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Abstract. Predictions from Boussinesq-equation-based models for the evolution 
of breaking surface gravity waves in shallow water are compared with field and 
laboratory observations. In the majority of the 10 cases investigated, the observed 
spectral evolution across the surf zone is modeled more accurately by a dissipation 
that increases at high frequency than by a frequency-independent dissipation. 
However, in each case the predicted spectra are qualitatively accurate for a 
wide range of frequency-dependent dissipations, apparently because preferential 
reduction of high-frequency energy (by dissipation that increases with increasing 
frequency) is largely compensated by increased nonlinear energy transfers to high 
frequencies. In contrast to the insensitivity of predicted spectral levels, model 
predictions of skewness and asymmetry (statistical measures of the wave shapes) 
are sensitive to the frequency dependence of the dissipation. The observed spatial 
evolution of skewness and asymmetry is predicted qualitatively well by the model 
with frequency-dependent dissipation, but is predicted poorly with frequency- 
independent dissipation. Although the extension of the Boussinesq equations to 
breaking waves is ad hoc, a dissipation depending on the frequency squared (as 
previously suggested) reproduces well the observed evolution of wave frequency 
spectra, skewness, and asymmetry. 

1. Introduction 

The transformation of waves in the surf zone affects 

sediment transport, circulation, and other nearshore 
processes. However, no rigorous theory exists for the 
dynamically complex evolution of waves approaching 
and propagating across the surf zone. Models for the 
variation of total (frequency-integrated) energy [Battjes 
and Janssen, 1978; Thornton and Guza, 1983] do not 
predict wave spectra or wave shapes. Models based on 
the nonlinear shallow water equations with bore dis- 
sipation [Wurjanto and I(obayashi, 1991] predict accu- 
rately the evolution of sea surface elevation spectra both 
across the surf zone and in the run-up [I(obayashi et al., 
1989; Cox et al., 1992, 1994; Kobayashi and Wurjanto, 
1992; Raubenheimer et al., 1995, 1996; Raubenheimer 
and Guza, 1996]. However, the long wave (i.e., nondis- 
persive) approximation used in the shallow water equa- 
tions restricts significantly the range of modeled fre- 
quencies. Additionally, unbroken waves are predicted 
to steepen and form shocks (bores) within a few wave- 
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lengths, so that the model must be initialized close to 
the surf zone. Models based on the nonlinear, disper- 
sive, nondissipative Boussinesq equations predict accu- 
rately the evolution of broadband, nonbreaking waves 
observed in the laboratory and in the field [Freilich and 
Guza, 1984; Elgar and Guza, 1986; Elgar et al., 1990]. 
Recently, empirical breaking-induced energy dissipation 
formulations have been included into both time domain 

[Karambas and Ii'outitas, 1992; Sch•ffer et al., 1993, 
and references therein] and frequency domain Boussi- 
nesq models. Frequency domain models are considered 
here because time domain models require (usually un- 
known) downwave boundary conditions and are compu- 
tationally intensive. 

Empirical energy dissipation formulas have been in- 
corporated into different nondissipative frequency do- 
main models. Liu [1990] included a complex (equal 
real and imaginary parts) frequency-independent dis- 
sipation function [Dally et al., 1985] in a parabolic 
Boussinesq model [Liu et al., 1985] for the shoaling 
and breaking of cnoidal waves. Although wave heights 
were predicted correctly, the shapes of broken waves 
were modeled poorly. Mase and Ifirby [1992] postulated 
a real, frequency(f)-dependent dissipation d(f)E(f), 
where d(f) consists of a constant term that drains en- 
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ergy across all frequencies in proportion to the energy 
E(f) at each frequency, and a term proportional to 
f2 that increases the dissipation at high frequencies. 
Schematically, d(f) - D(F + (1 - F)f2Dt), where the 
free parameter F controls the relative importance of the 
two terms, and D and D t are frequency-independent 
terms (related to the moments of the spectrum) that 
determine the total (frequency-integrated) dissipation. 
Muse and Kirby [1992] incorporated this dissipation 
into a hybrid Korteweg-de Vries (KdV) model, and Kai- 
hatu and Kirby [1995] included the same d(f) in nonlin- 
ear, parabolic, frequency domain mild-slope equations. 
In both cases, the models with F - 0.5 predict well 
the spectral evolution on a sloping laboratory beach for 
two different initial wave spectra. However, Muse and 
Kirby [1992] and Kaihatu and Kirby [1995] (hereinafter 
referred to collectively as MKK) remark that the gen- 
erality of their dissipation formulation should be exam- 
ined with additional observations. 

