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a b s t r a c t

Wind speeds and directions measured in June, July, and August, 2009 at 5 locations separated by up to

about 5 km on the Skagit tidal flats (near La Conner, WA) are compared with predictions of a triple-

nested Weather Research and Forecast (WRF) model with 1.3-km resolution. The model predicts the

observed diurnal fluctuations of the wind speeds (biaso0.4 m s�1, root-mean-square error

(rmse)o1 m s�1, correlation coefficient r2E0.9) and directions (biaso91, rmseo301, r240.5). The

observed and predicted minimum and maximum wind speeds occur in early morning and late

afternoon, respectively. Wind speeds and directions are decorrelated over distances shorter than the

length scale of the tidal flats (about 10 km). Observed and predicted wind directions are predominantly

W and NW on the north flats, and S and SW on the south flats. The spatial and seasonal variability of the

winds are investigated using model simulations.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Owing to the shallow water depths on tidal flats, the effects of
winds (and the resulting waves) on the hydrodynamics and
sediment transport can be strong, even in areas with short fetches
(Le Hir et al., 2000; Yang et al., 2003; Carniello et al., 2005;
Manning and Bass, 2006; Manning et al., 2006; Fagherazzi et al.,
2007; Ralston and Stacey, 2007; Talke and Stacey, 2008). Winds
can cause changes in water levels (and thus duration of submer-
gence over a tidal cycle), can strengthen or weaken tidal-flow
asymmetries, and can cause mixing and straining (Geyer et al.,
2000; Valle-Levinson et al., 2003; Scully et al., 2005; Burchard
2009; Ralston et al., 2013). For example, during low river
discharge, water typically stratified during ebb tide can become
completely mixed during moderate winds (less than 6 m s�1).
Surface plumes, and the shear just below the water surface, are
strongly influenced by local winds (Henderson and Mullarney,
submitted for publication). Simulations suggest that strong winds
can reverse the direction of the alongshore currents (Yang et al.,
2010; Nowacki and Ogston, submitted for publication). Additionally,
winds generate waves, which can enhance bottom stresses, cause
additional mixing, and drive mean flows (Christie et al., 1999;
Christiansen et al., 2006; Mariotti and Fagherazzi, 2013). Thus,

measurements or simulations of local winds are needed to model
circulation, waves, and sediment transport on tidal flats (Friedrichs
and Aubrey, 1996; Dyer et al., 2000; Boldt et al., submitted for
publication; Ralston et al., 2013).

Winds on tidal flats surrounded by low-relief topography, such
as those along the southeastern US coast, may be spatially
uniform and well represented by measurements at a single
nearby station. However, winds in the Puget Sound Basin (includ-
ing the Skagit Bay tidal flats), which is surrounded by mountai-
nous terrain, vary significantly over distances of only a few km.
Studies of diurnal summertime winds (Mass, 1981; Ferber and
Mass, 1990) have shown that northerly or westerly winds during
the day arise from low pressure over the Cascade Mountains and
high pressure over coastal regions, and reach a maximum in late
afternoon. At night, winds weaken and come from the south or
east owing to a reversal of the pressure gradient. These winds
interact with the nearby mountain ranges and bodies of water to
create complicated diurnal and seasonal atmospheric flow pat-
terns (Mass, 1981; Chien and Mass, 1997). Thus, the appropriate
density of observation stations or resolution of atmospheric
simulations must be high to capture the spatial variability of
the winds over the Skagit tidal flats.

