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Abstract Downslope gravity-driven sediment transport smooths steep nearshore bathymetric features,
such as channels, bars, troughs, cusps, mounds, pits, scarps, and bedforms. Downslope transport appears
approximately as a diffusive term in the sediment continuity equation predicting changes in bed level,
with a morphological diffusivity controlling the rate of seafloor smoothing. Despite the importance of
surfzone sediment transport and morphological evolution, the size of the downslope transport term in
nearshore models varies widely, and theories have not been tested with field measurements. Here
observations of the infill of large excavated holes in an energetic inner surf zone provide the first opportunity
to infer the morphological diffusivity in the field. The estimated diffusion coefficient is consistent with a
theoretical bedload morphological diffusivity that scales with the three-halves power of the representative
bed shear stress.

1. Introduction

The coupling of surfzone waves, currents, and bathymetry leads to complex patterns of sediment transport
and morphological evolution. Nearshore sediment transport results in beach erosion and accretion
[Aubrey, 1979], the migration of sandbars [Thornton et al., 1996; Gallagher et al., 1998; Plant et al., 1999;
Ruessink et al., 2000; Hoefel and Elgar, 2003; Henderson et al., 2004], and the evolution of rip current channels
[Falqués et al., 2000; van Enckevort and Ruessink, 2003; MacMahan et al., 2008; Garnier et al., 2013], and
provides a mechanism for the movement of pollution and biota between land and the inner shelf [Jumars
and Nowell, 1984; Feng et al., 2013]. Sediment transport parameterizations and quantitative transport
estimates vary considerably (see Amoudry and Souza [2011] for a review), but most theories and numerical
models include a component of sediment transport in the direction of the instantaneous near-bed velocity
(in response to fluid drag) and a downslope component (in response to gravity). Downslope transport
appears (to first order) as a diffusive term in the sediment continuity equation used to predict temporal
changes in the bed elevation [Trowbridge and Young, 1989; Kovacs and Parker, 1994; Caballeria et al., 2002]
and acts to smooth the surfzone seafloor. The “morphological diffusivity,” related to the size of the
downslope transport, is important to the evolution of steep nearshore features, including sandbars, cusps,
troughs, channels, mounds, pits, scarps, and bedforms [Douglass, 1995; van de Kreeke et al., 2002; Garnier et al.,
2006], and is a mechanism by which equilibrium beach states are reached [Bailard, 1981; Dean, 1991; Calvete
et al., 2005; Garnier et al., 2008].

Despite the tremendous importance of surfzone sediment transport and shoreline morphological
evolution, numerical models have limited skill simulating observations, and the impact of bed slope on
sediment transport in the field has not been tested [Garnier et al., 2008]. There are few field observations of
the evolution of steep surfzone bathymetric features, partially because it is difficult to make accurate
measurements of sediment transport and bed evolution for steep morphologies that change rapidly under
energetic conditions. Here, the surfzone seafloor is perturbed artificially to allow investigation of the
morphological evolution of steep bathymetric features. Large holes (initially about 10 m wide and 2 m
deep) were excavated in the inner surf zone of an ocean beach (Figure 1), and waves, currents, and the
evolving bathymetry were measured. The holes evolve predominantly by downslope sediment transport
that can be modeled as a diffusive process, and thus the perturbations provide an opportunity to estimate
the morphological diffusivity that best explains the observed seafloor evolution. The morphological
diffusivity estimated from the evolution of the holes is consistent with a bedload transport theory for
which the diffusivity is proportional to the three-halves power of the bed shear stress.
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2. Field Observations

Four large holes were excavated (Figure 1) in the inner surf zone. The mean water depth surrounding the holes
was 1.5 m, and the tidal range was approximately 1 m. The initial (ranging from several hours to several days
after excavation) bathymetry of each hole was surveyed with a surfboard-mounted GPS-sonar system and a
diver-carried GPS-pole system, yielding a set of bed-level observations for each hole (Figure 2, squares). The
holes were approximately Gaussian (Figure 2, Gaussian fit to survey shown with contours in Figure 2a and
curves in Figures 2b and 2c) and initially were between 1.9 and 2.7 m deep relative to an ambient bed elevation