When F = 1, the dissipation is linearly proportional 
to E(f), a form referred to as frequency independent 
by Eldeberky and Battjes [1996], who incorporated this 
dissipation into extended Boussinesq equations [Madsen 
and $tJrensen, 1993]. The predicted frequency spectra 
agreed with laboratory measurements. 

In both MKK and Eldeberky and Battjes [1996] (here- 
inafter referred to as EB), the total energy dissipation in 
the nonlinear frequency domain models is constrained 
to equal that predicted by heuristic (but reasonably ac- 
curate) frequency-integrated models. The differences 
between the models used for the total energy (EB used 
Battjes and Janssen [1978], whereas MKK used Thorn- 
ton and Guza [1983]) are of little consequence because 
free parameters in the models are selected to match the 
observed wave height decay (EB). Similarly, the choice 
of underlying nonlinear, frequency domain model (e.g., 
hybrid KdV equation, nonlinear mild-slope equations, 
or extended Boussinesq equations) is not critical be- 
cause these models behave similarly in intermediate and 
shallow water depths. Given that the models for the to- 
tal dissipation and nonlinear propagation are accurate, 
it is unclear why models with frequency-independent 
(EB) and frequency-dependent (MKK) dissipation both 
compare well with observations. 

The purpose of this study is to assess frequency- 
dependent and frequency-independent dissipation forms 
by comparing model predictions to the same data sets. 
The 10 experimental cases include laboratory data used 
by MKK and EB, laboratory observations with bimodal 
frequency spectra [Smith and Vincent, 1992], and field 
data [Elgar et al., 1997]. In addition to frequency spec- 
tra considered in past studies, the model-data compar- 
isons include skewhess and asymmetry (statistical mea- 
sures of wave shapes). 

A nonlinear Boussinesq model for the evolution of 
breaking waves is presented in section 2. The beach 
profiles and initial conditions for the cases studied are 
described in section 3, and optimal values for free model 

parameters are discussed in section 4. Observations and 
model predictions are compared in section 5, followed 
by a discussion and summary in sections 6 and 7, re- 
spectively. 

2. Model 

The evolution of waves approaching and propagat- 
ing across a surf zone is modeled with the modified 
Boussinesq equations for normally incident nondissi- 
pative waves propagating over parallel depth contours 
[Chen and Liu, 1995]: 

( • 
- •ha•.•} - 0 (1) , 

•,• + g(+ • + z, • 2 •,• - 0, (2) 
where •,(x, t) is the velocity potential at an arbitrary 
vertical elevation z = z,(x), ((x,t)is the free surface 
displacement, h(x) is the water depth, x is the cross- 
shore coordinate, and g is gravitational acceleration. 
The subscripts x and t denote spatial and temporal 
derivatives, respectively. With z, = -0.522h, equa- 
tions (1) and (2) have approximately the same disper- 
sive behavior as linear Stokes waves for water depths 
ranging from zero to half of the deep water wavelength 
[Chen and Liu, 1995]. This optimal water level is used 
here. 

