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ABSTRACT

Inverse models are developed that use data and dynamics to estimate optimally the breaking-wave-driven
setup and alongshore current, as well as the cross-shore forcing, alongshore forcing, and drag coefficient. The
inverse models accurately reproduce these quantities in a synthetic barred-beach example. The method is applied
to one case example each from the Duck94 and SandyDuck field experiments. Both inverse solutions pass
consistency tests developed for the inverse method and have forcing corrections similar to a roller model and
significant cross-shore variation of the drag coefficient. The inverse drag coefficient is related to the wave
dissipation, a bulk measure of the turbulence source, but not to the bed roughness, consistent with the hypothesis
that breaking-wave-generated turbulence increases the drag coefficient. Inverse solutions from a wider range of
conditions are required to establish the generality of these results.

1. Introduction

Models for breaking-wave-driven nearshore circula-
tion often are based on the depth-integrated, time-av-
eraged, and constant-density Navier–Stokes equations
and are simplified by assuming that all variables are
independent of the alongshore coordinate y and time
(i.e., steady). The cross-shore momentum equation be-
comes a one-dimensional (1D) balance between the
cross-shore pressure gradient and the total (wind plus
wave) cross-shore forcing Fx (e.g., Longuet-Higgins and
Stewart 1964):

dh
2gh 1 F 5 0, (1)xdx

where g is gravitational acceleration, h is the water
depth, x is the cross-shore coordinate, and is the time-h
averaged free surface elevation relative to mean sea lev-
el without waves (i.e., setup).

The alongshore momentum equation is a 1D balance
between the alongshore forcing Fy, bottom stress, and
lateral mixing (e.g., Longuet-Higgins 1970):

d dy
F 2 c ^ |u |y& 1 nh 5 0, (2)y d 1 2dx dx
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where is the mean (time and depth averaged) along-y
shore current. The second term in (2) is a common bot-
tom stress representation (Longuet-Higgins 1970;
Thornton and Guza 1986; Garcez-Faria et al. 1998; and
many others), where cd is a nondimensional drag co-
efficient, ^& represents a time average over many wave
periods, | u | is the total instantaneous horizontal ve-
locity vector, and y is the instantaneous alongshore ve-
locity. Mean and wave-orbital velocities contribute to
^ | u | y&. The third term in (2) represents lateral mixing
processes (n is an eddy viscosity) including shear dis-
persion (Svendsen and Putrevu 1994), shear waves
(Slinn et al. 1998; Özkan-Haller and Kirby 1999), and
small-scale turbulent mixing by breaking waves (Battjes
1975). The cross- and alongshore forcings are the sum of
wind ( and ) and wave forcing and are given bywind windt tx y

dSxx21 windF 5 r t 2 andx x1 2dx

dSyx21 windF 5 r t 2 ,y y1 2dx

where r is the water density and Sxx and Syx are com-
ponents of the radiation stress tensor (Longuet-Higgins
and Stewart 1964).

The 1D setup [(1)] and alongshore current [(2)] dynam-
ics are applicable to many laboratory and field situations
(e.g., Bowen et al. 1968; Battjes and Stive 1985; Thorn-
ton and Guza 1986; and many others). Although simple,
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except for the pressure gradient term, the functional
forms of the terms in (1) and (2) are not known and
must be parameterized for use in models. Linear theory
relates the wave forcing to the root-mean-square (rms)
wave height Hrms, mean wave angle , and mean fre-u
quency , quantities predicted by bulk wave transfor-f
mation models (e.g., Thornton and Guza 1983). How-
ever, linear-theory-based surf-zone wave-forcing pa-
rameterizations are not sufficiently accurate for detailed
alongshore current modeling on a barred beach (Church
and Thornton 1993; Reniers and Battjes 1997; Ruessink
et al. 2001). An additional water column stress due to
the aerated front face of a broken wave (wave roller)
has been hypothesized to shift the wave forcing shore-
ward. This concept is applied in heuristic roller models
(e.g., Stive and de Vriend 1994) based on towed wave-
foil experiments (Duncan 1981). Inclusion of a roller
model with tuned parameters results in improved agree-
ment with observations on barred laboratory ( andh

; Reniers and Battjes 1997) and natural ( ; Ruessinky y
et al. 2001) beaches.

The closure of 1D integrated alongshore momentum
balances on cross-shore transects (Feddersen et al. 1998;
Feddersen and Guza 2003) suggests that cd^ | u | y& ad-
equately represents the bottom stress. A spatially con-
stant cd often has been used in models (Longuet-Higgins
1970; Thornton and Guza 1986; Özkan-Haller and Kir-
by 1999). However, within the surf zone cd is elevated
relative to seaward of the surf zone (Feddersen et al.
1998). A drag coefficient proportional to h21/3 (cd in-
creases in shallower depths) improves 1D model pre-y
dictions compared with a constant cd (Ruessink et al.
2001). The elevated surf zone or shallow-water cd has
been hypothesized to result from increased bottom
roughness (e.g., Garcez-Faria et al. 1998) or breaking-
wave-generated turbulence (e.g., Church and Thornton
1993), but the spatial variation of cd is not understood.

The wave forcing, cd, and the Reynolds stress terms
are difficult to estimate directly, and therefore the qual-
ity of their parameterizations is not known. Instead, pa-
rameterizations are accepted or rejected by the accuracy
of the model predictions. Parameterizations often can
be tuned so that model predictions match a limited da-
taset and thus, rarely are rejected. Here, an inverse meth-
od is developed (section 2) that uses the setup and along-
shore current observations and dynamics to solve for
parameterized quantities, namely, the cross- and along-
shore forcing and the drag coefficient. Specification of
the measurement error variances and parameterized
forcing and drag coefficient error covariances is re-
quired. Inverse solutions not consistent with the spec-
ified measurement and parameterization errors are con-
sidered spurious and are rejected. The inverse method
is tested with a synthetic barred-beach example with
known forcing and cd (section 3), and works well given
the number and quality of field observations typically
available. The inverse method is applied to one case

example each from the Duck94 and SandyDuck field
experiments (section 4). The case example inverse re-
sults are discussed in the context of wave rollers and
possible drag coefficient dependence on breaking-wave-
generated turbulence and bed roughness (section 5). The
results are summarized in section 6.