Figure 1. Backhoe excavating a hole in the inner surf zone near Duck, NC, at low tide.
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Figure 2. (a) Plan view of altimeter location (green triangle near the center), wave and velocity sensor locations (circles),
bed elevation survey locations (squares), and Gaussian fit to surveyed bed elevations (grey-scale contours every 0.25 m)
for one of the excavated holes as a function of cross shore (x) and alongshore (y) coordinates. The hole center is located at
x = 0 (red dashed curve) and y = 0 (blue dashed curve). (b) Bed elevation zb versus x for surveyed bed elevations near y=0
(squares, plotted for |y|< 2 m) and for the Gaussian fit at y=0 (dashed blue curve). (c) Bed elevation zb versus y for
surveyed bed elevations near x=0 (squares, plotted for |x|< 2 m) and for the Gaussian fit at x=0 (dashed red curve). The
depth of the hole relative to ambient bed elevation (H = 2.4± 0.2 m) and the cross shore and alongshore standard deviations
(σx = 3.0±0.3 m and σy = 3.5± 0.4 m) from the Gaussian fit (95% confidence intervals on the fit parameters are reported)
are shown with arrows.

Geophysical Research Letters 10.1002/2014GL060519

MOULTON ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2



(Figure 3a, initial values of black curves), with widths (defined as 4 times the standard deviation of the Gaussian
shape from a fit to an elliptical Gaussian) between 14 and 17 m in the alongshore (Figure 2c) and between 9
and 14 m in the cross shore (Figure 2b). The root-mean-square (RMS) differences between the observed
elevations and the Gaussian fits for the four holes (in the order shown in Figure 3) are 0.28 m, 0.17 m, 0.25 m
(the survey shown in Figure 2), and 0.17 m, approximately the same size as the expected RMSmeasurement
error (0.20 m) for the watercraft and diver survey methods [Moulton et al., 2014]. Shortly after each
excavation, an altimeter was deployed above (near the ambient bed elevation) the center of the hole
(triangle in Figure 2). The altimeters sampled continuously (2 MHz acoustic profilers, 1 min average
samples, 10 cm vertical bins), and backscatter amplitudes (not shown) were used to make hourly estimates
of the seafloor elevation. A 7 h running mean was applied to the hourly seafloor elevation estimates to
remove migrating bedforms (e.g., megaripples) from the signal. Waves and currents used to estimate
bottom stress were measured with 4 to 6 acoustic Doppler velocimeter and pressure gage pairs (sampled
at 2 Hz) deployed 10 to 30 m apart near each hole (e.g., circles in Figure 2a) with transducers approximately
0.7 m above the bed. Significant wave heights (defined as 4 times the sea surface elevation standard
deviation) near the holes ranged from 0.2 to 1.2 m, and mean current speeds ranged from 0.1 to 1.2 m/s.
The median grain diameter (d50) near the holes was 0.3 mm.

3. Theoretical Morphological Diffusivity

Sediment in the surf zone is transported as bed load (in which grains roll, slide, or saltate near the bed) and
suspended load (in which grains move in the water column). Based on the ratio of the turbulent vertical
velocity fluctuations to the sediment fall velocity [Gonzalez-Rodriguez and Madsen, 2011], sediment transport
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Figure 3. (a) Depth of excavated holes (m), (b) bed shear stress (kg/(ms2)), and (c) morphological diffusivity (m2/s) versus
time (days since initial survey of each hole). The measured depth of the excavated holes (black curves in Figure 3a) was
used with Gaussian fits to initial surveys (Figure 2) to infer a morphological diffusivity (black squares in Figure 3c; error bars
are 95% confidence intervals based on initial survey fits) each time the hole filled by ameasurable amount (0.05 m, one-half
the profiler bin size). A bedload morphological diffusivity theory (6) with A=12 [Soulsby and Damgaard, 2005] was used
with the representative shear stress estimate (blue curves in Figure 3b, derived from the wave- (green curves) and current-
(grey curves) associated stresses) to model the time evolution of the morphological diffusivity (red circles in Figure 3c)
for the same time windows as for the data. Themodeled coefficient was used to predict the hole depth evolution (red curves
in Figure 3a, model initial condition is the Gaussian fit to each initial survey).
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was dominated by bed load for the field conditions considered here. The volumetric bedload transport Q
can be determined from an along-bed force balance on a sediment grain in the presence of waves,
currents, and a sloping bed [Bagnold, 1966; Bailard, 1981; Trowbridge and Young, 1989; Fredsøe and Deigaard,
1992; Nielsen, 1992; Kovacs and Parker, 1994; Soulsby, 1997; Soulsby and Damgaard, 2005; Amoudry and
Souza, 2011] and can be expressed as the sum of a component of transport in the instantaneous flow direction
(owing to fluid drag on a flat bed, referred to as “flat-bed transport” Q0) and a component downslope
(owing to the presence of a sloping bed, referred to as “downslope transport” QS).