Owing to the spatial heterogeneity of the winds in this region,
it is difficult to obtain sufficient measurements to evaluate the
importance of wind-driven processes. High-resolution mesoscale
meteorological models have been used to provide wind forcing to
drive coastal ocean circulation models (Skogseth et al., 2007;
Cowles et al., 2008; Foreman et al., 2008; Liu et al., 2009).
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Mesoscale models, such as the Advanced Research Weather
Research and Forecasting model (WRF, Skamarock et al., 2008),
have been shown to predict polar weather, large eddy turbulence,
tropical cyclones, regional climate fluctuations, coastal winds, and
atmospheric pollution (Snow et al., 2003; Tinis et al., 2006;
Moeng et al., 2007; Davis et al., 2008). These models also predict
winds well in regions with complicated, mountainous topography
(Zhong and Fast, 2003; Bianco et al., 2006). In regions of complex
coastal topography, highly resolved atmospheric models may be
useful tools to drive surface fluxes in hydrodynamic simulations.
Here, high-resolution WRF simulations are evaluated using winds
observed on the Skagit tidal flats, a region that has complex
topography and shallow coastal flows where local winds are
important for mean currents, waves, and sediment transport.

2. Field observations

Wind speeds and directions were measured in June, July, and
August 2009 at 5 locations (red symbols in Fig. 1) separated by up
to about 5 km on the Skagit tidal flats in Puget Sound (near La
Conner, WA).

2.1. Geographic setting

Skagit Bay is bordered by Whidbey Island to the west and by
Fir Island (a deltaic area of low-lying farmland between the north
and south forks of the Skagit River) to the east. Skagit Bay
connects to the rest of Puget Sound through Saratoga Passage to
the south and to the Strait of Juan de Fuca through Deception Pass

to the north. Both of these passages are bracketed by hills up to
150 m high (Fig. 1b). West of Whidbey Island, the Strait of Juan de
Fuca passes between the Olympic Mountains (with some peaks
higher than 2000 m) and Vancouver Island, and connects to the
Pacific Ocean (Fig. 1a). East of Skagit Bay, the Cascade Mountains
also have peaks higher than 2000 m. Interactions between the
low-level westerly flows from the Pacific Ocean and these
mountain ranges and bodies of water create complicated atmo-
spheric flow patterns (Mass, 1981; Chien and Mass, 1997).

2.2. Measurements

Two 3-cup anemometers mounted on towers on the north and
mid flats were deployed from July 7 until August 31, 2009 at
6.1 m above the flats. These instruments were designated as N0
and N1734, respectively, where the number refers to the distance
in m along the flat (parallel to Skagit Bay) from N0 (Fig. 1b).
Another 3-cup anemometer was located on a tripod at the top of a
small island at the east edge of the flats (July 7—August 31, 2009;
28.4 m above the flats; N1588). Two 4-bladed helicoid propeller
anemometers were mounted on buoys on the south tidal flats
(one deployed from June 1 to June 26 and another deployed from
June 1 to July 25, 2009; both 1.2 m above the sea surface when
floating; N4941 and N4193, respectively).

The spring tidal range in Skagit Bay is roughly 4 m, and at low
tide, sandy tidal flats extending about 5 km west from Fir Island
are exposed. Although Skagit Bay is protected from ocean swell by
Whidbey Island, the local winds may drive currents and can
create 1-m-high waves (Ralston et al., 2013; Webster et al.,
submitted for publication).
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Fig. 1. (a) Region encompassed by the largest model grid (nest 1) with rectangles showing the regions for nest 2 (red), nest 3 (yellow), and the Skagit tidal flats (white), and

(b) magnified image of the Skagit tidal flats region (white box in (a)) showing locations of anemometers (red circles). Colors represent topographical elevations used in

(a) nest 1 (12-km resolution) and (b) nest 3 (1.3-km resolution) (scales on right). The black curve in (b) is the NOAA shoreline (http://www.ngdc.noaa.gov/mgg/coast/).

Note that Puget Sound and Johnstone Pass (on the northeast side of Vancouver Island) are not well resolved by the 12-km grid, and the narrow Deception Pass is not well

resolved by the 1.3-km grid.
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Nearbed pressure gages collocated with each anemometer
were used to measure the water depth (which ranged from 0 to
4 m) and to determine times when the tidal flats were submerged
or dry. At the tower and island locations, the elevation of the wind
measurements above the surface was estimated by subtracting
the water depth from the sensor elevation above the flats. At
buoys, anemometers were estimated to be at elevations of 1.2-m
above the water surface for water depths greater than 1.2 m
(floating buoys), and at elevations of 2.4 m minus the water depth
(buoys resting on the seafloor) for water depths less than 1.2 m.

