space. The 
lithosphere model contains 10-km-thick zones centered on 50 km 
and containing either low conductivity (0.0005 S/m) (right panels) 
or high conductivity (0.05 S/m) (left panels) material. 

a •< z •< b. The terms in brackets are the actual Fr•chet 
kernels for the II and •, while those for the electromag- 
netic fields follow from (3) and (7). 

Numerical solution of the Hankel transforms in (42)-- 
(43) can be accomplished by direct integration and special 
summation methods [Chave, 1983b]. For each value of 
the wave number k selected by the quadrature rule, the 
initial value problems (14) and (29) are integrated from 
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profile using a predictor-corrector algorithm. The initial 
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Figure 1 shows the horizontal electric field Fr•chet ker- 
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nel along the x axis for a unit (1A-m) dipole at a range 
of 7 km and a frequency of 1 Hz. The ocean conductivity 
is 3.2 S/m, and the lithosphere is modeled as a half space 
of conductivity 0.00:5 S/m containing 1 km thick resistive 
(0.0005 S/m) or conductive (0.05 S/m) zones centered at 
depths of 3 and 6 km and joined to the half space in a 
smooth fashion. The horizontal range is equivalent to one 
skin depth in the lower half space. General attenuation of 
the kernel with depth is apparent, but a marked preference 
for low conductivity material even at depths as large as the 
source-receiver offset is also seen. By contrast, conductive 
zones yield only attenuation across them. Examination of 
the individual modes shows that the detail in Figure 1 is 
due entirely to the TM mode, and the PM mode displays 
only monotonic exponential attenuation with depth. The 
two modes react to the buried regions in an opposite sense 
and with very different amplitudes: The TM mode is 
strongly affected by resistive but indifferent to conductive 
material, while the PM mode is unaffected by resistive and 
only mildly influenced by conductive material. 

Figure 2 shows the same models with only the 3 km 
deep conductivity contrasts at horizontal ranges of 7 and 
21 kin. The preference for resistive material becomes 
more pronounced with range, suggesting the use of very 
long source-receiver offsets to detect such zones. 

Kelvin Wave 

Electromagnetic induction by a Kelvin wave model of 
the ocean tide was first investigated by Larsen [1968] and 
was subsequently pursued in paper 1. Kelvin waves are 
coastally trapped, nondispersive, free progressive wave 
solutions of the linearized shallow water equations whose 
characteristics closely match coastal observations of sea 
level. Since their frequency is close to that of the rotating 
earth at mid-latitudes, TM and PM modes in similar pro- 
portions are produced; see paper 1 for details. 

Expressions for the Frbchet kernels for Kelvin wave 
induction follow by combining equations (45)--(47) of 
paper 1 for Jz ø, T, and Y with (36) and (37). As is shown 
in paper 1, the term in (12) containing Jz ø is O(kH) when 
compared to the terms containing T, and may be 
neglected. The Kelvin wave model used here is identical 
to that of paper 1, consisting of a semidiurnal type at 30øN 
off California in a 4'km deep ocean. The resulting Frbchet 
derivative forms are 

a 

ß (flo,rr(-H)/o'o+Oz,rr(-H)/o'(-H))218o'(s) (44) 

•q, -- •cts [i•o,,,•. (z )•½2(s )/ 
a 

(/305 (-H)+Oz• (-H))2]8o ' (s) (45) 

where •r and • are solutions of (14) and (29) in the con- 
ducting earth below z=-H for the conductivity profile 
about which the problem is linearized. The Fr•chet 
derivatives are the terms in brackets and are computed as 
a function of offshore distance by inverse transforming 
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Fig. 5. The PM mode part of Figure 3. See Figure 3 caption for 
details. 

(44) and (45) at each depth of interest after solving (14) 
and (29) numerically at each wave number. The WKB 
approximation is poor for this problem, and penetration 
depths are quite large, so the initial conditions are com- 
puted from a half space model below z = a. 