2. Inverse modeling

a. Prior model and prior solutions

The equation for the setup (1) is linearized (i.e., the
still-water depth h is used instead of h 1 ) to simplifyh
the inverse problem. Prior model solutions with in-h
cluded and excluded in h are similar in water depths $
0.3 m, where the case example observations were ob-
tained. The parameterized cross- and alongshore forc-
ings are denoted as the prior forcing and . The(pr) (pr)F Fx y

prior drag coefficient is constant. The offshore (x(pr)cd

5 L) prior boundary condition for the setup model (1)
is 5 0. The alongshore current model (2) uses priorh
slip boundary conditions d /dx 5 0 at the shoreline (xy
5 0) and offshore (x 5 L) boundaries. The quadratic
velocity term in the bottom stress is parameterized with
^ | u | y& 5 B( ) 5 sT [1.162 1 ( /sT)2]1/2 (Fedderseny y y
et al. 2000), where is the wave-orbital velocity var-2s T

iance. With specified prior forcing, drag coefficient, and
boundary conditions, (1) and (2) yield the prior setup

(pr) and alongshore current (pr).h y

b. Setup inverse modeling

Error in the setup dynamics f x(x), attributed to error
in the prior wave forcing, is allowed on the right-hand
side of the cross-shore momentum equation [(1)]. The
inverse forcing is given by 5 2 f x. The forcing( i) (pr)F Fx x

error (or correction) f x is assumed to be a zero-mean
continuous Gaussian random variable with covariance
C (x, x9) 5 E[ f x(x) f x(x9)]. Similarly, zero-mean Gauss-f x

ian error with prior variance is allowed in the prior2shL

setup boundary condition (L) 5 0. The M noisyh h
observations (m 5 1, . . . , M) consist of signal and(h )dm

measurement error so that

(h ) (h )d 5 h (x ) 1 e ,m m m

where measurement errors are considered zero-(h )em

mean identical and independent Gaussian random var-
iables with (prior) variance .2shd

Inverse estimates of and f x that incorporate dy-h
namics and data are found by minimizing a cost function
that is a combination of dynamical, boundary condition,
and data errors (e.g., Bennett 1992):

L

21J [h] 5 f (x)C (x, x9) f (x9) dx9 dxEE x f xx

0

M

22 2 22 (h ) 21 s h 1 s [h(x ) 2 d ] , (3)OhL L hd m m
m51
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where each component of (3) is weighted by its inverse
covariance. The minimum of the cost function yields
the inverse setup ( i ) and forcing . With each term( i)h F x

interpreted as a Gaussian random variable, cost-function
minimization corresponds to maximum likelihood es-
timation (appendix A), and the (statistical) consistency
of the inverse solutions with the prior assumptions (i.e.,
covariances) can be tested (appendix B).

The inverse of C (x, x9) is defined so thatf x

L

21C (x, x0)C (x0, x9) dx0 5 d(x 2 x9), (4)E f fx x

0

where d(x) is the Dirac delta function. The adjointh
l is defined as the convolution of f x with ,21Ch f x

L

21l (x) 5 C (x, x9) f (x9) dx9, (5)h E f xx

0

so that

L

f (x) 5 C (x, x9)l (x9) dx9 5 C · l .x E f h f hx x

0

Setting the first variation of the cost function J[ ]h
to zero yields the Euler–Lagrange equations for the min-
imum of J[ ]:h

dh
2gh 1 F 5 C · l , (6a)x f hxdx

22(2ghl 1 s h) 5 0, (6b)h hL x5L

Md(hl )h 22 (h )g 1 s [h(x ) 2 d ]d(x 2 x ) 5 0, (6c)Ohd m m mdx m51

and

l | 5 0, (6d)h x50

which are solved directly for the inverse solutions ( i )h
and [or ].( i) ( i)f Fx x

At the minimum, the cost function J[ ] is rewritten,h
after integrating by parts, as

L

(i) (i) 21J [h 1 h9] 5 J 1 h9[C ] h9 dx dx9, (7)min EE h

0

where Jmin is the minimum of the cost function (3) found
by solving (6), and 9 are deviations from the inverseh
solution. The curvature of the cost function at the min-
imum [ (x, x9)]21 is interpreted as the inverse co-( i)C hh

variance (appendix A). The prior covariance (x,(pr)h Ch

x9) is related to the forcing error covariance by removing
the data term from J[ ] [(3)] and integrating by parts;h
that is,

21d[h(x9)C (x, x9)]d f x(pr) 21 2[C ] 5 g h(x) (8)h 5 6dx dx9

(neglecting boundary terms). The prior covariance gives

the uncertainty when no data are available. The in-h
verse covariance (x, x9) is then given by( i)h Ch

M
(pr)(i) 21 21 22[C ] 5 [C ] 1 s d(x 2 x )d(x9 2 x ). (9)Ohd m mh h

m51

The addition of data reduces , thus reducing the un-( i)Ch

certainty of the inverse solutions.

c. Alongshore current inverse modeling

Analogous to the inverse setup model, error in the
alongshore current dynamics f y(x) is allowed on the
right-hand side of (2), and represents error in the forc-
ing, bottom stress, and lateral mixing. Because the forc-
ing is considered to have the largest uncertainty and
with the drag coefficient solved for separately, f y is
ascribed to forcing error. Corrections to lateral mixing
are neglected. The inverse alongshore wave forcing

is given by 5 2 f y, and the forcing error( i) ( i) (pr)F F Fy y y

(or correction) f y is assumed to be a zero-mean Gaussian
random variable with covariance C (x, x9). Errors in thef y

prior slip boundary conditions are assumed to be zero-
mean Gaussian random variables with variance and2sy 0x

at x 5 0 and x 5 L. The inverse method also allows2sy Lx

for drag coefficient deviations from the prior , ad-(pr)cd

justing the drag coefficient to make the inverse con-y
sistent with the data. The cd error is considered to be a
zero-mean Gaussian random variable with prior co-
variance (x, x9). The N noisy alongshore current(pr)C cd

observations consist of signal and measurement er-(y )dm

ror, given by
(y ) (y )d 5 y (x ) 1 e ,m m m

where em is zero-mean Gaussian measurement error with
prior variance .2syd

The cost function I[ , cd] is defined as a combinationy
of dynamical, boundary condition, drag coefficient, and
data errors:

L

21I(y , c ) 5 f (x)C (x, x9) f (x9) dx dx9d EE y f yy

0

2 2
dy (0) dy (L)

22 221 s 1 sy 0 y Lx x[ ] [ ]dx dx

L

(pr) (pr) 211 [c (x) 2 c ][C (x, x9)]EE d cd d

0

(pr)3 [c (x9) 2 c ] dx dx9d d

N

22 (y ) 21 s [y (x ) 2 d ] , (10)Oy d n n
n51

where each component of the cost function (10) is
weighted by its inverse covariance. The minimum of
the cost function yields the inverse solutions. With the
interpretation of each term as a Gaussian random var-
iable, minimization of the cost function corresponds to
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maximum likelihood estimation (appendix A) and al-
lows for testing the consistency of the inverse solution.

