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Abstract— Statistics of the estimates of tricoherence are ob-
tained analytically for nonlinear harmonic random processes
with known true tricoherence. Expressions are presented for
the bias, variance, and probability distributions of estimates of
tricoherence as functions of the true tricoherence and the number
of realizations averaged in the estimates, The expressions are
applicable to arbitrary higher order coherence and arbitrary
degree of interaction between modes. Theoretical results are
compared with those obtained from numerical simulations of
nonlinear harmonic random processes. Estimation of true values
of tricoherence given observed values is also discussed.

1. INTRODUCTION

RISPECTRAL analysis is useful in the study of nonlinear

random processes characterized by cubic interactions
or by non-Gaussian probability density functions that are
symmetric about their mean value so that the bispectrum
of the process is zero. The trispectrum is one member of
a class of higher order spectra [4}, [5] that can be defined
for a random process and used to identify deviations from
linearity and Gaussianity. Higher order spectra are defined
as Fourier transforms of higher order cumulants of a random
process. Thus, the bispectrum [14], {20], [24] and trispectrum
[8], [22] are the Fourier transforms of the third and fourth
cumulants, respectively. Brillinger and Rosenblat (4], [5]
provide derivations of higher order spectra in continuous- and
discrete-time domains from first principles and also derive
asymptotic statistics of higher order spectral estimates. Dalle
Molle and Hinich {8] and Lutes and Chen (22} provide similar
development of the trispectrum. The trispectrum and the fourth
cumulant are also discussed in Lii and Rosenblatt [21], Dwyer
(9], Marathay er al. {23], and others.

Of particular importance in quantifying nonlinear interac-
tions are normalized (by the power spectrum) higher order
spectra, which are termed higher order coherences. The bi-
coherence and the tricoherence (which are defined in Section
II) are measures of the degree of quadratic and cubic phase

coupling. respectively. A zero value for tricoherence indicates _

no cubic interaction and no phase-coupling between quartets of
Fourier components, whereas a value of unity indicates perfect
phase coupling. For a Gaussian process, it is well known that
all higher order specira, and thus bicoherence and tricoherence,
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are zero. Owing to statistical fluctuations, the estimate of the
bicoherence or tricoherence from a finite record of data will be
nonzero even for a Gaussian process. The estimate has a bias
and a nonzero variance, both of which depend on the true value
of the higher order coherence. To improve statistical reliability,
the data record is usually divided into an ensemble of N
blocks or realizations, and the ensemble averaged estimate
is said to have 2N degrees of freedom (dof) because it is
the average of N complex quantities. Degrees of freedom can
also be obtained by merging neighboring higher order spectral
estimates in frequency space. Asymptotic statistics (for large
dof) of higher order spectra, including statistics of the real
and imaginary parts of the bispectrum, can be found in (3],
[4], [27], and others [24). Estimation and statistical distribution
of bicoherence are discussed in [1], [6], [11], [16]-[18], and
[20]). Dalle Molle and Hinich [8] discuss the statistics of the
trispectrum and its magnitude. Haubrich [16] shows that for a
Gaussian process, the bicoherence (which has a true value of
zero for infinite dof) is approximately chi-squared distributed
with 2 dof (x2), and thus, significance levels for zero bicoher-
ence can be calculated. A similar result is heuristically derived
by Dalle Molle and Hinich [8] for trispectral magnitudes.
However, statistics of bicoherence or tricoherence for arbitrary
true values have never been analytically derived, although the
statistics of bicoherence have been reporied using numerical
simulations {11, [13], and compared with some empirical
formulae similar to those proposed for coherence by Jenkins
and Watts [19] and Benignus [2]. The objective of the present
study is to analytically derive the statistics of the tricoherence
for arbitrary true values, assuming a harmonic model for the
process. The results are verified by numerical simulations. The
statistics are also shown to be identical for all higher order
coherences.

Relevant definitions of higher order spectra are reviewed
in Section II. In Section III, analytical expressions for the
statistical distribution, bias, and variance of estimates of the
wricoherence are derived. The theoretical results are compared
with those obtained from numerical simulations in Section IV,
Procedures to estimate the true value of tricoherence from an
observed value are discussed in Section V. An application to
observations of nonlinearly interacting ocean waves generated
by a hurricane is presented in Section VI. The theoretical
results for tricoherence are extended to arbitrary order in
Section VII, and conclusions follow in Section VIIL

I1. DEFINITIONS

Higher order spectra of stationary, ergodic random processes
are defined as the Fourier transforms of higher order cumu-
lant functions of the process [3]-[5]. Thus, the trispectrum,

1053-587X/94304.00 © 1994 IEEE
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T(f1, f2, fa}, [8], [22] is defined as the Fourier transform of
the fourth cumulant function of the random process z{n) and
may also be expressed (reduced from the Stieltjes integral form
as in Eq. 8 of [8]) as

T(f1, f2: f3) = EIX(A)X(f)X(H)X(fL + f2+ f3)] (D)

where

X(f) is the Fourier transform of a realization of z(n);
f is the frequency;

* is the complex conjugation; and

E[] is the expectation operator.

