NUMERICALLY SIMULATING NON-GAUSSIAN SEA SURFACES

By Barry Vanhoff,' Steve Elgar,? and R. T. Guza®

ABSTRACT: A technique to simulate non-Gaussian time series with a desired (*‘target’’) power spectrum and
bispectrum is applied to ocean waves. The targets were obtained from observed bottom pressure fluctuations of
shoaling, nonbreaking waves in 2-9 m water depth. The variance (i.e., frequency integrated spectrum), skewness,
and asymmetry (i.e., frequency integrated bispectrum) of the simulated time series compare favorably with the
observations, even for highly skewed and asymmetric near-breaking waves. The mean lengths of groups of high
waves from non-Gaussian simulated time series are closer to observed values than those from Gaussian simu-
lations. The simulations suggest that quadratic phase coupling between waves (of different frequencies) in
shallow water results in longer wave groups than occur with linear, uncoupled waves having the identical power

spectrum.

INTRODUCTION

In this study, a method for generating numerical realizations
of quadratically nonlinear (e.g., non-Gaussian) time series with
a specified (*‘target’’) power spectrum and bispectrum (Van-
hoff and Elgar 1997} is applied to ocean surface waves. Low
amplitude waves have linecar dynamics and Gaussian statistics.
Realizations of Gaussian sea-surface elevation time series with
a specified power spectrum can be generated numerically by
coupling Fourier amplitudes (determined by the spectrum)
with independent, random phases (Rice 1954; Andrew and
Borgman 1981). However, in intermediate-depth and shallow
water (kh = 1, where k is a representative wave number and
k is the depth) quadratic interactions between even moder-
ately energetic Fourier components of the wave field result in
non-Gaussian statistics that are described by the bispectrum
(Hasselmann et al. 1963). The non-Gaussian properties of the
sea surface are not reproduced by a linear combination of Fou-
rier components with random phases, but can be approximated
by numerical simulations that reproduce both the observed am-
plitudes (e.g., power spectrum) and the quadratic phase cou-
pling between components (e.g., bispectrum).

Techniques to gencrate realizations of linear (Gaussian) and
quadratically phase coupled (non-Gaussian) random processes
are briefly reviewed in the next section. Target power spectra
and bispectra are based on observations of nonbreaking ocean
waves in 2—-9 m water depth. Next it is shown that the vari-
ance, skewness, and asymmeiry of numerically simulated sea-
surface elevation time series compare favorably to the ob-
served statistics even for nearly breaking waves. It is shown
in the following section that observed mean lengths of groups
of high waves (mean run length) in shallow water are pre-
dicted better by non-Gaussian than by Gaussian simulations,
and that quadratic nonlinear interactions increase the mean run
length. Conclusions follow.

NUMERICAL SIMULATION OF SEA-SURFACE
ELEVATION TIME SERIES

A discretely sampled sea-surface elevation time series x(n)
can be represented as (Rice 1954)
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where 2K = number of samples; f, = kf,/K; and f, = Nyquist
frequency. The Fourier amplitude C, at frequency £, is

Ce = [2P(f)]'" 2)
where P(f,) = the power spectrum of x(n), defined by
P(f) = E[| XA 3)

where the X(f,) = discrete Fourier coefficients of x(n); and E[ ]
= expected value, or average, operator. If the Fourier phases
&, are random and uniformly distributed on [0, 27) and K >>
1, then x(n) has Gaussian statistics (Rice 1954). Realizations
of a Gaussian sea surface with a specified power spectrum
P(f,) can be generated by coupling the amplitudes C; with
random phases ¢, [(1)).
An alternative representation to (1) is

X

Xn) = >, a, cos(2mfin) + by sin2mfin) (4)

kal

where a,, b, = independent Gaussian distributed random var-
iables with zero mean and variance P(f,). As K — % statistics
of sea surfaces generated with (1) are identical to those using
(4) (Rice 1954). For power spectral shapes typically observed
in the ocean, (1) and {(4) produce sea surfaces with similar
statistics for X as low as 32 (Elgar et al. 1985).