Setting the first variation of I[ , cd] with respect toy
and cd to zero leads to the Euler–Lagrange equationsy

for the cost function minimum:

d dy
F 2 c B(y ) 1 nh 5 C · l (x), (11a)y d f yy1 2dx dx

dy
22 s nhl 5 0, (11b)y 0 yx1 2dx

x50

dy
21 s nhl 5 0, (11c)y L yx1 2dx

x5L

dB d dly2c l 1 nhd y 1 2dy dx dx
N

22 (y )1 s [y (x ) 2 d ]d(x 2 x ) 5 0, (11d)Oy d n n n
n51

dly 5 0, and (11e))dx x50,L

(pr)(pr) 212l B(y ) 1 [C ] · [c 2 c ] 5 0, (11f)y c d dd

where the adjoint l is defined similarly to they hy

adjoint (5). The set of Euler–Lagrange equations (11)
are nonlinear, ordinary differential equations for the in-
verse solutions ( i ) , , and .( i) ( i)y f cy d

At the minimum, after linearizing and integrating by
parts, the cost function I[ , cd] is rewritten asy

(i) (i)I [y 1 y 9, c 1 c9]d d

L

(i) 21 (i) 215 I 1 y 9[C ] y 9 1 c9[C ] c9min EE d c dy d

0

(i) 21 (i) 211 y 9[C ] c9 1 c9[C ] y 9 dx dx9, (12)d d c ,yy ,c dd

where Imin is the minimum of I[ , cd] found by solvingy
(11), and 9 and are deviations from the inverse so-y c9d
lutions. The curvatures of I[ , cd] at the minimum {e.g.,y
[ (x, x9)]21 and [ ]21} are interpreted as inverse( i) ( i)C C cy d

covariances (appendix A). Similarly, the prior co-y
variance is found by taking the first two terms of(pr)C y

(10), linearizing about the prior solution, and inte-y
grating by parts, resulting in

dB(x) dB(x9)(pr) (pr)21 2 21[C ] 5 [c ] C (x, x9)fy d ydy dy

21dCdB(x) d f y(pr)2 c nhd 1 2dy dx9 dx9

21dCdB(x9) d f y(pr)2 c nhd 1 2dy dx dx

21dCd d d f y1 nh nh (13)5 1 2 6[ ]dx dx dx9 dx9

(neglecting boundary terms). The inverse covariancey
is given by( i)C y

N
(pr)(i) 21 21 22[C ] 5 [C ] 1 s d(x 2 x )d(x9 2 x ) (14)Oy d n ny y

n51

with replaced by in and (i) used in dB/d .(pr)(pr) (i)c c C y ydd y

As with , the addition of data reduces the inverseh
uncertainty. The inverse cd covariance,

(i) 21 21 (pr) 21[C (x, x9)] 5 B(x)C (x, x9)B(x9) 1 [C ] , (15)c f cd y d

also is reduced relative to the prior because the first
term in (15) is positive definite. The –cd covariancey
C is not discussed.y ,cd

d. Prior covariances

Specifying the prior covariances is nontrivial. The
covariance form chosen is a homogeneous (i.e., only a
function of x 2 x9) bell-shaped covariance often used
in objective mapping (e.g., Brethereton et al. 1976):

2(x 2 x9)
2C (x, x9) 5 s exp 2 , (16)g g 2[ ]lg

where g is either f x, f y, or cd. The f x, f y, and cd var-
iances ( , , ) and decorrelation length scales2 2 2s s sf f cx y d

(l , l , and l ) must be specified. This covariance formf f cx y d

is a significant simplification. In particular, it is unlikely
that the true forcing error covariances are homogeneous.
Nevertheless, the inverse solutions with (16) appear to
work well, as demonstrated below. Nonhomogeneous
covariance forms similar to (16), but with (for example)
s proportional to , were implemented. Results(pr)Ff xx

were similar to those using the homogeneous form (16).
The homogeneous form was used for simplicity, because
the form of the true covariances is unknown. Note that
the homogeneous forcing error covariances, once fil-
tered by the and dynamics, result in nonhomoge-h y
neous prior and inverse [(9)] and [(14)] covariances,h y
and nonhomogeneous inverse cd [(15)] covariance.

3. Test of the inverse method

The ability of the inverse method to solve for the
forcing and drag coefficient is tested with synthetic data.
A true cross- and alongshore wave forcing (based on
rollers) and a cross-shore variable cd yield [through
(1) and (2)] the true (tr) and (tr). Prior (nonroller) forc-h y
ing and constant cd similarly yield the prior (pr) andh

(pr) and reflect the imperfect knowledge of the dynam-y
ics. The true values represent the dynamical information
that the inverse method should reproduce, given the
prior values, noisy data, and assumptions about the er-
rors.

a. True and prior conditions

Barred-beach bathymetry h from Duck, North Car-
olina (Lippmann et al. 1999), is used with a domain
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FIG. 1. Test-case conditions vs distance from the shoreline: (a)
depth h, (b) wave height Hrms, (c) cross-shore forcing Fx, (d) along-
shore forcing Fy, and (e) drag coefficient cd. In (c), (d), and (e), the
dark-dashed and light-dashed curves represent the prior and 61 std
dev, and the solid curves represent the true results.

extending from the shoreline (x 5 0 m) to 300 m off-
shore (Fig. 1a). The bar crest is located at x 5 80 m
and has a half-width of 15 m. At the offshore boundary,
the wave height Hrms 5 1.2 m, the wave period is 10 s,
and the wave angle is 158 relative to shore-normal. The
waves are transformed shoreward (Thornton and Guza
1983) over the barred bathymetry (Fig. 1b), yielding the
(without rollers) prior wave forcing and (dark(pr) (pr)F Fx y

dashed curves in Figs. 1c,d), and also the wave-orbital
velocity variance . A roller model (Stive and de2s T

Vriend 1994; Reniers and Battjes 1997; Ruessink et al.
2001) is used to calculate the true wave forcings (tr)F x

and (solid curves in Figs. 1c,d). Relative to the(tr)F y

prior, the roller model displaces shoreward and reduces
the magnitude of the forcing peaks. In addition to the
wave forcing, a spatially constant alongshore wind forc-
ing of 1024 m2 s22 (roughly corresponding to a 14-kt
alongshore wind) is added to the prior and true along-
shore forcing.