The trispectrum is a function of a triad of frequencies, and its
definition involves a quartet of Fourier coefficients or modes
where the fourth frequency is the sum of the other three. In
practice, the expectation operation involves averaging over
an ensemble of realizations and/or frequency merging. The
principal domain or nonredundant region of computation of
the trispectrum is discussed in [8] for continuous, bandlimited,
and discrete-time cases. Reference [7] provides a procedure to
derive the nonredundant region of computation of periodogram
estimates of any higher crder spectrum.

When quantifying the degree of phase coupling or nonlinear
interaction between Fourier modes of a random process, it is
useful to normalize the higher order spectra to remove the
dependence on the power at each frequency. The trispectrum
can be normalized using the same methods used for the
bispectrum [16], {20]. Extending the Haubrich [16] bispectral
normalization to the trispectrum yields a normalized trispec-
trum T (f1, fa, f3) given by

EX(f)X(L)X(f)X"(H+ fo+ f3)]
T(f1, fa. f3) =
(uone 1) VP P(f)P(£)P(fL+ fa+ f3) %

where P(f) = E[X(f)X*(f)] is the power at frequency f.
An alternative normalization given by Kim and Powers [20]
for the bispectrum yields

EX(f)X(f2)X(f:)X (L + fo + f3)]
VPL23(f1. fo, RYP(fL+ fa + fa)

T(f,f2. [z} =

where

Praa(f1, fa, f3) = E[X( L)X (f2) X (f3)X*(f1)
x X*(f2)X*(f3)].

The squared magnitude of the normalized trispectrum is called

the tricoherence

t2(f1, fa, f3) = [T (1, fo, f3) “)

and it can be shown using the Cauchy-Schwarz inequality
(which is similar to the proof for bicoherence [20] that 0 <
t2 < 1 if the normalization in (3) is used. If the Fourier
components at frequencies fi, f2, and f3 are statistically
independent, then the estimates of tricoherence obtained using
either normalization are statistically eguivalent. The phase of
the trispectrum is referred to as the triphase. The tricoherence
is a measure of the fraction of the total product of powers at
the frequency quartet, (f1, fa, f3, f1 + f2 + f3), that is owing
to cubicly phase-coupled modes. The statistics of tricoherence
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and computation of the bias and variance for a known true
value of tricoherence are discussed in the following section.

II1. BIAS AND VARIANCE

Given N independent realizations of a stationary, ergodic
random process x(n), say, x;(n),i =1,2,... N, the estimate
of the trispectrum is

N

P forJs) = 37 DK KX ) X2 U+ fo + fo)

i=1

(5)

where X;(f) is the Fourier transform of z;(n). The estimate
of the power at frequency f is given by

N
P() = 5 SNXI (1)) ®
i=1

and the estimate of the tricoherence is

tnz(flny!.f:S)
_ & T IXGUX U)X ()X + fo + S
P(f)P(f2)P(f2)P(f1 + f2 + f3) .

N

Statistical fluctuations of the denominator are small relative
to those of the numerator (see [11], [13], and [16] for bico-
herence), and thus, to a first approximation, it can be assumed
that P(f) = P(f), and the denominator in (7) can be assumed
constant while computing the statistics of the tricoherence
estimate.

A. Gaussian Noise

Claim: The estimate of the tricoherence for Gaussian noise
is approximately ax3 distributed with 2 dof, where o equals
ﬁ, and N is the number of realizations averaged.

Proof: Let z;(n) be the zth realization of a discrete-time,
zero-mean, Gaussian noise process. Let X;(f) be the Fourier
transform of z;(n). Denote

Xi(f1) = an + 5ba
Xi(f2) = ai2 + jbia
Xi(fs) = aiz + jbis
Xi(fs) = Xi(=f1 — f2 — f3) = aia + 3bua

where § = +/—1. Since x;{n) is Gaussian noise, the real and
imaginary part of each Fourier coefficient is also Gaussian
distributed, and

E[a,;k] = E[bik] =0
Blaf) = Bipg,) = 2] _ P

@)
®
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for k = 1,2,3,4, where P(fi.) denotes the power at frequency
fx. The estimate of the trispectrum can be expanded as

N
- 1
T{f1, f2, fi) = N Z(aﬂaigaiaﬂ.,‘q + 7 other terms)

=1

N
21
+iy Z(bilﬂ-i?ﬂiSGM + 7 other terms)

=1

1
= E(Gn +3Gr) (10)

where Gg and Gy are sums of ii.d. random variables and,
thus, will be Gaussian distributed for large N according to the
central limit theorem. Since the real and imaginary parts of
each Fourier coefficient are zero-mean

E|Gg]} = E{Gr] = 0. (11
Note that
E[aflafzaf;,,ai = E[a?ﬂE[aé]E [9?313[‘1;24]
_ P(f1)P(f2)P(f3)P(fs) a2)
16

which is also the variance of each term in the summations
in (10). Since there are 8N terms in each summation, the
variances of Gg and G are equal and are given by

o2 = NP(f)P(f2)P(f3)P(fa)/2.