Nonrandom phase relationships between triads of Fourier
components (with frequencies f;, f,, fi...) of a non-Gaussian
random process characterized by quadratic nonlinearities are
described statistically by the bispectrum B(f, f,.) (Hasselmann
et al. 1963). For a discretely sampled process (Haubrich 1965
Kim and Powers 1979)

B(f, fa) = EIX(IXULIX*(fy + f)) &)

If the three Fourier components on the right-hand side of (5)
are independent of each other (e.g., their phases are random
as in a Gaussian process), B(f, f.) = 0. Owing to symmetry
relations, B(f, f.) is completely defined by its values in a
triangle in (f;, f.)-space with vertices at (0, 0), (fur2, fur2), and
(fx» 0) (Hasselmann et al. 1963). See Nikias and Raghuveer
{1987) and Elgar and Chandran (1993} for reviews of bispec-
tra.

Time series with nonzero bispectra cannot be simulated
accurately using (1) or (4). However, a quadratically phase-
coupled time series [with Fourier coefficients X(f,), and spec-
ified power spectrum and bispectrum] can be generated by
passing a Gaussian process [produced by (1) or (4)] through
the quadratic filter (Vanhoff and Elgar 1997)
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where G(f,) = G*(—fy) are Fourier coefficients of a Gaussian
realization with target power spectrum P(f.); and Q(f), fn) =
the second-order Volterra kernel (Schetzen 1980), given in
terms of B(f;, f.) in (9).

The power spectrum [(3)] of a time series simulated using (6) is

Iu
By =EUGHI + D, 10U £ = APENGHPEN G — AP

==ty

Iy

=P+ O, |QUnfi = HEPRIPGL — ) —R=hi=f
Jeu~in
@

Cross-product terms proportional to E[G{f)G*(f0G*(fi — )]
and its conjugate do not appear in (7} because these are iden-
tically zero for the Gaussian G(f;). By constraining O to have
the same symmetry properties as the bispectrum, the simulated
bispectrum [using (6) in (5)] becomes (Vanhoff and Elgar
1997)

B(fis fu) = 20*(fs fIPCPOP(fa) + PUHP(Si + fu)

I
+ PULIPS + [ + 8 D0 QUir fi = F)Q(—fur fo + £2)

Se==In
X QM fy = for fa ¥ LIPCLIPU = fIP(fu + fo)i

~fn = fiofn = Iy (8)

Equating the target bispectrum B [(5)}, to the simulated
bispectrum B [(8)], assuming the last term in (8) is small (dis-
cussed in the following), and solving for Q yields

) BA(f fo)
AP(IP(fa) + PUIP(s + f) + PUDPUE + 1)
©

Summarizing, to generate a realization of a random process
with power spectrum P and bispectrum B, a Gaussian time
series with power spectrum P [generated using (1) or (4)] is
passed through a quadratic filter [(6)] specified by P and B
[(9)]. By repeating the process with new sets of random
phases, independent realizations of a non-Gaussian time series
are produced.

The simulated power spectrum and bispectrum are not gen-
erally identical to their respective targets. For a time series
with nonzero bispectrum, the terms within the summation in
(7) are positive definite, and thus simulated power spectral
levels P(f,) [(7)] exceed the target values P(f.). These errors
can be eliminated by modifying (7), but the fidelity of the
simulated bispectrum is degraded.

For a process with a single phase-coupled triad (f}, fn. fi +
£.). the error in P(f; + f.) depends on |Q(f;, f)|* and the
magnitude of P(f) and P(f,). In the worst case of relatively
low P(fi + fu)

B(f + f.) =~ P(fi + Sl + B(fi £l (10)

where b(f;, f,.) = bicoherence (Haubrich 1965, Kim and Pow-
ers 1979)

(S f)

|B(f:, foll
VPEIPLIP + fo)

The bicoherence indicates the relative amount of quadratic
phase coupling among the components of a triad. For no phase

b/ fa) = an

coupling, b(f, f.) = 0 and P(f, + f,) = P(f, + f.). On the
other hand, if all the energy at f; + £, is phase coupied to that
at f; and f,,, then b(f;, f.) = 1 and P(f; + £,) =~ 2P(f, + fo)-
In general, the error in the simulated power spectrum is a sum
of errors from many partially phase-coupled triads (Vanhoff
and Elgar 1997).

The error in the simulated bispectrum B(f,, £,.), equal to the
summation term on the right-hand side of (8), has contribu-
tions proportional to the sum of products of bicoherences of
triads containing at least one of fi, f.., or fi + f. (Vanhoff and
Elgar 1997). For the case of a single phase-coupled triad, the
error in A is identically zero. With many partially phase-
coupled triads the error in the simulated bispectrum can be
large or small, depending on whether contributions from dif-
ferent terms cancel. For the ocean wave data considered below,
the errors in P and B are not large.