Following Church and Thornton (1993), the true drag
coefficient depends on the wave dissipation with a(tr)cd

background (zero wave dissipation) value of 0.0015
(Fig. 1e). Maxima of cd, just offshore of the bar crest
and near the shoreline, occur where breaking-wave dis-
sipation is maximum. This cd is hypothetical and is used
only to test the inverse method. A cd that depends in-
versely on water depth [e.g., the Manning–Strickler
equation used by Ruessink et al. (2001)] gives quali-
tatively similar cd variation. The spatially constant

5 0.0025 (Fig. 1e, dashed line) best fits the prior(pr)cd

to the data. The spatially constant eddy viscosity n 5y
0.5 m2 s21 was used to model at two different barredy
beaches (Ruessink et al. 2001) and lies midway within
the range of n (0.1–0.9 m2 s21) suggested by Özkan-
Haller and Kirby (1999). With this eddy viscosity, the
modeled magnitude of lateral mixing is small relative
to the forcing (Ruessink et al. 2001).

These inputs are used within the setup [(1)] and along-
shore current [(2)] models to generate true and prior

and (Figs. 2a,b). The sharp increase in the (tr) andh y h
the main (tr) peak are moved onshore from the priory
locations due to the roller and (for (tr)) by the reducedy

in the bar trough. Differences between the prior and(tr)cd

true setup are significant (5 cm) in the bar–trough re-
gion. The difference between the prior and true ex-y
hibits the classic barred-beach model–data difference
when roller models are not included (e.g., Church and
Thornton 1993). Noisy and data [ and , as-(h ) (y )h y d dm m

terisks in Figs. 2a,b] are generated at eight locations by
adding to the true values zero-mean Gaussian noise with
standard deviations (referred to as std dev) of 0.004 m
and 0.05 m s21, representative of setup measurement
(Raubenheimer et al. 2001) and electromagnetic current
meter (Feddersen and Guza 2003) error, respectively.
The eight data locations are typical of the cross-shore
instrumented transects at Duck during the Duck Ex-
periment on Low-Frequency and Incident-Band Long-
shore and Across-Shore Hydrodynamics (DELILAH),
Duck94, and SandyDuck field experiments.

b. Prior covariances

The prior covariances of the forcing, drag coefficient,
boundary condition, and data errors also must be spec-
ified. The data errors s d 5 0.004 m and s d 5 0.05h y

m s21 are those used to create the synthetic data. The
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FIG. 2. Prior and true (a) setup and (b) alongshore current vsh y
distance from the shoreline. The dark- and light-dashed curves rep-
resent the prior and 61 std dev. The solid curves represent the true
results. The asterisks represent the (noisy) data.

FIG. 3. (a) Inverse (dashed), true (solid), and data (asterisks) ,h
and (b) inverse (dashed) and true (solid) cross-shore forcing correc-
tion f x vs distance from the shoreline. In (a), the dark- and light-
dashed curves represent the inverse and 61 std dev.

magnitude of the forcing error is constrained by the prior
forcing magnitude. Because the prior forcing is believed
to be qualitatively correct, the forcing errors s andf x

s are chosen to be 18% of the bar crest prior | |(pr)Ff xy

and | | maxima. The prior forcing 62 std dev(pr)F y

(s and s ) are consistent with the true forcing (lightf fx y

dashed curves in Figs. 1c,d); however, this consistency
cannot be examined in general with unknown true forc-
ing. The cd error s 5 0.0007 is chosen such that thecd

6 2s spans the expected cd range (0.001–0.004).(pr)c cd d

The prior 6 2s also mostly contains the true cd
(pr)c cd d

(Fig. 1e). Because the bathymetry strongly controls the
wave properties, the forcing and cd error length scales
are chosen to match the sandbar half-width (l 5 l 5f fx y

l 5 15 m). Varying the length scales between 10 andcd

30 m does not change the inverse solutions significantly
in this or subsequent sections. The offshore boundaryh
condition error s L 5 0.01 m. The boundary conditionyh

errors are s 5 0.05 s21 and s 5 0.01 s21, allowingy 0 y Lx x

for typical boundary shear of 1 m s21 over 20 m at x
5 0 m and 0.2 m s21 over 20 m at x 5 L. The prior

and boundary condition errors do not affect theh y
inverse solutions significantly. The prior covariances

[(8)] and [(13)] are estimated using the forcing(pr) (pr)C Ch y

covariances (light-dashed curves in Figs. 2a,b). One
measure of consistency in the forcing error covariances
is that most of the and data are within two std devh y
(defined as the square root of the covariance diagonal)
of the prior and . This test can be applied in realh y
inverse situations.

c. Inverse solution

With all the ingredients, the inverse method yields
the inverse setup ( i ) (Fig. 3a), inverse alongshore cur-h
rent ( i ) (Fig. 4a), and their covariances [(9)] and( i)y Ch

[(14)]. The inverse solutions agree well with the( i)C y

true (tr) and (tr) and are significant improvements overh y
the prior solutions (Figs. 2a,b). The rms differences be-
tween inverse solutions and data are 2.4 mm and 2.6
cm s21 for and , respectively, consistent (at the 95%h y
level) with the prior data error variance (appendix B).
Inverse solutions should pass this test if they are to be
accepted. The addition of data significantly reduces the
uncertainty in the inverse solutions (the inverse andh

std dev are 20%–50% of the prior). Note that they
inverse solutions 62 std dev usually contain the true
solutions and the data. In regions with instrument gaps
much larger than the 15-m decorrelation length scale
(140 , x , 200 m), the inverse uncertainty increases.