The normalized trispectrum can then be written as

'j—(f1,f2,f3)= - T(,fl,fzifS) -
JPUDP(R)BU)P(S)

~ T(fl:f25f3)
- VP(R)P(f)PUfs)}P(f4)
(Gr + jG)V2 )

(13)

1
B \/ﬁ(m(fl)P(fZ)P(fS)P(ﬂl)

= —(0n + 101
where Cp and G; are Gaussian with zero mean and unit
variance. It is also known {26] that the sum of the squares of
2 Gaussian random variables of zero mean and unit variance
is 2. Therefore the tricoherence estimate for Gaussian noise
can be written as

(14)

- 1
£2(f1, f2, fa) = ﬁc (15)

where C is x3. The mean of a x3 distribution is 2 and its
variance is 4. Therefore, 2 is axg distributed with bias —1{,-
and variance g for large N.

Approximate formulae for significance levels for the trico-
herence estimate can then be derived from x3 statistics and
are given in Table 1 (this is also given for bicoherence in
{11]). These formulae are confirmed by numerical simulations
in Section IV. The procedure for hypothesis testing of Gaus-
sianity in a stationary random process is explained in [17). For
example, consider a tricoherence test for Gaussianity using an
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TABLE 1
SIGNIFICANCE LEVELS FOR ZERC TRICOHERENCE FOR A GAUsSIAN PROCESS
as A FUNCTION OF N, WHICH 1S THE NUMBER OF REALIZATIONS A

Significance level | Value
80% 3.2/2N
90% 4.6/2N
95% 6.0/2N
99% 9.2/2N

ensemble of N = 128 realizations of a stationary, ergodic
random process. If the nuil hypothesis of Gaussianity is true,
then 95% of the tricoherence values will be expected to be
below 6/256 = 0.234 (Table I).

Statistical stability (i.e., increased dof) may aiso be obtained
by merging neighboring trispeciral estimates in trifrequency
space. If the process is purely Gaussian, than each estimate
combined in the frequency merging yields an additional 2
dof (which is similar to the standard procedure for power
spectal estimation). On the other hand, for a purely deter-
ministic process, the higher order spectral estimates are not
independent, and thus, frequency merging neighboring values
does not increase the dof. For an arbitrary random process, the
increase in the number of dof attained by frequency merging
lies somewhere between these two extremes. A conservative
approach is to increase the dof by the number of frequency
bands merged (as opposed to the number of actual higher
order spectral estimates merged, which equals the cube of
the number of bands merged for tricoherence). For unknown
true values of higher order coherence, model testing may be
necessary to obtain more accurate estimates of the increase in
dof resulting from frequency merging.

For testing if an unknown process deviates from Gaus-
sianity, the entire population of tricoherence values computed
over the principal domain may be used without regard to the
particular quartets of frequencies at which they are defined.
Thus, when an overall test for Gaussianity of the process is
at issue, the results of this section can be used. The statistical
population used for determining the percentage of tricoherence
values above a desired significance level may come from
different frequency quartets in the principal domain. However,
a nonlinearity may be manifested in the statistical dependence
of a particular quartet (perhaps in a background of Gaussian
noise). A test based on a population of tricoherence values,
most of which satisfy the Gaussian hypothesis, may fail to
detect the presence of the phase-coupled (i.e., non-Gaussian)
quartet. In this case, a significance test must be applied to the
quartet in question. In practice, this quartet is often chosen as
one whose frequencies are locations of power spectral peaks
that satisfy the resonance condition for a sum or difference
cubic interaction. The following section is motivated by the
need for applying a significance test for phase coupling at a
particular quartet.

B. Harmonic Processes

A sinusoidal model for the random process and the normal-
ization of (2) will be used here to simplify the apalysis. Thus,



CHANDRAN et al.: STATISTICS OF TRICOHERENCE

the random process z(n) is modeled by

P
z{n) = Z Apcos(27 fon + ¢p) (16)

p=1

where P is the total number of modes, and f;, ¢, are the
frequency and phase of the pth mode, respectively. It is
possible to have more than one mode at the same frequency.
Although, strictly speaking, the harmonic model assumes that
all modes are multiples of some fundamental frequency and is
a special case of the more general sinusoidal model, the term
harmonic model is used here for a sinusoidal model. Unless
otherwise stated, it will be assumed that the phases are uniform
random in the interval [0, 27) and that the amplitudes A, are
deterministic and constant. The amplitudes are not assumed to
be equal but only nonrandom. If the random process z{n) is
a harmonic process consisting of cosinusoids

z(n) = Apcos(2mfin + ¢1) + Az cos(27 fon + ¢2)
+ Az cos(2m fan + ¢3) + Agecos(2m fan + ¢4)
+ Ay cos(2m fan + ¢s) (a7

where fy = fi + fo + f3 and the phases are statistically
independent, the tricoherence at (f1, f2, f3) equals 0. If, on
the other hand, the phases are coupled such that ¢4 = ¢; +
$2 + 3 + ¢dx, where ¢y, is some constant (¢s remains random
and independent), then the tricoherence at (f1, fa, f3) is
__ AL

B A?lc + Air

In practice, however, the tricoherence is estimated from a finite
number of realizations, and the estimate of tricoherence will
not equal the true value. The estimate is biased and has a
nonzero variance, both of which depend on the true value
of the tricoherence. The bias and variance become especially
significant when the true value is very low (e.g., for weakly
nonlinear systems).