Most bedload formulations relate the transport to a power of the bed shear stress [Amoudry and Souza,
2011]. Thus, a bedload transport relationship [Meyer-Peter and Müller, 1948; Soulsby and Damgaard, 2005]
modified for the presence of a sloping bed [Bagnold, 1966; Bailard, 1981; Kovacs and Parker, 1994] is
given by

Q ¼ Q0 þ QS ¼ A
ρ3=2 s� 1ð Þg τ

1=2 τ � τcrð Þ τ
τ
� ∇zb

tanϕ

� �
(1)

where ρ= 1025 kg/m3 is the density of seawater, s = 2.57 is the ratio of the density of sediment (quartz) to the
density of seawater, g is the gravitational constant, A is a dimensionless coefficient [Soulsby and Damgaard,
2005], τ is the magnitude of the bed shear stress, τcr≈ 0.17 kg/(ms2) [Shields, 1936] is a critical shear stress
for initiation of motion (Q = 0 for τ ≤ τcr), ∇zb is the gradient of the bed level, and ϕ = 32° is the angle of

repose. The unit vector τ
τ

� �
is oriented in the instantaneous flow direction, and the vector � ∇zb

tanϕ

h i
is directed

downslope. The form of (1) relies on the assumption that the bed slope is much smaller than the angle

of repose ( ∇zb
tanϕ

��� ���≪1), which is only weakly satisfied for some of the steepest slopes of the excavated holes

(0.05 < ∇zb
tanϕ

��� ��� < 0.50). However, (1) is used widely and is expected to describe the first-order effects of the

downslope transport. In addition, the critical shear stress is expected to vary with the bed slope, and the
downslope transport may depend on the angle between the bed gradient and the flow direction [Kovacs
and Parker, 1994]. These higher-order effects are neglected here.

Usually, nearshore morphology changes on time scales of storms or seasons, much longer than the period
of surface gravity waves (about 10 s). Thus, often sediment transport and bed-level predictions are
integrated over wave cycles, and approximations for the wave-averaged transport are used to avoid
computationally expensive numerical integrations [Soulsby and Damgaard, 2005]. The total near-bed shear
stress vector is approximately the sum of the shear stress from the mean current in the presence of
waves τm and the time-dependent shear stress vector τw associated with a representative wave [Grant and
Madsen, 1986; Madsen, 1994]. For (oscillatory) flat-bed transport owing to nearly sinusoidal waves
perpendicular to a mean flow, the wave-averaged transport is in the direction of the mean current and

goes as τ1=2w τm [Soulsby and Damgaard, 2005], where τm is the magnitude of the mean shear stress vector
and τw is the amplitude of the oscillating wave shear stress vector. In contrast, the downslope transport
is unidirectional (downslope), and thus, the transport does not average to zero for sinusoidal waves,
and the net transport is better parameterized using a representative wave current bed shear stress magnitude,
τr=max(|τm+ τw|). Therefore, for the field conditions presented here, the wave-averaged flat-bed
transport and downslope transport are expressed approximately as (numerical experiments show that
errors are small)

Q0h i≈ A
ρ3=2 s� 1ð Þg τ

1=2
w τm

τm
τm

� �
(2)

QSh i≈ A
ρ3=2 s� 1ð Þg τ

1=2
r τr � τcrð Þ � ∇zb

tanϕ

� �
(3)

where h � i indicates an average over a wave cycle, 1
2π ∫

2π
0 �d ωr tð Þ and τm

τm

h i
is a unit vector oriented in the

mean flow direction. The expression (2) [Soulsby and Damgaard, 2005] requires that τw≫ τm and τ≫ τcr,
consistent with the average field conditions considered here. For these field conditions, (3) may be simplified
further by noting that τ1=2r τr � τcrð Þ ≈ τ3=2w , but the form above shows better agreement with a wider range of
field conditions.
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Mass conservation equates temporal changes in bed elevation (erosion or accretion) with spatial gradients
(divergences or convergences) of horizontal sediment transport

∂zb
∂t

þ 1
1� nð Þ∇ � Qh i ¼ 0 (4)

where zb is the elevation of the bed and n= 0.3 is the sediment porosity. Substituting (1) into (4) and applying
the approximation in (3) yields

