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In a recent paper by Martinson et al. [1982], a quantita- 
tive method for recovering the mapping function which 
makes a distorted data series resemble a reference series 

using a parameter estimation technique (not an inverse 
approach) was proposed and illustrated. The mapping 
function describes the stretching and compressing of one 
data set with respect to another and may be of consider- 
able geologic interest; for example, the sedimentation rate 
is the mapping function obtained by correlating a strati- 
graphic variable with some known measure of time. Since 
the application of the method has aroused some interest, 
especially among paleoclimatologists, it seems appropriate 
to comment on some limitations and omissions in the 

algorithm of Martinson et al. [1982]. Specifically, we show 
that (1) their use of maximization techniques on a highly 
nonlinear functional of the data, the coherence, requires 
considerably more attention to numerical stabilization than 
the simpler minimization of a nonlinear penalty function, 
(2) their use of a Fourier series can, under very general 
circumstances, produce artificial, high-frequency fluctua- 
tions in the mapping function, (3) their failure to con- 
strain the derivative of the mapping function to be nonne- 
gative can yield nonphysical results in many cases of geo- 
logic interest, especially for a large number of degrees of 
freedom in the model, and (4) it is difficult to add addi- 
tional equality constraints on the mapping function at 
known tie points using their approach. The nonnegativity 
constraint is not overly restrictive for most interesting 
applications since, for example, the stratigrapher often 
cannot differentiate between zero and negative sedimenta- 
tion rates. The equality constraint can be quite useful; the 
paleontologist can include the results of radiometric and 
magnetostratigraphic studies in the mapping function cal- 
culation. To accommodate points 3 and 4 and resolve 1 
and 2, we choose to recast the problem into one of linear- 
ized optimization with linear inequality constraints and to 
parameterize the mapping function in terms of splines 
rather than a continuous orthogonal basis like sinusoids. 
To illustrate the advantages of these constraints and the 
spline basis, we correlate two oxygen isotope stratigraphies 
and give examples of both nonphysical mapping functions 
and artificial wiggliness introduced by a Fourier series 
representation. 

We are given a reference signal R (t) and a data series 
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D (x), from which we wish to recover the mapping func- 
tion x (t) which makes them, in some sense, most alike. 
Martinson et al. [1982] chose to maximize the coherence 

t•o X R (t )D (x (t ) )dt 
c -- (1) 

t XD 2 t XR2(t)dt (x(t)) 
which is a highly nonlinear functional of x (t). Their algo- 
rithm yields a maximum value of (1) after considerable 
care is expended to stabilize the problem. A simpler 
approach is to minimize the penalty function 

N 

E = • (2) 
j=l 

over the N data points in an appropriate p norm subject to 
linear inequality and equality constraints on x(t). The 
lower case letters r and d indicate data self-normalized to 

unit variance to avoid undue weighting of either variable. 
While we will deal only with the L2 (quadratic programing 
or least squares, p-- 2) norm in this paper, the use of the 
L• (linear programing, p--1) norm may be more 
appropriate since it is more robust in the presence of noisy 
data. The penalty function (2) is nonlinear in x (t) and 
may be linearized by expanding d (x (t)) in a Taylor series 
to first order: 

Od (x ,{.?})) a.,I E = • r(t•)-d(x(t•,{a?}))- • Oa? j--1 i=1 

(3) 

where the superscript on x refers to the rn th iterate and 
the {af'} are the M coefficients used to parameterize the 
mapping function. In addition, we may place an inequality 
constraint on the slope of the mapping function: 

Ox (t) >/ 0 (4) 
/it 

and, possibly, use the L equality constraints 

x(t•)-- c• [= 1,... L (5) 

The mapping function may be represented in terms of 
orthogonal functions 

M 

x (t) = • otjqbj (t) (6) 
j=,l 0148-0227 / 84/004B-0039502.00 
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Fig. la. Mapping functions between cores RCll-120 and V28-238 
based on $]So stratigraphy. The solid line is the spline fit with 3 
knots; the dashed curve corresponds to 4 harmonics plus a ramp, 
each with inequality constraint (4). Though both mappings pro- 
duce comparable misfits between the reference and data signals, 
the Fourier series mapping is considerably more wiggly than the 
spline curve for the same number of degrees of freedom. 

where the •bj may be, for example, Chebyshev polynomi- 
als, sinusoids, or spline functions. We note that the 
Fourier basis used by Martinson et al. [1982] is incomplete 
since the cosine terms were omitted, severely constraining 
the mapping function to an antisymmetric or odd func- 
tional form. In any case, use of a continuous orthogonal 
basis set will often lead to serious convergence problems, 
especially in the neighborhood of sharp changes in slope; 
the discontinuous behavior of finite approximations to 
Fourier series and the well-known Gibbs phenomenon are 
discussed in detail by Edwards [1967]. 