1) Harmonic Process with Perfect Phase Coupling: If x(t)
is a harmonic random process with modes at frequencies
fi, fa, fs, and fy, where f4 = f1 + f2 + fs, whose phases
are perfectly coupled such that ¢4 = ¢1 + ¢2 + &3 + ¢x,
where ¢, is a constant, then the triphase ¢, equals ¢, and the
tricoherence is equal to 1. The mean value of the tricoherence
estimate is equal to 1, and its variance is zero. The probability
density function of the estimate is an impulse at the value 1
because the only randomness in the process is in the phases
and for perfect coupling the randomness is cancelled (i.e.,
¢¢ = ¢ with probability 1). Thus, ¢2 = 1 with probability 1.
If the phase coupling is not perfect, resulting from independent
statistical fluctuations in either the phases or the amplitudes,
the tricoherence will be less than 1, and the phase coupling
is said to be partial,

2) Harmonic Process with Partial Phase Coupling: Partial
phase coupling can be accounted for by considering both
phase-coupled and random-phase modes at each frequency.
There may be more than one phase-coupled mode at each
frequency: one for each phase-coupled quartet. However, when
the tricoherence at one particular quartet is being considered,

{2 (18)
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N{1-1%
2t?
(0.0)
- N 12
2(1-1%)
Fig. 1. Region over which the random variables C and & can vary when the

true tricoherence is ¢2. This region is bounded by the straight lines for which
the estimate of the wricoherence is zero (lower line) and one (upper line). NV
is the number of realizations averaged in the estimation.

all modes at this frequency other than the one belonging to
the phase-coupled quartet can be combined into one random-
phase mode. Thus, each Fourier coefficient may be split into a
phase-coupled component and a random-phase component. For
example, X;(f1) = X:e{ f1)+ X (f1), where X, is the phase-
coupled component, and X;,. is the random-phase component.
As shown in Appendix A, an analysis similar to the one for
the Gaussian noise case yields

0 ~ g2 b 2ty/(1 - #?)
where C is x3, G is Gaussian with zero mean and unit
variance, and ¢2, the true value of tricoherence, is the ratio of
the product of the coupled powers at the frequencies fy, fz, fa,
and f1 + fo + fs to the product of the total powers at these
frequencies. If t2 = 0 (19) reduces to (15), and if t2 = 1,
(19) reduces to the result for a perfectly phase-coupled quartet
(zero bias and zero variance).

The random variables €' and G in (i9) are not eptirely
statistically independent because of the constraint 0 < 2 < 1.
Thus, for any given value of C, &G cannot vary from —oco to
oo but must remain confined within certain finite limits, as
shown in Fig. L.

However, C' and G may be assumed to be statistically
independent within this region because a) for any given value
of C, the number of possible values of & is still very large
for large NV, and b) C depends only on the magnitudes of the
random phase components, whereas GG depends on their phases
as well, and the phases of the random phase components can
be reasonably assumed to be statistically independent of their
amplitudes. This assumption simplifies the computation of the
bias and the variance. To compute the mean and variance of
tricoherence, the probability density function (see (19)) and the
range of permissible values for the random variables involved
in this function (see Fig. 1) must be known. The region of
permissible values of C and G is bounded by the line ¢2 =1,
\/g Ve

t

G (19

which intercepts the axes at C = 2N and G =
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(Fig. 1). Further simplification of the analysis is possible by
considering only those values of t* (the true value) for which
this line is either approximately vertical or approximately
horizontal, as described below. The slope of this line is

V=P
tan(6) = o1

3) Vertical Line Approximation: Considering tan(8) > 10
(corresponding to 6 > 84°) as nearly vertical, the range of
true tricoherence for which this approximation holds is given
by

<.

~ 800N +1

Even for a low value of N such as 8, this range corresponds
to tricoherence less than 10~%. Therefore, this is the range
for which the true tricoherence is “close to zero.” For this
assumption, the Gaussian random variable (G may be ignored,
and the bias and variance depend primarily on C. After some
algebraic manipulation, the bias and variance of the estimate
of tricoherence can be written as

1—1¢2
N

var(£2) = (1 I—vtz)z.

The bias and standard deviation are much larger than the true
value of tricoherence itself in this range. Thus, to distinguish
estimates of the tricoherence from zero for low values of 12
requires many dof (large N). The expressions for bias and
variance, however, are of interest because a) they reduce to the
results for Gaussian noise as t2 — 0, and b) the expression for
bias is identical to that given by Benignus [2] for coherence as
a good least-squares fit over a wide range of coherence values.

4) Horizontal Line Approximation: Considering tan(#) <
0.1 (corresponding to 8 < 6°) as nearly horizontal, the range of
true tricoherence for which this approximation holds is given
by

bias(2) =

(20)

and

@0

2> ——
~ 0.08N +1
This is the range for which the true tricoherence may be
regarded as “significantly greater than zero.” The values of
tricoherence that may be regarded as “significantly greater than
zero” depend on the value of N. For example, if N = 128,
this range includes tricoherences from 0.1 to 1. For this range
of true tricoherence, both random variables C' and G must be
taken into account in the computation of the bias and variance.
The region over which they are defined is now a rectangular
strip (Fig. 2) with C defined from 0 to co and G defined from
a to b.