∂zb
∂t

¼ � 1
1� nð Þ∇ � Q0h i þ ∇ � κ∇zbð Þ (5)

κ ¼ 1
1� nð Þ

A
ρ3=2 s� 1ð Þg

1
tanϕ

τ1=2r τr � τcrð Þ (6)

The downslope transport (3) results in a diffusive term in the mass conservation equation ((4) and (5)), and
the coefficient κ (6) is referred to as the morphological diffusivity. The morphological diffusivity may vary
temporally as the representative shear stress changes in response to changing incident wave conditions
(e.g., passage of storms) and water depths (e.g., tidal fluctuations) and spatially as the stress changes in
response to bathymetrically induced circulation patterns (e.g., divergence of a mean flow over a channel).
Both terms in (5) may be important for the evolution of nearshore bathymetric features. For example,
the offshore migration of sandbars during storms primarily is the result of offshore flowing currents that are
maximum near the crest of the bar (leading to divergences in Q0) [Thornton et al., 1996; Gallagher et al.,
1998], but the downslope transport QS may be an important control on the bar height and slope, which
impact the bar migration speed [Trowbridge and Young, 1989].

4. Methods
4.1. Inferring a Morphological Diffusivity From Evolving Bathymetry

The evolution of the excavated holes is expected to be dominated by the diffusive term (related to the
downslope transportQS) for several reasons. Although the instantaneous downslope transportQS is (according
to (1)) smaller than the instantaneous flat-bed transport Q0, the wave-averaged downslope transport may be
larger than the wave-averaged flat-bed transport. In particular, the wave-averaged flat-bed transport (2) is
small for sinusoidal oscillatory waves and small mean flows (τm < τw, Figure 3b). Although wave orbital
velocities in the surf zone are skewed and asymmetric, for the conditions here they do not transport significant
amounts of sediment over the relatively short periods during which the holes filled. Conservation of
sediment (5) predicts that flat-bed transport owing to a divergingmean flowwould lead to migration of the
holes in the mean flow direction [van de Kreeke et al., 2002]. However, the holes were not observed to
migrate, implying bed evolution owing to diverging mean flows was small. The holes had steeply sloping
sides, while the bed slope was small outside of the holes and at the hole centers, leading to large spatial
gradients in the downslope flux. The downslope transport (3) scales with the combined wave and current
shear stress magnitude τr, which (by definition) is larger than either τw or τm (Figure 3b). Thus, it is expected that
the downslope term dominates the hole evolution (the second term on the right-hand side of (5) usually is
larger than the first term), and the bathymetric change in time is approximated by

∂zb
∂t

≈ ∇ � κ∇zbð Þ (7)

This balance and the measured bathymetric evolution can be used to find the diffusivity that best explains
the evolution of the seafloor, similar to inverting tracer dispersion to infer hydrodynamic diffusivities [Ledwell
et al., 1998; Clark et al., 2010].

For an approximately Gaussian bathymetry (Figure 2) evolving according to (7), the bathymetry remains a
Gaussian at all times, and the morphological diffusivity can be expressed as an analytical function of the hole
depth and width. An elliptical Gaussian hole has the form

zb x; y; tð Þ ¼ �H tð Þ exp � x2

2σ2
x tð Þ þ

y2

2σ2
y tð Þ

 !" #
þ zamb (8)
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where H(t) is the maximum hole depth, zamb is the ambient bed elevation, and σx(t) and σy(t) are the standard
deviations of the Gaussian shape in the cross shore (x) and alongshore (y), respectively. If the hole evolves
diffusively (7), the depth and standard deviations at two times t1 and t2 are related by

H t2ð Þ ¼ H t1ð Þ 1þ 2κΔt
σ2x t1ð Þ

� ��1=2

1þ 2κΔt
σ2y t1ð Þ

 !�1=2
2
4

3
5 (9a)

σx t2ð Þ ¼ σx t1ð Þ 1þ 2κΔt
σ2x t1ð Þ

� �1=2

(9b)

σy t2ð Þ ¼ σy t1ð Þ 1þ 2κΔt
σ2y t1ð Þ

 !1=2

(9c)

where Δt= t2� t1. If the morphological diffusivity κ varies between times t1 and t2 (e.g., owing to changing
incident wave conditions) and over the spatial domain (e.g., owing to flows diverging over the hole), the
value of κ in (9a, 9b, 9c) may be approximated using the average value in space and time. Numerical
experiments verify that this approximation leads to small errors in κ that are negligible relative to other
sources of observational uncertainty.