Substituting the Fourier representations for •, and 

i N ) e-inwt t) - + ,, (3) 
1 N 

C(x, t)- • • (n (x)e -inwt + *, (4) 
n=l 

where •n and (n are the Fourier coefficients of the ve- 
locity potential and free-surface displacement, respec- 
tively, w is the frequency resolution, and the asterisk 
denotes complex conjugate, into (1) and (2) and elim- 
inating (• results in a set of fourth-order ordinary dif- 
ferential equations for •. With slowly varying depth 
and negligible reflection, the equations reduce to a set 
of first-order ordinary differential equations, 

[ 1 (Pnkn•+knRnh•)]•n+ • - ik• - 2k• W• 

+ , (a + 1/3)gh 3 L,=i ,:1 

where kn (the wavenumber at frequency n•), Wn, Pn, 
Rn, mn,, and 7n, in terms of h are given by Chen and 
Liu [199•] and a = -0.38•. The terms in the square 
bracket in (•) correspond to linear dispersion and shoal- 
ing, and the summations over nonlinear terms represent 
cross-spectral mode coupling between near-resonantly 
interacting wave triads. 
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Given q•.(n - 1,..., N), the free surface displace- 
ment (,• is obtained from 

The nondissipative model (5) is extended crudely into 
the surf zone by including breaking-induced energy dis- 
sipation. Following MKK, (5) is revised to 

•0/2 ["-• - d. 6. + (a + 1/3)gh a • 

where the damping coefficient of the nth Fourier com- 
ponen• is given by 

d.-D F+(1-F)G(f.) I 2 , (7b) 
with the dissipation function D(x) and frequency-de- 
pendent function G(f) specified below. The damping 
coefficient is much smaller than the wavenumber, and 
thus the nth Fourier coefficient of the free surface dis- 

placement in (7b) is approximated by its leading-order 
term an: 

a. - inw(1 - •hak•)qS./g. (7c) 
The dissipation function 

m __ 3v/-• bfHrtms {1 -[- tanh [8 (Hrtms/')/h - 1)]} 
4ax/• 

x {1--[1-4-(Hr•ms/fh)2] -5/2} (7d) 
with 

Hr•ms- 2 Inn] 2 , (7e) 

is chosen so that in shallow water the frequency-inte- 
grated dissipation derived from the linear version of 
(7a) (e.g., the nonlinear interaction terms are neglected) 
evolves as described by the frequency-integrated energy 
balance model of Whitford [1988]: 

d 

dz 

(s) 

where C s is the group velocity given by linear theory, p 
_ 

is the water density, f is the frequency corresponding to 

the centroid of the frequency spectrum, b and 7 are ad- 
justable constants, and Hrms is the root-mean-squared 
wave height. For the data considered here, Hrms pre- 
dicted by the Whitford [1988] model were slightly more 
accurate than those predicted by the similar model of 
Thornton and Guza [1983] used by MKK. For cases in 
which both Whitford [1988] and Thornton and Guza 
[1983] models fit accurately the observed Hrm,, predic- 
tions of the Boussinesq model (7a) are similar regardless 
of the model used to specify D in (7b). 

The focus here is on the frequency dependence of the 
dissipation. The damping coefficient d. (equation (7b)) 
has a frequency-independent part and a frequency-de- 
pendent part given by G(f,). In the following, unless 
otherwise noted, G(f,) = f• as suggested by MKK. 
If F = 1, the damping coefficient d, is independent 
of frequency and the Boussinesq model is equivalent to 
EB and will be called the Eldeberky and Battjes [1996] 
model (EBM). On the other hand, if F is not a priori 
equal unity (but is determined by fitting to the data), 
the model is called the Muse and Kirby [1992] and Kai- 
hatu and Kirby [1995] model (MKKM). 

For the data considered here, including an imaginary 
dissipation term with magnitude equal to the real part 
[Liu, 1990] did not alter significantly the predicted evo- 
lution of spectra, skewness, or asymmetry. Imaginary 
terms in d• are equivalent to changes in the wavenum- 
ber kn in (7a) and are expected to have a negligible 
effect if the imaginary part of d• << k•. 

The model is initialized with Fourier coefficients of 

time series of sea surface elevation observed at the ini- 

tial conditions [Freilich and Guza, 1984]. Results of nu- 
merical integration of (7) are used to calculate predicted 
spectra, significant wave heights (Hs based on the to- 
tal variance of sea surface elevation over the modeled 

frequency band), and skewness and asymmetry at each 
shoreward measurement location. 