After some algebraic manipulation (Appendix B), the bias
and variance of the estimate of tricoherence can be written as

1-12 + tv1 —t2 [e_azlz B e_b2/2]
N VN«

bias({2) = (22)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 12, DECEMBER 1994

L

(0,0

Fig. 2. Region over which the random variables C and G can vary when
the true tricoherence is significantly greater than zero is shown shaded. This
region can be approximated by a rectangular region bounded by straight lines
G=aand G = b 0 < a< b, tosimplify the computation of the bias
and variance of the tricoherence estimate. N is the number of realizations
averaged in the estimation.

and

. 2N 2 271 _ 42
var(t2)=(1 Nt) +2t (lN t)

X [——1— (ae“‘zl2 —be~/2)

ver
+ erf(b) + erf(—a) — %(e‘“zlz _ 8_52/2)2]

(23)

where erf( ) is the error function

xr
erf(z) = \/_15—;/0 e~V 12y,

The bias and variance of the tricoherence estimate may be
underestimated or overestimated, depending on the particular
values chosen for ¢ and b. Possible choices for a include
a=- %Wt—? and & = —oo, which are at the two extremes
of the £2 = 0 line (see Figs. 1 and 2). Possible choices for b
include b = 4/ %lltﬂ, which is the intercept of the {2 = 1
line with G = 0, and b = 0, which is the same point in the
limit ¢ — 1. Thus

/N t
a=—\————
. 2 V1-¢2

lower bias
higher bias

and

o
b= { NI
Vzoe
provide two estimates of the bias where b = 0 ignores the
positive region of the random variable G and is expected to
yield a bias that is lower than the true value. Similarly
o= {-—\/g Jltﬂ lower variance
—00 higher variance
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80%, simulation
80%, simulation
85%, simulation
9%, simulation

80%, thaory
— 0%, theory
— 5%, theory
— 0%, theory
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2
[
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Fig. 3. 80, 90, 95, and 99% significance levels of tricoherence for Gaussian
noise as a function of the number of realizations IV averaged in the estimate.
(The number of degrees of freedom is 2N).

and
- { lower variance

‘/— ﬂ higher variance

provide two estimates of the variance where the larger region
of integration yields the higher variance. The lower value of
bias and the higher value of variance are closer to the results
of numerical simulations described in the next section. Hence,
these values are proposed here as approximate theoretical
values. Because of the bias-variance tradeoff in spectral esti-
mation, it can be expected that the higher estimate of variance
will be closer to the true variance when the lower estimate of
bias is closer to the true bias. The lower bias is closer to the
values obtained from numerical simulations, probably owing
to the fact that the region shown in Fig. 1 is larger over the
negative half of the G.

IV. NUMERICAL SIMULATIONS

Numerically simulated time series were used to verify the
results obtained analytically in Section lI. Details of the
simulation procedures are explained below for each of the
tests performed.

A. Significance Levels of Zero Tricoherence for Gaussian Noise

Tricoherence values were computed for numerically simu-
lated, zero-mean, unit variance Gaussian noise by averaging
over ¥ 128-point realizations. N was varied from 8 to 512
in muliiples of 2, and for each case, a population of 7106
tricoherence values was sorted and used to determine the 80,
90, 95, and 99% significance levels. These levels are shown
in Fig. 3 along with the theoretical values computed using the
analytical expressions in Table I. The theoretical resuits agree
well with those obtained from numerical simulations even for
N = 8.

B. Bias and Standard Deviation for Gaussian Noise

The tricoherence for Gaussian noise was shown in Section
Il to be x3 with bias 5 and variance §z, which was
numericatly verified using 256-point realizations of simulated,
Zero-mean, unit variance Gaussian noise. Tricoherence values
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simylation.
heory

10 10 1d 10*

Fig. 4. Bias of tricoherence for Gaussian noise as a function of the number
of realizations N averaged in the estimate. The solid line connects theoretical
values, and the dots represent numerically simulated values.

10"

std, deviation

b simulation
theory

10 1w’ 160 16°

Fig. 5. Standard deviation of tricoherence for Gaussian noise as a function of
the number of realizations N averaged in the estimate. The solid line connects
theoretical values, and the dots represent numerically simulated values.

were computed at an arbitrarily chosen triad (f1, fa, f3) of
frequencies, averaging over N realizations, and varying N
from 2 to 256 in multiples of 2. For each N, a population of
100 tricoherence values was obtained for the same triad and
used to compute the bias and standard deviation. Figs. 4 and
5 show the numerically simulated bias and standard deviation,
respectively, along with the theoretical values, as a function N,
There is good agreement between theoretical and numerically
simulated values even for low values of N.