The ability of the inverse method to reproduce the
cross- and alongshore forcing is examined by comparing
the inverse forcing corrections [ and ] with the( i) ( i)f fx y

true forcing corrections [i.e., 2 ] and(tr) (tr) (pr) (tr)f F F fx x x y

(Figs. 3b and 4b). The inverse and qualitatively( i) ( i)f fx y

reproduce and , and result in significant im-(tr) (tr)f fx y

provements over the prior forcings. The location and
magnitude of the forcing correction peaks are similar,
although is underpredicted around x 5 110 m. On-(tr)f x

shore of the last data point (x 5 20 m), without infor-
mation (data) for the inverse, and relax to zero.( i) (i)f fx y

The cross- and alongshore inverse forcing corrections
are consistent with their prior covariances (appendix B).
The is consistent with the prior cd covariance and( i)cd
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FIG. 4. (a) Inverse (dashed), true (solid), and data (asterisks) ; (b)y
inverse (dashed) and true (solid) alongshore forcing correction f y;
and (c) inverse (dashed) and true (solid) cd vs distance from the
shoreline. In (a) and (c), the dark- and light-dashed curves represent
the inverse and 61 std dev.

FIG. 5. Misfits [(17)] vs %s (% of maximum prior forcing mag-f x

nitude): (a) inverse (asterisks) and prior (dashed line) cross-shore
forcing misfit x(Fx), and (b) inverse (asterisks) and prior (dashed
line) setup misfits x( ). The shaded areas are regions where eitherh
the data fit (right region) or (left region) is inconsistent with the(i)f x

prior covariances. The circled asterisk indicates the solution in
Fig. 3.

qualitatively reproduces in the bar crest–trough re-(tr)cd

gion where the data are concentrated (Fig. 4c). Onshore
of x 5 20 m and offshore of x 5 150 m, the relaxes( i)cd

back to the prior cd 5 0.0015 both because of the data
sparseness and because the inverse method can adjust
f y to match the data with less cost. In the bar-trough
region, the uncertainties are reduced 15%–30% rel-( i)cd

ative to the prior (Fig. 4c), which is less than the re-
duction in the and uncertainties. These results sug-h y
gest that the inverse method is capable of solving for
the unknown surf-zone cross-shore forcing, alongshore
forcing, and drag coefficient given the number and qual-
ity of data typically available.

d. Choosing covariance parameters

With the chosen covariance parameters, the inverse
solutions pass the consistency tests and reproduce the
true solutions. However, with real observations the

choice of prior covariances is important and not straight-
forward. The effect of varying covariance parameters
on the inverse solutions is examined to provide guide-
lines for general application. The boundary condition
variances, data variances, and covariance length scales
are held fixed at values used previously while s , s ,f fx y

and s are varied. The misfit between the true and in-cd

verse solutions is characterized by the metric

x5200 m1
(i) (i) (tr) 2x[a ] 5 . (17)[a 2 a ] dxE!L x520 m

The integral spans the bar-crest region (x 5 20–200
m) where data are concentrated, L is the integration
distance (180 m), and a is any inverse or prior solution
[e.g., ].( i)F x

For the inverse, s is varied between (%s ) 5%h f fx x

and 50% of the bar-crest prior | | maximum (18%(pr)F x

was used in Fig. 3). The and ( i ) misfits are reduced( i)F hx

with increasing s (Fig. 5), and for %s . 10%, thef fx x

and ( i ) misfits are 33%–50% and 25%–33% (re-( i)F hx

spectively) of their prior misfits. The largest %s resultf x

in the smallest misfit. However, the inverse solutions
with %s . 24% (right-hand shaded area in Fig. 5) aref x

inconsistent because of data overfit (inverse solution
matches data more closely than warranted, given the
observational error), and solutions with %s , 16%f x

(left-hand shaded area in Fig. 5) result in being( i)f x

inconsistent with the prior C . Inconsistent solutionsf x

are rejected. For the consistent solutions (16% #
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FIG. 6. Misfits [(17)] for (a) inverse alongshore forcing x[ ] and(i)F y

(b) inverse alongshore current x[ (i)] vs %s . The asterisks representy f y

consistent inverse solutions. The pluses represent inconsistent inverse
solutions. The horizontal dashed curve in (a) represents the prior
forcing uncertainty x[ ] 5 0.0022 m2 s22. The prior alongshore(pr)F y

current misfit x[ (pr)] 5 0.40 m s21 is not shown in (b).y

%s # 24%), the and ( i ) misfits are small, near( i)F hf xx

the minimum misfits for all %s . Within the %s win-f fx x

dow of consistent solutions, larger %s are the mostf x

accurate. The of the consistent solutions are almost( i)f x

identical.
For the inverse, s is varied between 5% and 50%y f y

(%s ) of the maximum bar crest and s is varied(pr)Ff y cy d

between 10% and 45% of the constant . The inverse(pr)cd

results in improved with misfit 68% to 23% of the( i)F y

misfit, depending on s (Fig. 6a). For fixed(pr)F y cd

%s , an increased s results in a larger misfit (de-( i)Ff c yy d

noted by the arrow in Fig. 6a) because the inverse ad-
justs instead of the forcing to fit the data. With ad-( i)cd

justment of both the forcing and cd error, the ( i ) misfity
reduction is dramatic {x[ ( i )] is 20% of the (pr) misfit}.y y
The misfit x[ ] (not shown) is reduced only about( i) (i)c cd d

15% of the prior x[ ] because of the cross-shore lag(pr)cd

between and maxima (Fig. 4c). As with the( i) (tr)c c hd d

inverse, the largest values of %s have the smallestf y

misfits, but fail at least one consistency test (pluses in
Fig. 6). The inverse solutions (asterisks in Fig. 6) that
pass all consistency tests have small x[ ( i )]. Consistenty
solutions with larger %s and s have small misfit.( i)Ff c yy d

Within the %s and s window of consistent solutions,f cy d

larger values of these parameters are best. All consistent
and solutions exhibit the pattern shown in Fig.( i) ( i)f cy d