3. Beach Profiles and Initial Conditions 

The 10 experimental cases studied include run 1 in 
MKK, test lc in the Delta Flume'93 experiment tAr- 
cilla et al., 1994] used by EB, cases 7, 8, and 9 of Smith 
and Vincent [1992], and five field data sets (09040400, 
09041000, 09041600, 09060100, and 09221600) from the 
Duck 94 field experiment [Elgar et al., 1997]. In both 
the MKK and Smith and Vincent [1992] experiments, 
the bathymetry consisted of a uniformly sloping bottom 
(solid lines in Figures lb and 2c). The anomalous mea- 
surement at the shallowest gage location (h = 0.025 m) 
in run 1 [Kirby and Kaihatu, 1996] is not used in the 
model-data comparisons below. The data for test lc 
were collected on a nearly full-scale, barred laboratory 
beach [Eldeberky and Batties, 1996]. The water depth 
at Duck (solid line in Figure 3b) decreased gradually to 
a small sandbar in about 2-m depth (x/,Xo •0 5.0) and 
was nearly constant (less than 30 cm depth variation) 
between the sandbar and a steep (slope •0 0.1) beachface 
[Elgar et al., 1997]. Changes in the beach profile were 
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Figure 1. (a) Predicted and observed frequency spectra for run 1 at the normalized cross-shore 
location z/Ao = 1.7•, where •0 = 1.68 m is the wavelength corresponding to the centroidal 
frequency of the initial (z/•o = 0) spectrum; (b) corresponding normalized wave height H•/H•o 
(broken lines and open circles) and depth h/ho (solid line), where the initial significant wave 
height Hs0 = 0.07 m and the initial depth h0 - 0.20 m; (c) asymmetry; and (d) skewness 
versus normalized cross-shore coordinate. In each panel, the predictions are shown for F - 0.0 
(dot-dashed line), F = 1.0 (dashed line), and the optimal F (dotted line, in this case F = 0.4). 

small during the 18 days in September when the obser- 
vations discussed here were obtained, but mean water 
depths (at any given cross-shore location) differed by 
as much as 12• cm between runs owing to tidal fluctu- 
ations. 

For each case, the model is initialized at the deep- 
est measurement location such that the water depth 

h0 (given in Table 1) is less than half the deep water 
wavelength of the highest frequency considered. At the 
initial locations, 0.3 < (/oh0) 2 < 0.7, where /• is the 
wavenumber at the centroidal frequency (Table 1), in- 
dicating that the energetic parts of the wave field are 
initially in shallow or intermediate water depth. Fre- 
quency spectra at the initial locations are unimodal 
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Figure 2. Predicted and observed frequency spectra for case 7 at the normalized cross-shore 
locations (a) z/,ko = 2.32 and (b) x/,ko = 3.30 with ,X0 = 2.77 m; (c) corresponding normalized 
wave height H•/H•o (H•0 = 0.14 m, broken lines and open circles) and depth h/ho (h0 = 0.37 m, 
solid line); (d) asymmetry; and (e) skewness versus normalized cross-shore coordinate. In each 
panel, the predictions are shown for F = 0.0 (dot-dashed line), F = 1.0 (dashed line), and the 
optimal F (dotted line, in this case F = 0.1). 
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Figure 3. Same as figure 1, but for data set 09060100. The normalized cross-shore location in 
Figure 3a is x/Ao - 4.95 with A0 - 48.43 m. The initial significant wave height and depth in 
Figure 3b are Hs0 = 1.33 m and h0 = 4.27 m (the solid line in Figure 3b corresponds to the 
barred beach profile). The optimal F = 0.6. 

and broad in laboratory run i (Figure la) and test lc, 
and in the three Duck runs on September 4 (09040400, 
09041000, and 09041600 collected 6 hours apart at dif- 
ferent tidal stages). The selected Smith and Vincent 
[1992] spectra are strongly bimodal at the initial con- 
ditions, with comparable energy in the high-frequency 
"sea" peak and the low-frequency "swell" peak (Fig- 
ure 2a). The moderately energetic wave fields (Hs is 
about 1.35 m at the initial conditions) in Duck runs 
09060100 (Figure 3a) and 09221600 were dominated by 
narrowband swell. 