C. Harmonic Random Process with
Arbitrary True Tricoherence

Equations (22) and (23) for the bias and variance of the
tricoherence for a harmenic random process were also tested
using numerically simulated, 256-point realizations of a five-
mode harmonic random process as defined in (17). Three
modes with normalized frequencies, f; = 0.0625, f; =
0.1875, and f3 = 0.25 each had unit amplitudes (A; = As =
A3 = 1) and random phases ¢;, ¢2, ¢3. It is not necessary to
have unit amplitudes, which were chosen here to simplify the
specification of true tricoherence by adjusting the ratio of the
amplitudes of the phase-coupled and random modes at the sum
frequency. A fourth mode with frequency f, = f1+ fo+ f3 had



3436

0.9 ;__"__-—" e ]
g 08 ;___a._—-r —i- —
T o7l A—w - —— B
o i
-E- 08 1 ———— - -~
}.” LT =
B os s > "
g an i -
E 0.3 l
S 2 S o
0.1 ]
o i : ; . . : : ;
16 32 48 §4 80 96 12 128

N

Fig. 6. Bias of tricoherence for a harmonic random process as a function
of the number of realizations N averaged in the estimate for arbitrary true
values ranging from 0.1 to 0.9 in steps of 0.1, Each function is offset vertically
by the true value. Theoretical values are represented by X marks, and those
cotresponding to the same true value are connected by solid lines. Numerically
simulated values are represented by dots. Only those combinations that satisfy
the assumption in Section III-C-2 are plotted.
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Fig. 7. Standard deviation of tricoherence for a harmonic random process
as a function of the number of realizations ¥ averaged in the estimate for
arbitrary true values ranging from 0.1 to 0.9 in steps of 0.1. Each function
is offset vertically by the true value. Theoretical values are represented by
X marks, and those corresponding to the same true value are connected by
solid lines. Numerically simulated values are represented by dots. Only those
combinations that satisfy the assumption in Section I1lI-C-2 are plotted.

phase ¢4 = ¢1+¢2+¢3 and thus was coupled to the phases of
the other three modes in every realization. An additional mode
at frequency f4 had a uniform, random phase. The amplitudes
of the phase-coupled and random phase modes at frequency Sa
were Ay, = t and Ag = V1 — t2, respectively, where t2 is the
true tricoherence desired. Tricoherence values were computed
at (f1, fo, f3) using (7), averaging over N realizations for each
estimate, with N varying from 8 to 128 in multiples of 2 and
¢ varying from 0.1 to 0.9 in steps of 0.1. A population of 100
tricoherences was obtained for each case and used to compute
the bias and the standard deviation. Analytical estimates of
bias and standard deviation were computed using (22) and
(23), respectively, and Mathematica.' The values from the
numerical simulations are compared with theoretical values
in Figs. 6 and 7.

When N > 64, the theoretical values agree very well
with the numerically simulated values. For low values of

15 software package for symbolic and numeric mathematical computation
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N, the agreement is not as good because the horizontal
line approximation (Section I1I-C) involved in computing the
theoretical estimate starts to break down.

V. ESTIMATION OF TRUE TRICOHERENCE

The results of the previous sections describe the statistics
of estimates of tricoherence given the true value t2. This
facilitates the design of experiments to measure tricoherence.
On the other hand, it may be desired to estimate the true value
of tricoherence 2 given an observed value {? estimated from
a limited set of data. In this section, the maximum and the
mean of the likelihood function [19] are discussed as estimates
of the true tricoherence given an observed value. Likelihood
estimation of the true value given an observed value or a few
observed values consists of determining a parameter of the
underlying probability distribution function (pdf) from samples
of the distribution. The pdf is reformulated as a function of
the parameter to be evaluated called the likelihood function.
The value of the parameter that maximizes this likelihood
function is called the maximum likelihood estimate (MLE}.
For the tricoherence, the likelihood function L(t?) is given by
(19), where i2, which is the observed value, is fixed. This is a
straight line in the 2-D space over which random variables C
and G are defined (see Fig. 1 for the region of definition).
To obtain the MLE of the true value, the probability that
C and G lie on this line is computed by integrating their
joint pdf along the line. This probability is then differentiated
with respect to t2 to find the MLE of ¢?. The MLE of the
true tricoherence is therefore difficult to compute analytically,
in general. However, if the true tricoherence is “significantly
greater than zero” as stated in Section III, this line is nearly
horizontal and given by

2 t2 /2
G = Q__)_N. (24)
2tV/1 — 2
The likelihood function is then given by
2
1 1{ (8 -t3)V2
L(?) = —— exp Gl (25)

J2r T2\ ai-12

and the MLE of the true tricoherence is found to be the
observed value itself. Thus, for large N (with true values of
tricoherence significantly greater than zero as stated in Section
II-C), the MLE of the true tricoherence given an observed
value is the observed value.

The mean likelihood estimate [19) (MELE) of the true
tricoherence can be obtained by equating the mean of the
likelihood function to the observed value, £2, or equivalently,
equating the bias (22) to 2 — $2 and solving for 2. Again, it
can be seen from Fig. 6 that when N is large enough for the
true value to be significantly greater than zero, the bias tends
to zero, and therefore, the MELE estimate also tends to the
observed value 2.