For each hole, the depth at the center H(t) (Figure 3a) is known at all times from the altimeter at the hole
center (triangle in Figure 2), and the standard deviations at an initial time (arrows in Figure 2) are estimated by
fitting (8) to the initial survey (black squares in Figure 2). Thus, the diffusivity can be inferred by solving (9a) for
κ between times t1 and t2 when the depth changed by 0.05 m (half of the altimeter bin size, approximately
the smallest measurable depth change). The standard deviations (8) were updated from the initial value
using (9b) and (9c). The estimates of morphological diffusivity (black squares in Figure 3c) are similar if a
different fraction or multiple of the bin size is used, or if a uniform time step is chosen. The error bars on these
observationally inferred diffusivity estimates (Figure 3c) are the range of κ given the 95% confidence intervals
on the hole depth and standard deviations. The confidence intervals on the initial conditions are based on
the confidence intervals for a nonlinear regression fit of an elliptical Gaussian to the initial survey of each
hole. The confidence intervals on the hole depths are based on the uncertainty associated with the depth
relative to the ambient bed elevation (from the initial fit to (8), e.g., see Figure 2). The confidence interval on
the initial standard deviations is found from the Gaussian fit (Figure 2), and the confidence intervals at
subsequent time steps are found by updating the standard deviations (using (9b) and (9c)) with the range of
inferred κ from the previous time step.

4.2. Bed Shear Stress Estimates

Observations from the four to six sensors nearest the cross-shore position of the hole centers (circles in
Figure 2a) were used to estimate hourly wave, current, and representative (magnitude of the vector sum of the
wave- and current-associated terms) near-bed shear stresses in the holes (Figure 3b) with a spectral wave
current bottom boundary layer approach [Grant and Madsen, 1986; Madsen, 1994]. The RMS representative
near-bed wave orbital (from hourly wave spectra, for frequencies< 0.25 Hz) and hourly mean velocities were
used in the estimates. The shear stresses from the individual sensors were averaged, and a 7 h running mean
was applied to the estimates. The roughness height kn=11d50 is an average mobile-bed roughness based on
best fits to observations from a previous field study at this site [Hsu et al., 2006]. This roughness value is
expected to be appropriate for the environment of the excavated holes, although inner-surfzone roughness
values for typical grain sizes (0.2< d50< 0.5 mm) range from kn= d50 to kn=35d50, and sometimes vary with
the shear velocity [Ribberink, 1998; Dohmen-Janssen et al., 2001; Nielsen, 2006; Hsu and Raubenheimer, 2006;
Gonzalez-Rodriguez and Madsen, 2011]. Variation of the choice of roughness within this wide range leads to
changes in the estimate of the shear stresses by up to an order of magnitude and is a major source of
uncertainty in this analysis.

The near-bed shear stresses are expected to vary substantially from the shallow sides to the deep center of
the hole, as wave near-bed velocities may decrease over the deeper part of the hole, leading to smaller
wave shear stresses. In addition, mean currents may slow as they flow over the deeper water in the holes,
also leading to smaller stresses. Separation effects also may be important, but are not considered here.
To account for the deeper water in the holes, the average shear stresses in the hole (Figure 3b) were
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approximated by multiplying the representative shear stresses estimated at the sensors on the shallow sides of
the holes by the ratio of the water depth on the shallow side to the water depth at one half of themaximumhole
depth (ratios ranged from 0.5 to 0.9) raised to the three-halves power. Results for the representative shear stress
in the holes are similar to those using approaches that treat wave near-bed velocity evolution (wave stress
reduced by the ratio of water depths to the three-halves power, green curves in Figure 3b) and flow divergence
(mean stress reduced by the ratio of the water depths squared, grey curves in Figure 3b) separately.