VERIFICATION OF SIMULATION METHODOLOGY

To test the applicability of the methodology to nonlinear
ocean waves, statistics of simulated sea surfaces were com-
pared with those from observations made in shallow water
(depths between 2 and 9 m) near Santa Barbara, Calif., and
near Duck, N.C. Spectra and bispectra of the observed time
series were estimated from 8,192 s records of bottom pressure
(sampled at 2 Hz) converted to sea-surface elevation using
linear finite depth theory. Each record was detrended to re-
move tidal effects, and ensemble averaging was used to form
smoothed spectral estimates with 128 degrees of freedom and
a frequency resolution of 0.0078 Hz. All time series consid-
ered (203 total) satisfy the condition that the linear energy flux
(integrated over the frequency range 0.04-0.3 Hz) was within
15% of the flux concurrently measured in 8—9 m depth (i.e.,
breaking-induced dissipation was not significant). In the most
shoreward records retained, waves were near breaking with
steep forward faces and strong phase coupling between waves
of different frequencies (Elgar and Guza 1985a,b; Elgar et al.
1997). Significant wave heights H,;, (four times the sea-surface
elevation standard deviation) ranged from 20 to 180 cm, the
frequency corresponding to the centroid of the power spectrum
was between 0.071 and 0.185 Hz, and spectral widths [a non-
dimensional parameter related to the shape of the power spec-
trum (Longuet-Higgins 1975)] were between 0.037 and 0.264,

For each observed (target) power spectrum and bispectrum,
100 simulated time series were produced. The power spectra
of the simulated time series are similar to the desired target
(observed) values, with deviations mostly at high frequencies,
as shown in Fig. 1(a) for a narrowband spectrum [H;, = 1 m;
h = 3.7 m; b0.07, 0.07) = 0.8; 4(0.07, 0.14) = 0.7; and NL =
0.70, where NL is defined in the following)]. Near the power-
spectral primary peak frequency [f = 0.07 Hz, Fig. 1(a)} the
sirnulated spectrum is nearly identical to the target spectrum.
At frequencies comresponding to harmonics (f = 0.14 and f =
0.21 Hz) of the primary peak, the simulated spectral values
are roughly 50% higher than observed, consistent with (10).
As expected, the maximum differences between simulated and
target power spectra are smaller for a broad-band wave field
with smaller maximum bicoherence [H,, = 0.6 m; A = 1.5 m;
the maximum b(f;, f.) = 0.4, and ML = 0.6] [Fig. 2(a)]. The
bulk nonlinearity of the wave field is quantified here by NL =
VST + A2, where S and A are sea-surface elevation skewness
and asymmetry, third moments defined respectively as the
mean cube of the time series and the mean cube of the Hilbert
transform (a 90° phase shift) of the time series, each normal-
ized by the 3/2-power of the variance (Elgar and Guza 1985b;
Elgar 1987). The errors in total variance of the simulated time
series (i.e., the integral of the power spectrum over frequency
or, equivalently, the second moment) relative to observed val-
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ues for all data sets are shown in Fig, 3. For small NL, sim-
ulated and observed total variance are nearly identical, and for
the largest values of NL the difference is less than 20%.
Simulated [Figs. 1(d,e) and 2(d.e)] bispectra are similar to
observed values (Figs. 1(b,c) and 2(b,c)). Third moments (the
real and imaginary parts of the bispectrum integrated over bi-
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frequency space) of the simulated wave fields are mostly
within 20% of the target values (Fig. 4). For small values of
NL, the error terms [(observed — simulated)/observed] can be
large owing to a small denominator. Thus, data sets with ap-
proximately zero skewness and/or asymmetry (|S|, |A| <
0.058, the 95% significance level estimated using random
phase simulations of the 203 target power spectra) are not
shown in Fig. 4. Overall, the simulated skewness and asym-
metry are close to the observed values (Fig. 5, all data are
shown). Gaussian simulations yield skewness and asymmetry
values scattered around zero.
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APPLICATION TO WAVE GROUPS

In deep and intermediate-depth water, the statistics of
groups, or funs, of waves exceeding a particular height are
usually consistent with a Gaussian sea surface and are simu-
lated accurately with random phases [(1)] or random Fourier
coefficients [(4)] (Andrew and Borgman 1981; Goda 1983;
Elgar et al. 1984, 1985, Battjes and van Vledder 1984; Lon-
guet-Higgins 1984; Thomas ct al. 1986; Medina and Hudspeth
1990; Liu et al. 1993; and many others). However, in shallow
water, deviations from a Gaussian sea surface are often sig-
nificant and the mean length of groups {mean run length} of
waves greater than the significant wave height increases, as
shown in Fig. 6 (spectra and bispectra for this wave field in
3.7 m depth are shown in Fig. 1). The observed mean run
fengths are larger than predicted by Gaussian simulations, and
are more consistent with non-Gaussian simulations.