V1. APPLICATION

Perturbation expansion solutions to the equations of motion
for ocean waves predict energy transfer between, and phase



i

CHANDRAN et al.: STATISTICS OF TRICOHERENCE

Spectral density (em?/Hz)

o

.

0.10 N :
0.08F < |
0.06 <> _
0.04} :
0.02¢ :
0.00¢L

0.00 0.05 0.10 0.15 -0.20 0.25
f, (Hz)

-

S
O
1,

—
N
T

N

~
—

Fig. 8. (a) Power spectrum and {(b) contours of tricoherence from ocean
waves observed during Hurricane Lili. The tricoherences are for a fixed value
of f1, and thus, the contours indicate possible phase coupling between waves
with frequencies fy, f2, fi, and fa = fi — (fi + f2). The power spectral
peak is approximately (a) fp = 0.08 Hz and (b) f4 = 0.24 Hz, which is
approximately 3 f5. The minimum value of #% plotted is 2 = 0.00025, with
contours every 0.00025. There are at least 3200 dof in the estimates, and the
90% significance level is thus about 0.0014. The measurements are discussed
in more detail in {26].

coupling among, triads and quartets of waves owing to nonlin-
ear quadratic and cubic wave-wave interactions, respectively
[15], [25]. These nonlinear interactions result in non-Gaussian
statistics of the ocean surface and are important in remote
sensing applications. Detection of phase coupling between
waves in the ocean is complicated because the wind-wave
frequency-directional spectra are broad, and there can be a mix
of independent and much less energetic phase-coupled waves
at any particular frequency. Second-order waves resulting from
quadratic interactions have been observed by many investi-
gators (see [10]). Using the statistics of tricoherence derived
above, the question of the existence of much weaker tertiary
waves resulting from cubic nonlinear wave-wave interactions
can be addressed. Tricoherences for large ocean surface gravity
waves produced by Hurricane Lili (October 12, 1990) are
shown in Fig. 8.

According to theory, a tertiary wave with f = 0.24 Hz (=3
fp, where f, = 0.08 Hz is the frequency of the power spectral
primary peak; Fig. 8(a)) could be generated by cubic nonlinear
interactions between energetic waves with frequencies near
f». As shown in Fig. 8(b), £3(fy, fp, f») = 0.0017, which
is significantly different than zero at the 90% level for the
(conservatively estimated) 3200 dof used in the estimates.
Similarly, £2(0.15,0.07,0.02) = 0.0013 (significant at the
80% level), indicating possible phase coupling between waves
with frequencies corresponding to nearly 2f,, f,, a low
frequency (fs == 0.02 Hz), and 3f,. On the other hand, the
tricoherence peak corresponding to (0.10, 0.07, 0.07, 0.24)
is not significantly different from zero. The oceanographic
significance of these interactions is discussed in {12].
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VII. EXTENSIONS

The estimate of the pth-order coherence of a stationary,
ergodic random process may be defined as

I;z(fly L fp)
_ IR ELXA) - X)Xt (o 4+ B
P(f1)- - PUR)P(fi+ -+ f)

(26)

The proof for Gaussian noise in Section III can be easily gen-
eralized to show that estimates of all higher order coherences
for Gaussian noise are approximately ax3. where o = .
The only modifications necessary to the proof are that
* there are 27 terms instead of eight terms in the summa-
tions in (10)
* the product of powers is divided by 2?%! instead of 16
in (12)
« consequently, (13) and the rest of the proof remain
unchanged.

The proofs in the appendices and the equations derived for
the statistics, the bias, and the variance of tricoherence, viz.,
(19), (22), and (23), respectively, are also applicable to any
higher order coherence, with ¢2 denoting the true value of the
appropriate higher order coherence.

VIII. CONCLUSION

Statistics of the tricoherence estimate and expressions for
bias and variance are derived analytically. The tricoherence for
Gaussian noise is shown to be approximately a2 distributed.
The distribution of tricoherence for a harmonic random process
with arbitrary true tricoherence is expressed as a function of
the true value and two random variables, one of which is x%,
whereas the other is Gaussian. Significance levels for zero tri-
coherence are shown to be the same as those for corresponding
zero bicoherence levels. Numerical simulations confirm the
validity of the analytically derived results. MLE’s of the true
tricoherence are shown to approach the observed values when
the true value is above a certain level, which depends on the
number of realizations averaged. The results are generalized
to any higher order spectrum, showing that all higher order
coherences will be approximately crx distributed for Gaussian
noise, and they have similar statistical distributions for phase-
coupled inputs.

APPENDIX A
PROOF FOR PARTIALLY PHASE-COUPLED HARMONIC INPUT

To analyze the partially phase-coupled case, split each
Fourier coefficient included in the quartet of interest into a
phase-coupled and a random-phase component

Xi(fa) = Xic(fn) + Xir(fn)
Qicn + jbicn + Qier + jbicr (27)

where the subscripts ¢ and r refer to the coupled and random
components, respectively, subscript i refers to the ith real-
ization, and n refers to the nth frequency. The periodogram
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estimate of the trispectrum, averaging over N realizations, is
then

N
s, far o) = g7 oKl ) Xielfo) Xl )
x X5(f + f2 + f3)]
N
4 Y Xal )Xl ) Xin (o)
i=1

x X3(fr+ fat f3)
+ similar terms in each of which at least

one factor is a random component].