Measured winds were converted to 10-m winds (u10) assum-
ing a logarithmic layer and neutral stability. The roughness length
was estimated using Charnock’s model z0 ¼ au2

n
=g (with a¼0.015,

Charnock, 1955) when the tidal flat at the anemometer location
was submerged, and using a Nikuradse rough-bed formula
(z0 ¼ zs=30, in which zs¼0.05 m is the approximate height of sand
ripples on the flats) when the tidal flats were exposed. The
results are not sensitive to variations in a over the range
0.008oao0.030 (Kraus, 1972; Smith, 1980; Sempreviva et al.,
1990; Peña and Gryning, 2008). Winds were vector-averaged over
hour-long periods, and rotated so that winds from true north had
a direction of 01.

Winds near the eastern end of the Strait of Juan de Fuca
(measured at the National Data Buoy Center station 46088, http://
www.ndbc.noaa.gov/station_page.php?station=46088) ranged
from 0 to 15 m s�1 from the west and southwest. Winds on the
tidal flats ranged from 0 to 12 m s�1, usually from directions
between about 1501 (south-southeast) and 3301 (north-north-
west). Weather during the study period was unusually dry, with
total precipitation of about 1 cm (o25% of the historical average
for this period) and with average air temperature about 18 1C
(�2 1C warmer than average).

3. WRF model setup

Winds over the Skagit tidal flats were simulated using version
3.2 of the Advanced Research Weather Research and Forecasting
model (WRF, Skamarock et al., 2008), which solves the fully
compressible non-hydrostatic Euler equations of motion in flux
form on a Cartesian Arakawa C grid with terrain-following sigma
coordinates. The model was run using three nested grids with
horizontal resolutions of 12, 4, and 1.3 km (Fig. 1). Increasing the
horizontal resolution of the smallest grid to 0.8 km did not affect
the results significantly. All nesting was two-way interactive,
allowing continuous exchange of information between nested
grids. All of the grids used 28 vertical levels with the default
sigma spacing, resulting in vertical grid spacing of about 50 m

near the boundary. Sensitivity of the model results to the vertical
discretization was not evaluated. Default parameterizations were
used (without tuning) for the model physics and dynamics,
including the Monin-Obukhov scheme for surface layer physics
and the heat and moisture fluxes from the surface. However, the
unified Noah land surface model (Chen and Dudhia, 2001; Miao
et al., 2009; Rosero et al., 2009) was used rather than the default
thermal diffusion scheme to reduce instabilities. Land use and
topography were input from the WRF Preprocessing System
Geogrid source data package.
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The nested WRF model was driven with initial and boundary
conditions derived from 3- and 6-h forecast predictions of the
North American Mesoscale (NAM) Model (12-km resolution),
including sea-surface temperatures that were updated every 6 h.
Predicted winds 10 m above the surface were output every 5 min,
interpolated to the observation locations, and vector-averaged
over each hour. Elevation changes over the tidal flats are small
(bed slope less than 1:1000), and thus the area-averaged model
cell elevations are approximately the same as point elevations
and no vertical adjustments were performed. The NAM winds on
the western model boundary are uncorrelated with the winds on
the flats, and squared correlation coefficients of the NAM winds
over the flats with the WRF model predictions at the same sites
are small (r2o0.08), indicating that the smaller-scale processes in
the nested model are important to the local wind field.

4. Model-data comparisons

Observed and predicted wind speeds on the flats ranged from
0 to 12 m s�1 (Fig. 2). Similar to mesoscale simulations for weak
to moderate synoptic forcing (Hanna and Yang, 2001; Zhong and
Fast, 2003; Cheng and Steenburgh, 2005), biases (�0.2 to
0.6 m s�1) and root-mean-square errors (rmse) (1.8 to
2.1 m s�1) of predicted wind speeds were small for all sensor
locations. However, squared correlation coefficients r2 between
observed and predicted hourly-averaged wind speeds were less
than 0.3 at all sensors. Biases and rmse for wind directions
wereo101 and �651, respectively.