Mean run lengths from Gaussian and non-Gaussian simu-
lations are compared to observed values for all data sets in
Fig. 7. The scatter is large owing to the limited statistical sta-
bility of the individual observed run lengths (Eigar et al.
1984). For small nonlinearity NL both simulation methods pre-
dict accurately the observed mean run lengths (Fig. 8, where
individual data points are accumulated into NL bins 0.2 wide
and are plotted at the bin midpoint). As NL increases, errors
in both simulations increase, but errors in the Gaussian sim-
ulated run lengths are twice as large as errors in the non-
Gaussian simulations.

Mean run lengths are well known to increase with increas-
ing spectral width (Goda 1983; and many others), but mean
run lengths also increase with increasing nonlinearity, as
shown in Fig. 9 (where individual data points are accumulated
into NL bins 0.2 wide). After removing the effect of spectral
width, the partial correlation coefficient (0.56) between the 203
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observed mean run lengths and NL is significant at the 99%
level (Jenkins and Watts 1968).

To examine further the effect of nonlinearity on mean run
length, non-Gaussian sea surfaces with identical spectral
widths, but with different NL, were simulated. For a particular
observed spectra and bispectra, the range of NL was obtained
by scaling the target bispectrum by a factor 0 =< o = 1.5. The
sirnulation methodology was altered slightly to eliminate er-
rors in the power spectrum owing to the second term on the
right-hand side of (7), thus producing simulated time series
with constant spectral width and variable NL. The Fourier co-
efficients of the simulated time series are given by

Jor

2R =6 + D, aQfufi ~ NGHCL —f): —Ish=fy

fi=—fy
(12)
which yields power spectra
In
B = Bolf) + D, o QUi /i — PPl fPutf = f:
fym =iy
—W=Ef=Sfy (13)

where G(f) = Fourier coefficients of the Gaussian simulation
with power spectrum B f) chosen using nonlinear minimi-
zation (Gill and Murray 1978) such that the simulated power
spectrurn P( fo [ie., (13)] is identically equal to the target
power spectrum P(f;). Although errors in the simulated power
spectrum (and in the total variance, Fig. 3) are eliminated,
additional errors are introduced into the simulated bispectrum.
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Results of simulations for three spectral widths (SW) were
similar. As « ranged from 0 to 1.5, NL ranged from 0 to 0.9,
and the mean run length increased (Fig. 10). The distribution
of wave heights (Fig. 11 for the SW = 0.23 case in Fig. 10},
as well as mean run length, changes with increasing NL. The
simulated Gaussian (NL = 0) wave heights are close to Ray-
leigh distributed [the theoretical distribation for a linear, nar-
rowband process (Longuet-Higgins 1952}], but when NL = 0.9
the simulations differ significantly (99% level) from Rayleigh
(Fig. 11). The percentage of wave heights greater than the
significant wave height is smaller for the Gaussian (11%) than
for the non-Gaussian (14%) simulations, consistent with the
relatively shorter runs of large waves in the Gaussian simu-
lations.

CONCLUSIONS

A method to simulate non-Gaussian time series with a spec-
ified (target) power spectrum and bispectrum reproduces ac-
curately the cbserved second- and third-order statistics of non-
breaking, shoaling waves. Although the deviations between
simulated and target power spectra and bispectra increase as
the nonlinearity of the wave field increases, the total variance
and normalized third moments (skewness and asymmetry) of
the simulated non-Gaussian sea surfaces were in all cases
within about 20% of their targets. Gaussian simulations have
vanishing third moments. As the nonlinearity increases, the
mean lengths of groups (runs) of high waves observed in shal-
low water (less than 9 m depth) diverge from the predictions
of both Gaussian and non-Gaussian simulations, but are pre-
dicted more accurately by non-Gaussian simulations. The sim-

ulations suggest that quadratic nonlinearity causes an observed
shoreward increase in the mean run lengths of shoaling waves.
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