4, only with varying amplitude (factor of 2) depending
on %s and s .f cy d

4. Case examples

The inverse method is applied to observations from
two field experiments at Duck: Duck94 (Elgar et al.
1997; Feddersen et al. 1998; Ruessink et al. 2001) and
SandyDuck (Elgar et al. 2001; Raubenheimer et al.
2001; Feddersen and Guza 2003; Noyes et al. 2004).
Bathymetries are smoothed with a 10-m cutoff wave-
length to remove bedforms that dominate the variance
in the 1–5-m wavelength band (Thornton et al. 1998).
All wave, setup, and alongshore current observations
are based on hourly averages. In both cases the ba-
thymetry is alongshore uniform, and the mean along-
shore currents are consistent with 1D dynamics (Fed-
dersen et al. 1998; Ruessink et al. 2001; Feddersen and
Guza 2003).

a. Duck94 example

During Duck94, there were no setup observations, so
only the alongshore current inverse method is applied.
Wave breaking occurs offshore of and on the crest (x
5 110 m) of a well-developed sandbar (Figs. 7a,b). In
the bar trough (40–80 m from the shoreline), the wave
height remains constant. A tuned 1D wave model (with-
out rollers) (e.g., Thornton and Guza 1983) accurately
(rms error 2.2 cm) predicts the wave height evolution
(solid curve in Fig. 7b). The wave model (initialized
with offshore Hrms and Sxy estimated from an array of
pressure sensors in 8-m water depth), together with

observations, gives the prior (Fig. 7c). Thewind (pr)t Fy y

constant 5 0.0015, based on alongshore momentum(pr)cd

balances (Feddersen et al. 1998), results in similar data
and prior (pr) peak magnitudes (Fig. 7d). The priory
%s is 20% (light dashed curves in Fig. 7c), slightlyf y

larger than the largest test-case %s yielding consistentf y

solutions (section 3d). The s 5 4.5 3 1024, 30% ofcd

the prior . The length scales (l and l ) are 20 m,(pr)c f cd y d

approximately the bar half-width. The eddy viscosity n
5 0.5 m2 s21 is that used by Ruessink et al. (2001) to
model a larger dataset from which one of the case ex-
amples is drawn. Inverse solutions with n ranging be-
tween 0.1 and 2 m2 s21 were similar, with smoother
inverse solutions for larger n (not shown). For these n,
the magnitude of the lateral mixing term was small and
did not qualitatively change the results. The prior (pr)F y

and (and prior covariances) are used to calculate(pr)cd
(pr) and its error bars (Fig. 7d). Typical of barred-beachy
model runs without rollers, the prior (pr) rms errorsy y

(0.28 m s21) are substantial.
The inverse method (section 2b), applied with datay

uncertainty s d 5 0.05 m s21, yields solutions (Fig. 8)y

that pass the consistency tests and agree well with the
data (rms error of 0.038 m s21). The uncertainty isy y

reduced significantly. The is reduced offshore of( i)F y

and on the bar crest (x $ 110 m), and is increased toward
the trough (60 , x , 90 m), consistent with the concept
of a wave roller (Fig. 8b). The slightly negative ( i)F y
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FIG. 7. Duck94 conditions (1700 EST 10 Oct 1994) vs distance
from the shoreline: (a) depth h, (b) model (solid) and data (asterisks)
wave height Hrms, (c) , and (d) prior (dashed) and data (asterisks)(pr)F y

. In (c) and (d), the dark- and light-dashed curves represent the priory
and 61 std dev.

FIG. 8. Duck94 inverse solutions vs distance from the shoreline:
(a) inverse (dashed) and data (asterisks) , (b) inverse (dashed) andy
prior (solid) Fy, (c) inverse cd, and (d) inverse (dashed) and roller
(solid) f y. In (a) and (c), the dark- and light-dashed curves represent
the inverse solution and 61 std dev. The roller forcing correction

in (d) uses roller parameter b 5 0.05 (Ruessink et al. 2001).(r)f y

near x 5 30 m indicates a reversal of forcing and, al-
though consistent with the f y error covariance, seems
physically unrealistic (no mechanism for reversal is
known). This may be the result of data noise mapped
into the forcing correction. The increases just off-( i)cd

shore of the bar crest and is reduced in the trough (Fig.
8c). The error bars are reduced by 15%–25% relative( i)cd

to the prior in the crest–trough region where data are
concentrated. The inverse forcing correction is com-( i)f y

pared with the change in alongshore forcing [ ] cal-(r)f y

culated from a roller model (Stive and de Vriend 1994;
Reniers and Battjes 1997). The inverse and roller re-
duction in alongshore forcing on and offshore of the bar

crest (110 # x , 200 m) are quite similar (Fig. 8d), as
is the increase in alongshore forcing in much of the bar
trough (70 , x , 100 m). Within the %s and sf cy d

window for consistent inverse solutions, the and( i)f y

have the same structure as in Figs. 8b and 8c but( i)cd

with amplitude varying by 33% and 25%, respectively.

b. SandyDuck example

The SandyDuck case example does not have a well-
developed bar (Fig. 9a). There is a steep slope region
for 25 , x , 100 m and a nearly constant depth terrace
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FIG. 9. SandyDuck conditions (1600 EST 18 Oct 1997) vs distance from the shoreline: (a) depth h, (b) model (solid) and data (asterisks)
wave height Hrms, (c) prior cross-shore forcing , (d) prior alongshore forcing , (e) prior (dashed) and data (asterisks) , and (f ) prior(pt) (pr)F F hx y

(dashed) and data (asterisks) . In (c)–(f ), the dark- and light-dashed curves represent the prior and 61 std dev.y

for 100 , x , 200 m. Large waves begin breaking
offshore of the terrace, have approximately constant
height over the terrace, and then dissipate rapidly farther
onshore on the steep slope (asterisks in Fig. 9b). A tuned
1D wave model (without rollers) accurately (rms error
of 4 cm) predicts the wave height evolution (Fig. 9b).
The wave model and observed wind give the prior

and (Figs. 9c,d). The prior 5 0.0015 (not(pr)(pr) (pr)F F cx y d

shown). The s and s are chosen as 23% of thef fx y

and absolute maxima (light dashed curves in(pr) (pr)F Fx y

Figs. 9c,d), and s 5 7 3 1024. Large covariance pa-cd

rameters within the window of parameters giving con-
sistent solutions are chosen (section 3d). Although there
is no sandbar to set the length scales, l , l , and l aref f cx y d

set at 20 m (the same as in Duck94), which is a length
scale for significant depth or wave height variation. The
eddy viscosity from the Duck94 case example is used.
The prior values and covariances are used to calculate