= Tu(f1, fa, fa) + T fr, f2u f3)

where T, arises from only the phase-coupled components,
whereas T, includes contributions from random phase compo-
nents as well. Further, assume that the random phase part has
a uniform random phase in [0, 27). The proof for a Gaussian
noise process in Section I1I also holds for a harmonic process
with independent uniform random phase modes. If the true
triphase is ¢y and P.(f,) represents the coupled component
of power at frequency fp. then since

|T0(fla f2,.f3)|2 = PC(fl)Pc(fQ)Pc(fS)Pc(f4)
the phase-coupled component of the trispectrum estimate is
Tel f1: far f3) = \/Fc(fﬂpc(fz)Pc(fs)Pc(fq)ej“b"- (28)

where fi = fi1 + f2 + f3. Invoking the central limit theorem
for a sum of i.i.d. random variables, when N is large

Tr(fl!.f21f3) =GR+JGI (29)

where Gg and G; are Gaussian random variables. They
are zero-mean because every random phase component is
assumed to be zero mean. Assuming that the phase of each
individual mode is also symmetric (although sums of two or
more phase-coupled components may have a nonzero mean,
asymmetric distribution yielding nonzero biphase, triphase,
etc.), the variances o, and 0%, of Gr and Gr, respectively,
must be equal. Therefore

» _ Elfelfr, fo, )T s fo, f)]

2 _
OGr = 0G; = 2

= E]]._\f[Pr(fl)Pr(fz)PT(f3)Pr(f4) b

all products of 4 powers with at least one factor

from a random phase mode]

= o (PUPURPUSPUY)
- Pc(fl)Pc(f2)Pc(f3)Pc(f4)]

after some simplifications using statistical independence and
zero-mean properties. The normalized trispectrum (dividing by
the square root of the product of total powers as in (2)) can
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then be expressed as

A ; N A
T(fufofo) = 1% + e (Gt 3Gr) GO
where
p_ PP PSSP .

= TP(f)P(f2)P(fs)P(fa)

is the true value of tricoherence, and Gg and G [ are zero-
mean, unit variance Gaussian random variables. The real and
imaginary parts of the normalized trispectrum are

Vi— £
V2N

R(T(f1, fo. f3)] = tcosd + Gr (32)

and
V1 —t2
V2N

respectively. Using these expressions to deduce the statistical
distribution of the estimates ofhtricohgrcnce and triphase and
making the substitution C = G} + G

S{T(f1, f2, f3)] = tsind + Gy (33)

A — 2 1 -1t2 N ]
2 =1+ (lth )C+2t\/12—Nt (COS¢kGR+Sin¢kG(I3)4)

where C is 2 x3 random variable, and

. tsin gy + Y=k (€l
ér = arctan ( P gk ) . (35)

112 3
tcosdr + o Gr

Since a linear combination of Gaussian random variables is
also Gaussian, the expression for the estimate of the triccher-
ence can be further simplified to

~

_ 42 — $2
t2=t2+(1 t)C+2t\/1 o
2N V2N

(36)

where G is a zero-mean, unit variance Gaussian random
variable.

APPENDIX B
DERIVATION OF EXPRESSIONS FOR Blas AND VARIANCE

Assume the following:

1) The region over which random variables C' and G are
defined in (36) is rectangular and bounded by c=0,
C=oo,G=a,andG=b,wherea.<0<b.

2) C and G are statistically independent.

Let pc and pg represent the probability density functions of
¢ and G, respectively. The density pc is chi-squared with two
degrees of freedom, and pg is Gaussian with zero mean and
unit variance. The means and variances of ¢ and G computed
by integrating over the rectangular region described above are

si= [ o)

= (e—a2/2 _ e-b“/z)
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b
ElG") = / 9°pcdg
= i-(ae_“gf2 - be"bQ/z)
Ve
+ erf(b) + erf(—a) (38)
ElC] = ( cpcdc)
0
=k 39
E[CY = (/ c2pcdc).
0
=8 (40)

Then, the expected value of the tricoherence estimate is
20 o 42 2y 1
E[t?] ~t l1-t")— pode
2 = £ + )QN([O po )

2t/(1 - £2) j"
_— " dg |. 41
+ \/2_N . gpcag ( )

Using (39) and (37), the bias of the estimate of the tricoherence
can be written as

bias(t2) = E[t?] — 12 (42)
_ 32 — 42 .
_1-2 % =2 _ P @)
N vVNT

The variance of the estimate of the tricoherence is

. _2\? e\
var(t?} = (12Nt ) var(C) + _Q%Nt? var(G)
(44)

using the statistical independence of C and . Using
(37)-(40), the variance of the tricoherence estimate can be
written as

var(f2) = (1 ]“V‘z)?

N 212(1 - 2) [ 1
N Vv2m
+ erf(b) + erf(—a)

= L e-"2/2)2]. (45)

(::L.e_"z/2 - be_bz/z)
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