4. Parameter Specification 

Three free parameters (F, b, and V) in the damped 
Boussinesq model (7) are not determined a Priori or by 
initial conditions. First, values of b and V were obtained 
by minimizing the normalized root-mean-squared error 
between measured and modeled (using equation (8)) to- 
tal energy: 

{ 1 [Emeas(Xn)-Emodel(Xn)]2} 1/2 n [Emeas (•rn)] 2 ' 
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Table 1. Wave Parameters at the Initial Conditions 

Case H•, m fp, Hz f, Hz h0, m DOF fl-f2, Hz M N 

Run 1 0.07 0.6 0.768 0.20 60 0.3-1.8 6 148 
Test lc 0.56 0.122 0.149 4.06 54 0.06-0.4 11 82 

Case 7 0.14 0.4/0.57 0.619 0.37 72 0.2-1.4 7 144 
Case 8 0.14 0.4/0.57 0.594 0.37 72 0.2-1.4 7 144 
Case 9 0.14 0.4/0.5 0.561 0.37 72 0.2-1.4 7 144 
09040400 2.35 0.115 0.165 5.39 120 0.05-0.3 8 154 
09041000 2.22 0.104 0.160 4.50 120 0.05-0.3 8 154 
09041600 2.41 0.109 0.158 5.52 120 0.05-0.3 8 154 
09060100 1.33 0.086 0.127 4.27 120 0.05-0.3 8 154 

09221600 1.43 0.109 0.132 4.59 120 0.05-0.3 8 154 

H, is the significant wave height; fp is the peak frequency; f is the centroid of 
the frequency spectrum; h0 is the depth; DOF is the degrees of freedom; fl-f2 is 
the frequency band modeled; M is the number of measurement locations used for 
model-data comparisons; and N is the number of Fourier components in model 
computations. 

where 

õpgSrms(X ) -- pg 
1 

S(x,f)df, (10) 

and S(x, f) is the energy spectral density, fx and f2 are 
10w- and high-frequency cutoffs, respectively, and M is 
the number of comparison gages (Table 1). The error 
at each location is normalized with the total observed 

energy at that location, so that each measured energy 
is weighted equally in determining the optimal param- 
eters. The optimal values of b (Table 2) are scattered 
over the interval 0.16-0.54. However, with b = B a and 
using the peak frequency (fp) instead of the centroidal 
frequency (f), 0.61 < B < 0.88, which is close to the 
range given by Whitford [1988]. The optimal values of 
7 (Table 2) also fall into the expected range [Lippmann 

et al., 1996]. Although the e0 errors in fitting the total 
energy of bimodal cases (cases 7, 8, and 9 in Table 2) are 
usually larger than the unimodal cases, the errors in the 
total energy are all less than 10%. Neither observations 
nor model predictions near or on the steep shoreface at 
Duck are considered here because the measured total 

energy was not predicted accurately. 
The total dissipation in the nonlinear Boussinesq 

model (equations (6) and (7)) is equal to the dissipa- 
tion (with the same b and 7 values) given by Whitford 
[1988] only when the nonlinear terms in the B•ussinesq 
model are neglected. However, the differences are slight 
when nonlinearity is included, and observed significant 
wave heights are modeled accurately by the damped, 
nonlinear Boussinesq equations with b and 7 values de- 
termined by optimal fits to the Whitford [1988] mode] 
(e.g., see Figures lb, 2c, and 3b). 