The wind-speed energy density spectrum is dominated by
diurnal fluctuations, consistent with studies of summertime
winds in the Puget Sound Basin (Mass, 1981; Ferber and Mass,

1990). The wind speed energy density is predicted well at diurnal
frequencies (one cycle per day), with small phase lags (less than
7151) and significant coherence (0.8–0.9) at all instrument
locations (e.g., Fig. 3). Coherence between the observed and
predicted wind speeds usually is not significant at higher fre-
quencies. Observed and predicted lower frequency fluctuations
are significantly coherent (Fig. 3c), but the predicted winds lag the
observations by up to 601 (e.g., 2.5 h at 0.6 d�1, Fig. 3b).

Consistent with prior observations of diurnal summertime
winds in Puget Sound Basin (Mass, 1981; Ferber and Mass,
1990), the ensemble-averaged (by hour over 24-h periods) wind
speeds on the Skagit tidal flats are weakest in the morning
(�7:00 PDT) and strongest in the evening (�19:00 PDT) at all
instrument locations (e.g., Fig. 4a). The timing of this cycle also is
similar to observed and predicted thermally- and topographi-
cally-driven winds in central Italy (Bianco et al., 2006). Ensemble-
averaged wind directions on the north and mid flats are from the
west-northwest in early morning, then rotate counter-clockwise
(‘‘backing’’), becoming southwest or south as the wind speed
reaches a minimum, and rotate clockwise back to west or west-
northwest throughout the afternoon and evening (Fig. 4b). The
early morning ‘‘backing’’ of the winds has been observed at other
coastal regions, and is attributed to effects of regional topography
and associated pressure systems (Orlı́c et al., 1988; Zhong and
Takle, 1993; Simpson, 1996; Prtenjak and Grisogono, 2007; Miao
et al., 2009). Ensemble-averaged wind directions on the south
flats are south to southwest, except for a short period in the
afternoon when winds are west-northwest (not shown). The
model predicts the ensemble-averaged diurnal wind speeds
(biaso0.4 m s�1, rmseo1 m s�1, r2E0.9) and directions
(biaso91, rmseo301, r240.5) reasonably well. However, similar

Time (hr)

D
ir

ec
tio

n 
(d

eg
)

W
in

d 
Sp

ee
d 

(m
/s

)

Model

Observations

5

4

3

2

1

0

270

180

90

0 5 10 15 20

Fig. 4. Ensemble-averaged (by hour over 24-h periods) observed (black curve) and

predicted (red curve) (a) wind speed and (b) direction at N1734 versus time. Hour

0 is midnight and 12 is noon PDT.

Wind Speed  

Direction

Separation Distance (m)

C
or

re
la

tio
n 

r2

r 2 = e-x/4250

r2 = e-X/8339

r 2 = e-x/3329

r2 = e-x/5155

1.0

0.2

0.8

0.6

0.4

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0 1000 2000 4000 5000

Observed

Predicted

3000

Fig. 5. Squared correlations for observed (black circles) and predicted (red circles)

(a) wind speed and (b) wind direction at all pairs of anemometers on the tidal flats

during July 2009 versus separation distance between each pair of locations. The

best-fit exponential decays are shown by the black (observed) and red (predicted)

curves.

B. Raubenheimer et al. / Continental Shelf Research 60S (2013) S13–S21S16



Author's personal copy

to results for diurnal winds in the central US (Zhang and Zheng,
2004) and Italy (Bianco et al., 2006), the model tends to predict
lower-than-observed wind speeds before the morning low, and to
predict higher-than-observed wind speeds in the afternoon and
evening (Fig. 4a). In addition, the predicted morning change from
westerly to southerly winds then back to westerly winds typically
leads the observed direction changes by 2 to 3 h (Fig. 4b).