5. Results and Discussion

The average representative shear stress estimates (blue curves in Figure 3b) were used in (6) with A=12
[Soulsby and Damgaard, 2005] to model theoretical bedload morphological diffusivities (red circles in
Figure 3c) for the same time windows used for the observationally inferred diffusivities (black squares in
Figure 3c). The modeled morphological diffusivity is correlated with the morphological diffusivity inferred
from data (compare red circles with black squares in Figure 3c). In addition, the time series of modeled
diffusivities were used to predict the evolution (beginning with the initial Gaussian fit) of the depth of the
holes (red curves in Figure 3a). The modeled diffusivity skillfully predicts the observed change in the seafloor
elevation in the center of the holes as they fill (compare red with black curves in Figure 3a). Both observed
and modeled diffusion coefficients are of order 10�5 to 10�3 m2/s (Figure 3c), implying diffusive evolution
time scales of hours to weeks for features with length scales of order 10 m. The holes filled most rapidly
(and the measured and modeled diffusivities were largest) when shear stresses were larger. For example
(see Figure 3), Hurricane Danielle passed offshore beginning near day 1 of the first hole, a Nor’easter
produced large offshore waves near day 0.5–1.5 of the second hole, and Hurricane Igor passed offshore
beginning near day 0.5 for the fourth hole. The observationally inferred diffusivities (black squares in Figures 3c
and 4) are consistent with bedload transport theory (6) in which the diffusivity is proportional to the three-
halves power of the shear stress (red curve in Figure 4). The representative shear stress (x axis in Figure 4) was
averaged over the same time windows as the observed diffusivities, and the data were fit to the theoretical
relationship (6) (red curve in Figure 4), where A is the fit parameter, yielding A = 24 (correlation r=0.73).

While the observations are consistent with the bedload transport theory, there is some disagreement between
the measured and modeled diffusivities and between the coefficient A fit to the observations (A=24) and
used in theory (e.g., A=12, derived in Soulsby and Damgaard [2005]; see Amoudry and Souza [2011] for a
review). The correlations for fits of the observed diffusivities to the theoretical relationship (6) are similar for a
wide range of roughness heights (used to estimate the shear stress), while the coefficient A varies substantially.
For kn= d50, r=0.70 and A=65. For kn=11d50, r=0.73 and A=24. For kn=35d50, r=0.74 and A=14. The

diffusivity in (6) varies approximately asκ∝τ3=2r (the correlation does not change significantly when τcr is set to 0,
but τcr is retained in (6) for better agreement with diffusivities observed at low shear stresses). However, the
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diffusivity may vary with a different power of the shear stress, e.g., at high shear stresses when suspended
load may be significant and a higher-power dependence is expected [Bailard, 1981], or for other theoretical
relationships that predict a lower shear stress dependence [Chen et al., 2010]. For the diffusivities inferred here,
the correlation for the relationship κ∝τBr is maximum near B=3/2 (r=0.73) and decreases to approximately
80% of the maximum at B=1/2 (r=0.57) and B=3 (r=0.59), suggesting that the observations are consistent
with (6) and that more of the variance is explained by B=3/2 than by lower or higher powers. In addition,
there are errors in the modeled morphological diffusivity associated with the choice of a constant roughness
height (variations in the roughness height with changes in the shear stress were not considered), with the shear
stress variation with depth across the hole and with neglected possible separation effects. The inferred
morphological diffusivity also has errors associated with the bathymetric sampling, deviations from the Gaussian
approximation, and changes in the ambient bed elevation (accretion or erosion of the surrounding seafloor).

In some instances, particularly when the mean shear stress is large and spatially variable or if wave orbital
velocities are highly asymmetrical, the divergence of the flat-bed transport may become important. For
example, trenches have been observed to migrate owing to diverging tidal currents [van de Kreeke et al.,
2002], sandbars migrate offshore during storms owing to diverging “undertow” currents [Thornton et al.,
1996; Gallagher et al., 1998], and the onshore migration of sandbars between storms may be driven by
asymmetrical wave orbital velocities [Elgar et al., 2001; Hoefel and Elgar, 2003]. Here, however, migration of
the holes (which could lead to an overestimate of the diffusivity if the center (deepest part) of the hole moved
away from the altimeter) was not observed by divers or in surveys. Unlike larger-scale features (e.g., 50 m
wide, 100 m long rip channels) that may migrate or change shape owing to feedback between spatially
varying waves, currents, and bathymetry, the 10 m diameter holes did not appear to impact the surrounding
circulation in a way that led to large-scale morphological change. Instead, the results here suggest that for
these steep, relatively small-scale features, downslope sediment transport is the dominant process in the
hole evolution.

Despite uncertainty in the bed level and shear stress observations, themorphological diffusivity inferred from
the excavated holes is consistent with a bedload transport theory in which the diffusivity scales with the
bed shear stress to the three-halves power. The observations of infilling excavated holes provide the first
opportunity to infer a morphological diffusivity in the surf zone and suggest that for bathymetric features
with large and changing slopes, downslope gravity-driven bedload sediment transport is important to
morphological evolution.
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