(pr) and (pr) with error bars (Figs. 9e,f ). The errors inh y
the (nonroller) prior model predictions of setup (rms
error of 1 cm) and the alongshore current (rms error of
0.2 m s21) exceed those expected from instrument noise
alone. The expected data error (s d 5 0.003 m) ish h

based on rms errors of setdown predictions (Rauben-
heimer et al. 2001), and s d 5 0.05 m s21.y

Consistent inverse solutions for (i) and (i) (Figs. 10ah y

and 11a) agree well with the data (rms errors of 3.9 mm
and 3.3 cm s21, respectively) with significantly reduced
uncertainties. Both the cross- and alongshore inverse
forcing magnitudes are increased relative to the prior in
the terrace region (100 , x , 200 m) and are reduced
near x 5 80 m (Figs. 10b and 11b). As with the Duck94
example, changes in the cross- and alongshore forcing
are consistent with the roller concept. The inverse model
makes slightly positive, predicting setdown for 85(i)F x

, x , 100 m to match the setup observations in this
region, consistent with observed wave shoaling at x 5
100 m (Fig. 9b). The pattern (Fig. 11c) is similar to(i)cd

the Duck94 case example (Fig. 8c). In the terrace region,
is reduced relative to the prior and is increased on(i)cd

the steep slope region for 70 , x , 90 m (Fig. 9b). The
error bars are reduced 25%–30% where data are con-(i)cd

centrated. The cross- and alongshore inverse forcing cor-
rections [ and ] are compared with the change in(r) (r)f fx y

forcing predicted by the same roller model used in the
Duck94 case example. The and qualitatively agree(i) (r)f fx x

for 50 , x , 250 m (Fig. 10c). Offshore of x 5 250
m, where there are no data, is near zero, whereas(i)f x

nonzero is predicted. The and also qualita-(r) (i) (r)f f fx y y

tively agree for 50 , x , 200 m, although there is a
factor of 2 difference in the magnitude of the and(i)f y

minima at x 5 80 m (Fig. 11d).(r)f y
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FIG. 10. SandyDuck inverse solutions vs distance from the shore-h
line: (a) inverse (dashed) and data (asterisks) setup , (b) inverseh
(dashed) and prior (solid) Fx, and (c) inverse (dashed) and roller
(solid) cross-shore forcing corrections f x. In (a) and (c), the dark-
and light-dashed curves represent the inverse solution and 61 std
dev.

FIG. 11. SandyDuck inverse vs distance from the shoreline: (a)y
inverse (dashed) and data (asterisks) , (b) inverse (dashed) and priory
(solid) Fy, (c) inverse (dashed) cd, and (d) inverse (dashed) and roller
(solid) alongshore forcing correction f y. In (a) and (c), the dark- and
light-dashed curves represent the inverse solution and 61 std dev.

5. Discussion

Overall, agreement between both the Duck94 and
SandyDuck inverse forcing corrections and the roller
model is remarkable, particularly because and( i) ( i)f fx y

are independent. No tuning of either the roller model
parameters or of the forcing or drag coefficient error
covariances was made to maximize this agreement.
While the inverse forcings tantalizingly suggest that the
roller model accurately predicts the change in cross- and
alongshore forcing, no endorsement of a particular roller
model is intended here. Varying the covariance param-
eters by 25% does not change the inverse case example
results significantly, although not all inverse solutions
are consistent with the prior assumptions.

Inferences can be drawn from the inverse-derived cd.
Assuming that the maximum (and minimum) is a( i)cd

Gaussian random variable with variance given by its
zero-lag inverse covariance, the probability that the
maximum (and minimum) cd is increased (reduced) from
the prior cd can be calculated to determine the statistical
significance of variation. From both the Duck94 and( i)cd

SandyDuck case examples (Figs. 8c and 11c), the prob-

ability is over 90% that the maximum (and minimum)
cd is significantly increased (reduced) from the prior.

Hypotheses that cd depends either on the bed rough-
ness krms (e.g., Garcez-Faria et al. 1998) or on breaking-
wave-generated turbulence (e.g., Church and Thornton
1993) are examined. Wave dissipation, a measure of the
breaking-wave-generated turbulence source, is calcu-
lated from the modeled wave energy flux gradients in
the region where differs from the prior cd. A rela-( i)cd

tionship between wave dissipation and is observed( i)cd

(Fig. 12a) in both case examples (correlations r 5 0.64
and r 5 0.90 for Duck94 and SandyDuck, respectively),
which is consistent with the hypothesis that increases
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FIG. 12. (a) Duck94 (circles) and SandyDuck (asterisks) inverse
cd vs modeled wave dissipation (Figs. 7b and 9b). Comparison is
made for 50 , x , 250 m (Duck94) and 30 , x , 200 m (SandyDuck)
averaged over the decorrelation length scale l 5 20 m, yieldingcd

approximately independent cd estimates. Changing the comparison
regions does not alter the results. (b) Duck94 (open circles) and
SandyDuck (small filled circles) vs bed roughness krms. The(i)cd

SandyDuck results span 35 , x , 250 m and are averaged over lcd

5 20 m.

in wave dissipation result in increased cd. No explicit
or implicit connection exists in the inverse method be-
tween cd and wave dissipation. Bed roughness krms was
estimated with eight fixed altimeters (Duck94) (Fed-
dersen et al. 2003) and a towed altimeter (SandyDuck)
(Gallagher et al. 2003). For the Duck94 example, krms

varies between 1 and 7 cm, but for the SandyDuck ex-
ample, the bed was smooth (krms , 2 cm). No relation-
ship (i.e., statistically significant correlation) between
krms and exists for either the Duck94 or SandyDuck( i)cd

case, nor does a relationship exist between krms/h and
(not shown). Although the fixed-altimeter-based krms

( i)cd

have errors (Feddersen et al. 2003), the lack of a rela-

tionship suggests that bed roughness is not a primary
factor in determining cd (e.g., Feddersen et al. 2003).

The two inverse realizations presented here are in-
sufficient to draw conclusions regarding forcing or cd

parameterizations. Many inverse realizations of the forc-
ing correction and cd, spanning a wide range of con-
ditions, would allow statistical testing of wave-forcing
or cd hypotheses. Additional interpretations of the in-
verse solutions are possible. For example, the along-
shore forcing error could be ascribed to tidal (e.g., Rues-
sink et al. 2001) or buoyancy (e.g., Lentz et al. 2003)
forcing.