The orthogonal functions •bj (t) which we prefer are 
piecewise parabolic splines. We write the mapping func- 
tion as a pp representation. 

ci (t_•.i)2 (7) x(t) = + + t 
for the M knots •'i of the spline. Parabolic splines are 
continuous in both the function and its derivative on the 

entire interval of interest and do not require the use of a 
linear ramp as in the method of Martinson et al. [1982]. 
Additional details on splines may be found in the work by 
de Boor [1978]. It can be shown that non-negativity of 
x (t) at the knots is both necessary and sufficient for its 
non-negativity everywhere; a similar relation for all con- 
tinuous orthogonal bases does not exist. 

In practice, after normalizing the reference and data sig- 
nals, we use a guess for the mapping function to initialize 
the coefficients {a•,} and iteratively refine these using (3) 
subject to (4) and (5) until a convergence criterion is 
satisfied. This problem is in the exact form required for 
the application of standard constrained least squares [e.g., 
Lawson and Hanson, 1974] or linear programing [e.g., 
Luenberger, 1973] algorithms. No special care is necessary 
to ensure the convergence of the solution given an initial 
guess which is linearly close to the final solution. We note 
that the inequality constraint (4) can serve to stabilize the 
solution and speed convergence, especially when dealing 
with data that are quasi-periodic. Although adding more 
degrees of freedom for the mapping function x (t) can 
improve the fit, reflected in the lower residual, the change 
may not be significant. This can be assessed quantitatively 
using an F test on the ratio of the residual variances. 
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Fig. lb. The normalized reference signal for RCIl-120 (solid), 
and the normalized signal from V28-238 mapped according to the 
functions in Figure la. The parabolic spline mapping is beneath 
the reference while the Fourier series solution lies above. The 
overall misfits are comparable. 

To illustrate the properties of the parabolic spline basis, 
we recover the mapping function between cores RC11-120 
and V28-238 using published 8]80 stratigraphies. Figure 
l a shows x (t) for both splines and a complete Fourier 
series with ramp and subject to (4), each with 9 degrees of 
freedom (i.e., 3 knots or 4 harmonics plus ramp). The 
spline curve is considerably smoother than the Fourier 
series solution, although the overall misfits are compar- 
able, as revealed using an F statistic on the residuals. Fig- 
ure lb shows the reference signal and mapped data series 
for the two methods. Visual similarity is apparent, 
although spectral analysis of the Fourier result will be 
affected by the wiggliness in the mapping function 
[Schiffelbein and Dorrnan, 1982]. In addition, the varia- 
tions in the Fourier mapping function correlate qualita- 
tively with glacial-interglacial changes in the data, a rela- 
tionship which must be regarded with suspicion due to the 
known properties of finite Fourier approximations. Figure 
2 illustrates the importance of the nonnegativity constraint 
as well as the effect of too many degrees of freedom in the 
mapping function. The x(t) relations for 8 knots 
(24 degrees of freedom) and 12 harmonics plus ramp 
(25 degrees of freedom), with and without (4), show 
artificial wiggliness that cannot be physical. The uncon- 
strained Fourier curve contains regions of unreasonable 
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Fig. 2. Mapping functions, offset by 100 for convenience, 
between RCll-120 and V28-238. The bottom curve is the spline 
fit with 8 knots; the middle curve is the Fourier series solution 
with 12 harmonics plus a ramp. Both have nonnegativity of the 
slope imposed as a constraint. The upper curve is the 12 har- 
monic Fourier series without this extra constraint. This last func- 
tion had not converged after 15 iterations with the misfit oscillat- 
ing widely as the mapping function jumped between neighboring 
peaks. 
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negative slope. We note that this example is unduly kind 
to the Fourier method, and a higher number of harmonics 
will be required if any kinks occur in the mapping func- 
tion, exacerbating the problem. By contrast, a few strateg- 
ically placed knots can yield the required detail with a 
more realistic number of degrees of freedom. A similar 
approach was used by Parker and Shure [1982] to avoid 
spurious detail in maps of the magnetic field at the core- 
mantle boundary that always occur for orthogonal function 
(spherical harmonic) bases. 
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