Squared correlation coefficients for wind speeds (Fig. 5a) and
directions [Fig. 5b, obtained by splitting the azimuthal values into
their respective sine and cosine components, and calculating the
canonical correlation coefficient for the resulting four variables
(Mardia and Jupp, 2000; Jones, 2006)] measured at different
locations decrease approximately exponentially with increasing
separation distance. Although the model predicts a larger e-fold-
ing decorrelation distance than is observed, the winds are
predicted to become decorrelated over distances smaller than
the scale of the tidal flats (about 10 km), consistent with the
observations. Wind roses show that the predominant observed
wind direction on the north and mid flats is W to NW (Fig. 6c),

whereas the predominant wind direction on the south flats is SW
(Fig. 6e). Winds observed near the west coast of Whidbey Island
(at Smith Island NDBC SISW1, Fig. 6a) are predominantly westerly
and southwesterly, suggesting that the NW winds on the flats are
at least partly owing to the local topography steering large-scale
flow. The observed spatial variations in wind statistics (e.g.,
dominant directions) are predicted reasonably well (compare
Fig. 6b, d, and f with Fig. 6a, c, and e).

5. Discussion: spatial variability of the wind field

The good agreement between observed and modeled wind
patterns suggests that the WRF model can be used to investigate
aspects of the wind field. Here, the spatial heterogeneity and the
seasonal variations of the winds are investigated using model
simulations. The importance of the spatial variability to modeling
coastal circulation also is discussed.
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5.1. Spatial variations of summer winds

Subtle differences in wind orientation from NW to SW affect
the interaction of the flow with the topography, and result in
different wind patterns over the bay. When modeled summertime
winds are from the NW at N1734 (Fig. 7a), winds at all sensor
locations are similar in direction and strength (e.g., Fig. 7c).
However, when winds at N4193 are from the SW (Fig. 7d), winds
on the north flats are from the SW only about 25% of the time, and
instead often come from the W (�30%) or S (�20%), and some-
times from the NW or SE (each about 10% of the time) (Fig. 7b).
Model simulations suggest that the variability in winds on the
tidal flats for SW winds is owing to funneling through Saratoga
Passage and a separation region behind the southern tip of
Whidbey Island (Fig. 8, winds are SW at N4193 and SE at
N1734). The location of the separation zone is sensitive to the
large-scale wind magnitude and direction, and small shifts in
position result in changes in the winds measured at N1734. The
formation of the separation zone behind the hills on Whidbey
Island is consistent with low Froude number flows that pass
around three-dimensional features (Drazin, 1961; Smith, 1979;
Baines, 1979). Thus, steering of westerly winds by the topography
of Whidbey Island appears to be important for generating spatial
heterogeneity in the winds over Skagit Bay.

5.2. Simulated seasonal variations

During the summer, diurnal fluctuations associated with solar
heating dominate the wind variability in this region. However,
wind fluctuations with 2–5 d periods (e.g., storms) become

increasingly important along the Pacific Northwest coast in the
late fall and winter (Tinis et al., 2006). Thus, it is expected that
decorrelation distances and spatial wind variations also will vary
seasonally. On the Skagit tidal flats, the decorrelation distances
for modeled wind speeds and directions increase significantly
from summer (July-August) through the fall (September-October)
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to early winter (November-December) (Fig. 9), presumably asso-
ciated with the larger spatial scales associated with strong frontal
systems. Winds in the late winter (January-February) and in the
spring (March-May) are similar to those in the early winter and
the fall, respectively (not shown). In the fall (and spring), strong
winds from the south and southeast with speeds 49 m s�1 are
more common than during July (compare Fig. 10a with Fig. 6b and
Fig. 10c with Fig. 6d). Spatial gradients in wind direction during
the fall (and spring) are similar to those in July, with westerly
winds occurring less frequently and southwesterly winds occur-
ring more frequently at N4193 than at N1734. These spatial
differences are associated with interactions between the diurnal
winds and the local topography. In the early (and late) winter,
winds are stronger and predominantly southerly and southeast-
erly at both N4193 and N1734. Thus, the model predicts that
during the passage of fall and winter storms, winds are from the S
and SE with speeds reaching 20 m s�1 and that the wind speeds
and directions during these storms are highly correlated across
the tidal flats. Winds measured at Smith Island and at Mt. Vernon
in 2009 are representative of those measured at the same location
over the past 10 years, suggesting that the model results for 2009
are relevant to typical storm conditions. Thus, these results
suggest that winds during storms might be represented well by
measurements at a single location on the flats.