6. Summary

Uncertainties regarding wave-forcing and drag co-
efficient parameterizations in the nearshore have moti-
vated development of an inverse method that combines
dynamics and data to yield optimal estimates of the
setup and alongshore current , together with cor-h y
rections to the cross-shore forcing, alongshore forcing,
and the drag coefficient cd. The method also yields error
bars (covariances) for the , , and cd inverse solutions.h y
Tests that determine the consistency of the inverse so-
lutions with prior assumptions were presented. The in-
verse method was tested with a synthetic barred-beach
example, and consistent inverse solutions reproduced
well the specified true cross- and alongshore forcing
and cd.

The method was applied to two case examples from
field experiments yielding inverse solutions that passed
the consistency tests. The independently estimated
cross- and alongshore inverse forcing corrections were
similar to the modeled effect of wave rollers. The sig-
nificant cross-shore variation of the inverse-derived cd

was related to variations in wave dissipation, but was
not related to variation in the observed bed roughness.
Although consistent with the hypothesis that breaking-
wave-generated turbulence increases cd, the two ex-
amples are not sufficient to examine this relationship
statistically. Additional field cases spanning a wide
range of nearshore conditions are needed to test hy-
potheses about the wave forcing and drag coefficient.
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APPENDIX A

Relating Cost-Function Weights to Covariances

Minimization of a cost function [e.g., (3)] is shown
to be equivalent to maximum likelihood estimation of
a continuous Gaussian random variable and that the
weight in the cost function [e.g., in (3)] represents21C f x

the inverse covariance. The nondegenerate and contin-
uous, symmetric, positive definite kernel C(x, x9) is de-
composed into (cf. Courant and Hilbert 1953)

`

C(x, x9) 5 ĉ g (x)g (x9),O l l l
l51

where the ĉl and gl(x) are the eigenvalues (real and .0)
and (orthogonal) eigenfunctions of C(x, x9). Orthogo-
nality is defined as

L

g (x)g (x) dx 5 d ,E l m lm

0

where L is the domain size and dlm is the Kronecker
delta function. For the set of continuous functions, the
gl(x) provide a basis set. If C(x, x9) were a function of
x 2 x9 only (i.e., homogeneous), then the gl are complex
exponentials. The inverse of C(x, x9) is

`

21 21C (x, x9) 5 ĉ g (x)g (x9).O l l l
l51

The basis set also decomposes the random function f (x),

`

f (x) 5 f̂ g (x). (A1)O l l
l51

Substituting the decompositions for f (x) and C(x, x9)
into a cost-function-type integral results in

L `

21 2 21f (x9)C (x, x9) f (x9) dx9 dx 5 f̂ ĉ . (A2)OEE l l
l510

The expression (A2) is the argument in the exponential
for an infinite set of independent zero-mean Gaussian
random variables f̂ l with probability density function

21 f̂ lP( f̂ ) 5 exp 2 .l 1 22ĉÏ2p ĉ ll

With the continuous random function f (x) decomposed
into an infinite sum of independent zero-mean Gaussian
random variables f̂ l, it is straightforward to demonstrate
that E[ f (x)] 5 0:

`

E [ f (x)] 5 E( f̂ )g (x) andO l l
l51

`` f̂ 1l 2 21E [ f̂ ] 5 exp 2 f̂ ĉ d f̂ 5 0;Pl E n n n1 22pĉ 2n51 n2`

thus, E[ f (x)] 5 0 as well. The covariance of the random
function f (x), defined as E[ f (x) f (x9)], is

`

E [ f (x) f (x9)] 5 E[ f̂ f̂ ]g (x)g (x9). (A3)O l m l m
l,m51

Expanding E[ f̂ l f̂m],

`` f̂ f̂ 1l m 2 21E[ f̂ f̂ ] 5 exp 2 f̂ ĉ d f̂ 5 ĉ d ,Pl m E n n n l lm1 22p ĉ 2n51 n2`

and substituting into (A3) yields

E[ f (x) f (x9)] 5 C(x, x9).

Thus, cost-function (weighted by an inverse covariance)
minimization is equivalent to maximum likelihood es-
timation of a continuous random function.

APPENDIX B

Consistency Checks with Prior Assumptions

The hypothesis that the difference (d ) between in-y
verse (or also setup ) solutions and datay h

( i) (y )dy 5 y (x ) 2 dn n n

are (N) samples from a zero-mean Gaussian random
variable with prior data variance is tested. If the2syd

inverse solution is not consistent with the prior data
variance, it should be rejected. Consider first the sample
variance var(d ). If this hypothesis is true, then withy
95% probability the true variance falls within

(N 2 1) var(dy ) (N 2 1) var(dy )
2 ,

2 2x (0.025) x (0.975)N21 N21

where (y) represents the location where the chi-2xN21

squared cumulative distribution function (cdf ) with N
2 1 degrees of freedom equals the probability y. If this
confidence interval does not contain the prior , then2syd

it should be rejected. Similarly, the 95% confidence lim-
its on the sample mean ^d & are given by a Student’s ty
distribution with N 2 1 degrees of freedom. If the in-
terval

var(dy )
^dy & 6 t (0.025)N21 ! N

[where tM(y) is the location where the Student’s t cdf
equals probability y] does not contain zero, then the
inverse solution is not consistent with the zero-mean
data error and also should be rejected.

Similar consistency checks are performed for the in-
verse solutions for the forcing and cd error. The contin-
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uous functions (e.g., f x) are decomposed into Fourier
coefficients [e.g., (A1)] using the basis functions of their
respective prior covariances. Each Fourier coefficient
( f̂ l) is then a sample from a zero-mean Gaussian random
variable with variance given by the prior covariance
eigenvalue (i.e., ĉl). If these hypotheses are correct, then
the statistics (summed over the number of data N)

N N 2f̂ lf̂ andO Ol ĉl51 l51 l

are zero-mean Gaussian random variables with variance
ĉl and a (N 2 1 degrees of freedom) chi-squaredNSl51

random variable, respectively. The significance tests de-
scribed for the data are applied to test whether the in-
verse forcing error or cd error are consistent with the
prior assumptions. The sum is over N (instead of `)
because with finite data only a finite amount of infor-
mation (i.e., approximately the first N Fourier coeffi-
cients) is added.
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