Table 2. Parameters Used in Model Predictions 

Bulk Model MKKM EBM 

Case 

Run 1 0.38 0.54 0.05 0.4 0.11 0.31 0.14 0.55 
Test lc 0.24 0.32 0.05 1.0 0.13 0.28 0.13 0.28 
Case 7 0.38 0.31 0.09 0.1 0.12 0.24 0.16 0.71 
Case 8 0.38 0.31 0.09 0.0 0.15 0.20 0.18 0.74 
Case 9 0.40 0.33 0.10 0.0 0.16 0.28 0.18 0.80 
09040400 0.34 0.16 0.05 1.0 0.14 0.56 0.14 0.56 

09041000 0.34 0.24 0.10 0.9 0.12 0.65 0.13 0.68 
09041600 0.34 0.18 0.03 1.0 0.12 0.57 0.12 0.57 
09060100 0.30 0.38 0.06 0.6 0.13 0.63 0.13 0.75 
09221600 0.30 0.42 0.08 1.0 0.13 0.65 0.13 0.65 

The first two "bulk model" columns are 7 and b values from fitting the 
Whitj•ord [1988] model (equation (8)) to observed wave heights. The third 
column is the corresponding energy errors e0 (equation (9)). Spectral errors 
el (equation (11)) are given for models using optimal F values that minimize 
el (MKKM [Mase and Kirby, 1992; Kaihatu and Kirby, 1995] columns) and 
using F = 1.0 (EBM [Eldeberky and Battjes, 1'996] columns). The skewness 
and asymmetry errors e2 (equation (12)) are based on the same values of b, 
7, and F as the el values. 
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After b and 7 values are determined, optimal values 
of F in MKKM are calculated by minimizing spectral 
errors. To avoid weighting too heavily how well the 
spectral peak is modeled (which depends primarily on 
the fidelity of the Whitford [1988] model (8)) and to 
weigh more heavily discrepancies in model predictions 
at high frequencies, F was chosen by minimizing the 
root-mean-squared difference between the logarithms of 
measured and predicted spectra, 

{1 • 1 • f2 e• -- • f2 - f• [log Smeas(•n, f) 1 

•/• --logSmodel(Xn,f)]2df . (11) 

Optimal values of F and the corresponding values of e• 
are given in the columns labeled MKKM in Table 2. 

5. Model-Data Comparisons 

Predicted and observed spectra, significant wave 
heights, and skewness and asymmetry are shown in Fig- 
ures 1-3 for three selected cases. Using optimal values 
of F (Table 2), the observed evolution of spectral shapes 

is modeled qualitatively well in these cases (compare 
solid with dotted lines in Figures la, 2a, 2b, and 3a). 
The evolution of a wave field with a bimodal frequency 
spectrum is modeled about as well as those with uni- 
modal spectra (compare Figures 2a and 2b with Fig- 
ures l a and 3a), and the field data are modeled about 
as well as the laboratory data (compare Figure 3a with 
Figures la, 2a, and 2b). Note that the optimal F - 0.4 
in run 1 (Table 2) is close to the F - 0.5 value used 
by MKK to model this same data set, and the optimal 
F - 1.0 in test lc (Table 2) coincides with the value 
used by EB to model that data set. All 10 cases have 
similar e• errors (0.11 < e• < 0.16) using optimal F 
values (Table 2). 

The optimal F values for the 10 cases span the entire 
possible range from 0.0 to 1.0 (Table 2). However, the 
model predictions are insensitive to the frequency de- 
pendence of the dissipation (i.e., the value of F). Model 
predictions using F = 0.0, F - 1.0, and the optimal F 
are similar (compare broken lines with each other in 
Figures la, 2a, 2b, and 3a). The values of the spectral 
error e• for frequency-independent (F- 1.0)dissipa- 
tion are no more than one third larger than those for 
the optimal F (Table 2). The overall insensitivity of e• 
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Figure 4. (a) Spectral error el (see equation (11)), and (b) skewness and asymmetry error e2 (see equation (12)) versus the dissipation weighting F (see equation (7b)) for five laboratory 

cases. Note the different vertical scales. 
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to variation of F for the five laboratory cases is shown 
in Figure 4a. Results for the field cases are similar (not 
shown). For all 10 cases, e• varies by less than 50% of 
its minimum value over the entire range. 