Figure 3 shows the offshore component of the Fr•chet 
derivative of the seafloor magnetic field at offshore dis- 
tances of 250 and 3050 km. The lithosphere is modeled as 
a 100 km layer of conductivity 0.005 S/m overlying a 
0.05 S/m half space; these values are compatible with 
upper lithospheric estimates by Chave and Cox [1984] and 
magnetotelluric measurements such as those of Filloux 
[1981]. The left panels show this base model with the 
addition of a 10-km thick zone of high conductivity 
(0.05 S/m) centered on 50 km, while the right panels 
have a substitute low conductivity (0.0005 S/m) region; in 
all cases the zones are interconnected in a smooth 

manner. The magnitude of the Fr•chet kernels clearly 
mimics the conductivity profile, with larger values where 
the conductivity is lower. The amplitude shows a general 
offshore variation which is consistent with the behavior of 

the magnetic field itself. Figures 4 and 5 show the kernels 
broken down into TM and PM modes. The detail seen in 

Figure 3 is due almost entirely to the TM mode, which 
shows a factor of 100 change in amplitude for a factor of 
10 decrease in conductivity in the right panels. The PM 
mode kernel is essentially featureless, and this mode 
yields very little information on lithospheric conductivity. 
Similar results can be obtained for the long shore magnetic 
and both horizontal electric field components. 

The total change in the seafloor magnetic field caused 
by a conductivity change at depth may be calculated either 
from Figure 3 by integration or by forward modeling. In 
either case, the addition of the 10 km thick low conduc- 
tivity zone at 50 km yields an increase of 0.9 nT at the 
seafloor, while the high conductivity case yields a decrease 
of 0.2 nT. The M• lunar semidiurnal tidal magnetic field 
at the seafloor typically has an amplitude of 1-4 nT, with 
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statistical uncertainties of 3-10% [Chave and Filloux, 
1984], and the effect of the low conductivity zone should 
be detectable unless other sources of noise are very large. 
This suggests that the study of electromagnetic induction 
by ocean tides, using current global tide models, has enor- 
mous potential for investigating ocean lithospheric struc- 
ture. 

APPENDIX: WKB SOLUTIONS TO MODAL EQUATIONS 

WKB theory yields a global approximation to the solu- 
tion of a linear differential equation whose highest deriva- 
tive is multiplied by some small parameter e. Mathemati- 
cal details may be found in Bender and Orszag [1978, chap. 
10]. First-order WKB solutions to (14) and (29) are 
derived in this appendix and find application in initializing 
numerical solutions of the modal equations. Note that 
first-order WKB theory corresponds to the physical optics 
approximation and gives the leading asymptotic behavior 
of the solution as e --* O. 

Consider the PM mode equation (29) for the source- 
free conducting region a •< z •< b in the limit of large 
wave number 

e20:2• - Q (z)• -- 0 (A1) 

where •-- k -1, Q(z)--fl2(z)/k2, and f12 is given by (15). 
The first-order WKB solution has the form 

• • exp[So/e+S1] (A2) 

where nonlinear equations for So and S1 follow by match- 
ing orders and are called the eikonal and transport equa- 
tions, respectively. Let (A1) satisfy initial conditions at 
z--a that correspond to a half space of conductivity rrH 
for z < a. Then the solution of (A1) with (A2) is 

•(z)--- flH exp dsfl(s)+flH (A3) 

where flH is given by (15) with rr -- rrH. 
The TM mode equation (14) must be placed in normal 

form using the substitution fI -- • }, where } satisfies 

e20z2•- R (z)•- 0 (An) 

and R (z) = t• 2 (z)/k 2 with 

td2(z) = fl2(z) + 3/4(OzCr/cr) 2- 'l:O:2trltr (A5) 

The first-order WKB solution for • follows from (A2) and 
(A3), and after conversion back to the fI scalar 

• (z)crH exp ds • (s)+•Ha (A6) 
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