5.3. Modeling coastal circulation

When modeling coastal circulation, winds often are assumed
to be spatially uniform, and wind data from the nearest publically
available source commonly are used. Despite the few-km decorr-
elation length scales (Fig. 5), the predictive skill of three-dimen-
sional hydrodynamic model simulations for salinity and
stratification on the south flats (near stations N4193 and
N4941) forced with spatially uniform winds based on local wind
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measurements (from station N4193) is similar to the skill when
the model is forced by WRF-simulated, spatially heterogeneous
winds (Ralston et al., 2013). For example, the average model skill
score (Murphy, 1988) for salinity at 7 observation stations on the
south flats is 0.51 using wind forcing from station N4193 and 0.40
for WRF-simulated winds. The corresponding correlation coeffi-
cients (r2) are 0.68 and 0.64. Predictions of surface salinity are
sensitive to the local wind direction, which affects the frontal
location of the river plume. The good predictive skill using local
wind measurements suggests that the local hydrodynamic con-
ditions are not sensitive to the wind forcing a few km away,
where the winds may be different. However, the salinity and
stratification predictions are less accurate (average skill score is
0.10 and r2 is 0.49) when the hydrodynamic model is forced with
spatially uniform winds from Smith Island (NDBC SISW1), the
nearest coastal wind station. Based on these model results, and
the decorrelation distances for the winds (Fig. 5), it is expected
that accurate modeling of the summertime salinity and stratifica-
tion requires forcing with either local (within a few km) winds or
WRF simulated winds.

Although there are several land-based weather stations that are
closer to the flats than Smith Island, the winds are affected by local
topography, and the statistical wind magnitudes and directions
differ significantly from those on the flats. For example, 4 km east
of N1588 at the Washington State University AgWeatherNet Fir
Island station (http://weather.wsu.edu/; and 48.361N, 122.421W),
wind speeds during July and August, 2009 are biased low, with few
measurements greater than 3 m s�1, with occasional winds from
the northeast and east, but infrequent winds from the west or
northwest. Wind speeds measured on the flats are correlated better
with those measured at Smith Island than with those measured at
Fir Island. Thus, use of land-based wind data, rather than Smith
Island wind data, is not expected to improve hydrodynamic model
performance on the Skagit tidal flats.

6. Conclusions

Comparisons of wind speeds and directions measured in
summer 2009 on the Skagit tidal flats with predictions of the
Weather Research and Forecast model suggest that the statistics
of wind speeds and directions are predicted reasonably well. In
particular, the model predicts the diurnal fluctuations of the
winds, with maximum wind speeds occurring in late afternoon
and minimum wind speeds occurring in early morning. Addition-
ally, the model predicts that summertime wind speeds and
directions are decorrelated over distances shorter than the scale
of the flats (about 10 km), consistent with the observations.
Observed and predicted wind directions are predominantly W
and NW on the north flats, and SW and S on the south flats.
Simulations suggest that the variability of the wind directions
may result from funneling of winds around the hills on Whidbey
Island and through Saratoga Passage. Simulations also suggest
that decorrelation distances increase significantly during fall and
early winter, as the diurnal winds weaken and passage of strong
(larger-scale) frontal systems becomes more common. The
observed and predicted spatial heterogeneity of the summertime
winds imply that incorporating high-resolution wind models may
improve the skill of simulations of coastal circulation on the
tidal flats.
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