In contrast to the insensitivity of predicted spectra 
to the frequency dependence of the dissipation, model 
predictions of skewness and asymmetry are sensitive to 
F (Figures lc, ld, 2d, 2e, 3c, and 3d). Skewness is the 
deviation of the fluctuating sea surface from symme- 
try about a horizontal plane and is nonzero for waves 
with sharp crests and broad, flat troughs. Asymmetry 
is related to deviations from symmetry about a vertical 
plane, as occurs if waves are pitched forward [Masuda 
and Kuo, 1981; Elgar and Guza, 1985]. The skewness 
and asymmetry of a linear Gaussian wave field are zero, 
and the nonzero values of the skewness and asymme- 
try characterize the nonsinusoidal shapes of nonlinear 
waves in the sure zone. Errors in the predicted skewness 
and asymmetry are defined here as 

{1 ( t52- • Z [ameas(JIn)- 

q-[$meas(Xn)- $model(ggn)] 2 ) 

amodel (•n)] 2 

•/2 x ([ameas(•n)]2 q- [Smeas(•n)]2) -1 , 

where a is the asymmetry and $ is the skewhess. For 
all the laboratory cases (Figure 4b) and field cases (not 
shown), e2 monotonically increases with increasing F. 
Furthermore, the increase of e2 as F increases from 0.0 
to 1.0 is significant (Figure 4b shows e2 increases by at 
least a factor of 2 as F increases from 0.0 to 1.0 for the 

laboratory cases). For both laboratory and field cases, 
skewhess and asymmetry are predicted best with F = 0, 
corresponding to the strongest frequency dependence 
of dissipation, and predicted poorly with F = 1, cor- 
responding to frequency-independent dissipation (Fig- 
ure 5). 
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Figure 5. Comparison between observed and predicted (top) asymmetry and (bottom) skewness 
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Using an F value smaller than the (usually nonzero) 
F that is optimal for spectral prediction improves signif- 
icantly predictions of skewness and asymmetry with lit- 
tle deterioration in predictions of spectra (Figures 1-3). 
Unless spectral errors are weighted heavily compared to 
skewness and asymmetry errors, F = 0.0 provides the 
best overall fit. 

6. Discussion 

The predicted spectra are not only insensitive to the 
value of F, but are also insensitive to the precise func- 
tional form of the dissipation. Figures 1-3 are based 
on a quadratic frequency dependence (i.e., G(fn)= fn 2 
in (7b)), but the spectral predictions are similar for 
G(fn) = fn • , fn 2, or fn. For example, minimum val- 
ues of e• for f4-dependent dissipation are close to those 
for f2-dependent dissipation, and the dependence on F 
for f4-dependent dissipation remains weak for most of 
the data sets. Errors in skewness and asymmetry pre- 
dictions using G(fn) = fn • are similar to those using 
G(fn) = fn 2 (Figure 4b and Figure 5). 

When the nonlinear terms in the Boussinesq equa- 
tions are suppressed, and all other initial conditions 
and total dissipation parameters (i.e., 7 and b) are 
the same as used in the calculations with nonlinear- 

ity included, predicted high-frequency spectral levels 
are dramatically reduced with decreasing F (Figure 6). 
The contrast between G(fn)= fn 2 model results with 
(Figure 3a) and without (Figure 6)nonlinearity sug- 
gests that nonlinear energy transfers compensate ap- 
proximately for enhanced dissipation at high frequen- 
cies when F is small, resulting in insensitivity of pre- 
dicted high-frequency spectral levels to the value of F. 
Consistent with the suggested importance of nonlinear, 
cross-spectral energy transfers in maintaining energy 
levels at high frequency, additional simulations (not 
shown) indicate that nonlinear energy transfers rapidly 
restore high-frequency energy levels to approximately 
their original nonzero values even when artificially re- 
duced to nearly zero in the initial conditions. 

During propagation across the surf zone, the spectral 
levels in the high-frequency peak of an initial bimodal 
spectra decrease such that at the shallowest gage only 
the low-frequency swell peak remains (e.g., Figure 2b). 
Smith and Vincent [1992] suggested that the preferen- 
tial decay of the sea peak could be caused by a bottom 
friction that increases with increasing frequency, by an 
enhancement of breaking at sea frequencies owing to 
low-frequency orbital velocities, or by resonant inter- 
actions that transfer energy from the sea peak to high 
frequencies where it is rapidly dissipated. Model results 
(Figure 7) [see also Elgar and Guza, 1986] demonstrate 
that nonlinear interactions alone can explain qualita- 
tively the preferential decay of a sea peak. The model 
was initialized in the same water depth and with the 
same Fourier coefficients as for the model-data com- 

parisons (Figure 2), but shoaling and dissipation in the 
subsequent propagation were suppressed by holding the 
depth constant and setting dissipation terms equal to 
zero. Nonlinear interactions alone cause a significant 
decay of the sea peak, transferring energy into both the 
spectral valley between the swell and sea peaks and into 
frequencies lower than the swell peak. The longer dis- 
tances required for the sea peak to decay in constant 
depth (Figure 7) relative to those on a sloping bottom 
(Figure 2) are expected because the decreasing depth 
accelerates the nonlinear energy transfers. 

Dissipation is cumulatively the dominant term in 
spectral evolution across the surf zone. However, lo- 
cal changes in spectral levels resulting from nonlinear 
interactions can exceed dissipation rates [Elgar et al., 
1997], and the interactions between near-resonant en- 
ergy transfers and dissipation are complex. Nonlinear 
energy transfers appear both to maintain energy lev- 
els when dissipation is enhanced at high frequencies by 
breaking and to drain energy preferentially from the 
high-frequency peak of a bimodal spectrum. 

7. Summary 

The frequency dependence of wave-breaking induced 
dissipation is investigated by comparing predictions of 
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Figure 6. Predicted and observed normalized frequency spectra for data set 09060100 at normal- 
ized cross-shore location x/)•o = 4.95. Observations (solid line) and model predictions for F = 0.0 
(dot-dashed line), F = 1.0 (dashed line), and optimal F = 0.6 (dotted line) are shown. The non- 
linear terms in the model have been suppressed, resulting in underprediction of high-frequency 
spectral levels. 
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shallow water wave propagation models based on Boussi- 
nesq equations with field and laboratory observations. 

_ _ 

The range of modeled frequencies is roughly 0.3f-2.5f, 
_ 

where f is the centroidal frequency at the location 
where the model is initialized. The total (frequency- 
integrated) breaking-wave dissipation in the Boussinesq 
model is a priori constrained to yield approximately the 
result of Whitford [1988], with the free parameters se- 
lected to optimize the fit to the observed total energy 
for each experimental case. Observed spectra are com- 
pared with those predicted by the Boussinesq model 
with frequency-independent dissipation that depends 
only on the energy levels at each frequency [after E1- 
deberky and Battjes, 1996], and with a dissipation that 
is weighted toward high frequency through an f2 fre- 
quency dependence [after Mase and Kirby, 1992; Kai- 
hatu and Kirby, 1995]. The different dissipation mod- 
els have not been compared previously with the same 
data sets. For the 10 cases investigated in this study, 
the model-data agreement is similar and qualitatively 
good for both frequency-independent and f2 frequency- 
dependent dissipation. Similar spectral evolution is also 
predicted for an f4 dissipation. The predicted spectral 
levels at high frequencies (e.g., above the spectral peak) 
are insensitive to the frequency dependence of the dis- 
sipation because increased dissipation at high frequen- 
cies is compensated approximately by increased non- 
linear energy transfers. In contrast to the insensitiv- 
ity of predicted spectra, model predictions of skewness 
and asymmetry (statistical measures of wave shapes) 
are sensitive to the frequency dependence of the dissi- 
pation. Frequency-independent dissipation yields poor 
wave shape predictions, whereas frequency-dependent 
dissipation reproduces the observed spatial evolution 
of skewness and asymmetry. Although the extension 
of the Boussinesq equations to breaking waves is ad 
hoc, a dissipation depending on f2 (similar to that sug- 
gested by Mase and Kirby [1992]) reproduces well the 
observed evolution of wave frequency spectra, skewness, 
and asymmetry. 
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