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Higher-order spectra have been used to investigate nonlinear interactions between the Fourier
components of measured time series in a remarkably wide range of random processes. The
basic techniques of detecting and isolating nonlinear phase coupling in observed data using
higher-order spectral analysis are reviewed here. These techniques are then used to investigate
nonlinear interactions in time series of voltages measured from a realization of Chua’s circuit.
For period-doubled limit cycles, quadratic and cubic nonlinear interactions result in phase
coupling and energy exchange between increasing numbers of triads and quartets of Fourier
components as the nonlinearity of the system is increased. For circuit parameters that result
in a chaotic, Rdssler-type attractor, bicoherence and tricoherence spectra indicate that both
quadratic and cubic nonlinear interactions are important to the dynamics. For parameters that
lead to the double-scroll chaotic attractor the bispectrum is zero, but the tricoherences are
high, consistent with the importance of higher-than-second order nonlinear interactions during

chaos associated with the double scroll.

1.

Since their introduction thirty years ago [Hassel-
mann et al., 1963], higher-order spectral techniques,
which isolate nonlinear interactions between the
Fourier components of a time series, have been used
to study many systems. One of the purposes of
the present study is to review the development of
higher-order spectral analysis techniques since the
seminal work of Hasselmann et al. [1963], with
special emphasis on the detection of nonlinearly
induced phase coupling between the Fourier com-
ponents of measured (i.e., observed) time series.
First, the basic techniques of higher-order spectral
analysis will be reviewed by examining numerically
simulated quadratic and cubic nonlinear systems.
Although the application of higher-order spectral
analysis (in particular, the bispectrum) to quadrat-
ically nonlinear systems is well known, trispectral
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analysis has not yet been applied to many mea-
surements, and some new methodology is presented
here. The statistics of estimates of higher-order
spectra obtained from finite-length and/or noisy
measurements are only briefly discussed, with some
references provided for further reading. Once the
basic techniques have been reviewed, they will be
used to investigate the nonlinear interactions be-
tween triads and quartets of Fourier components of
voltages measured in the Chua circuit as it under-
goes a period-doubling cascade to chaos.

The earliest time series analyses consisted pri-
marily of time-domain statistics such as the mean
and variance. Deviations from Gaussianity were
quantified by the skewness and kurtosis. Additional
information about the time series is provided by
the power spectrum, which gives the distribution
of variance as a function of frequency. However,



20 S. Elgar & V. Chandran

the power spectrum has no phase information, and
thus is not sufficient for describing a nonlinear time
series, where Fourier components are not random
relative to each other, but interact and become
phase coupled.

The importance of phase has been utilized in
dynamical systems analysis to investigate nonlinear
processes. Phase space portraits and other phase-
retaining descriptions of the time series have led to
quantitative measures of nonlinear systems such as
the fractal dimension, including the Grassberger-
Procaccia, or correlation dimension [Grassberger &
Procaccia, 1983a, 1983b; Roux et al., 1983, the
averaged pointwise dimension [Farmer et al., 1983],
and the Lyapunov dimension [Frederickson et al.,
1983]. Along with dimension, numerically gener-
ated or experimentally observed time series can be
characterized by power spectra, phase space por-
traits, Poincaré sections, and Lyapunov exponents
[Packard et al., 1980; Wolf et al., 1985; Brandstater
& Swinney, 1987; and many others).

Although these methods of modern nonlinear
dynamics have been extremely valuable for investi-
gating nonlinear systems, they do not present direct
information about nonlinear interactions between
the Fourier components of the system. On the other
hand, higher-order spectral analysis specifically iso-
Jates and quantifies the nonlinearly induced phase
coupling between Fourier modes, and thus provides
information in addition to that given by bulk statis-
tics of the time series (e.g., variance), the power
spectrum, or dimension estimates.

Bispectral analysis isolates the nonlinearly-
induced phase coupling between triads of Fourier
modes in quadratically nonlinear systems. This
phase coupling can lead to cross-spectral transfers
of energy (e.g., growth of super and/or subhar-
monics) and to non-Gaussian statistics (e.g., non-
sinusoidal wave profiles). Bispectral analysis has
been used to study quadratic nonlinear interactions
observed in many nonlinear systems, including eco-
nomic [Godfrey, 1965; Hinich & Patterson, 1989,
biological [Barnett et al., 1971; Huber et al., 1971],
fluid [Yeh & Van Atta, 1973; Lii ef al., 1976;
Helland et al., 1977; Van Atta, 1979; Herring, 1980;
Miksad et al., 1983; Ritz et al., 1988; Hajj et al,
1992, plasma [Kim & Powers, 1978, 1979; Kim
et al., 1980; Arter & Edwards, 1986], oceanographic
[Hasselmann et al., 1963; Rodin & Bendiner, 1973;
Neshyba & Sobey, 1975; McComas & Briscoe, 1980;
Masuda & Kuo, 1981a, b; Elgar & Guza, 1985;

Herbers & Guza, 1992; Herbers et al., 1992; Herbers
et al., 1993], geophysical [Haubrich, 1963; Hinich &
Clay, 1965], acoustical [Hinich et al., 1989], astro-
nomical (Lohmann et al., 1983; Bartelt & Wirnitzer,
1985], mechanical [Sato et al., 1977; Pezeshki ef al.,
1990; Pezeshki et al., 1991; Chandran et al., 1993a,
coupled fluid-mechanical [Choi et al., 1985; Elgar
et al., 1990; Miles et al., 1992], quantum-mechanical
[Miller, 1986], paleoclimatological [Hagelberg et al,,
1991], electrical [Elgar & Kennedy, 1993], and many
other systems.

Trispectral analysis isolates the nonlinearly in-
duced phase coupling between quartets of Fourier
modes in cubically nonlinear systems, and has only
recently been applied to observations of nonlinear
systems [Dalle Molle & Hinich, 1989; Dwyer, 1984,
1989; Lutes & Chen, 1991; Dalle Molle, 1992;
Chandran et al., 1993b].

The references cited above are only a few of the
many applications of higher-order spectral analysis
to observations of nonlinear systems. There is also a
rich literature on other uses of higher-order spectral
analysis, including system identification and signal
reconstruction. These are not discussed here, but
reviews are given by Nikias & Raghuveer [1987),
Mendel [1991], and references therein.

Definitions and properties of higher-order spec-
tra, in particular bispectra and trispectra are pre-
sented in Sec. 2, where examples of quadratic and
cubic nonlinear systems are studied in detail. In
Sec. 3 higher-order spectral analysis is used to inves-
tigate the nonlinear interactions between triads and
quartets of Fourier components in voltages mea-
sured in a realization of the Chua circuit as it
undergoes a period-doubling cascade to chaos.
Previous studies indicate that although quadratic
interactions are important for the limit cycles pre-
ceeding chaos, higher-order nonlinear interactions
often dominate the dynamics in chaos [Miller, 1986;
Elgar et al., 1989; Pezehski et al., 1990; Elgar &
Kennedy, 1993; Chandran et al., 1993b, and oth-
ers]. Consequently, both bispectral and trispectral
analysis of the Chua circuit are presented in Sec. 3.
Conclusions follow in Sec. 4.

2. Definitions, Properties, and
Examples of Higher-Order Spectra
Let a stationary random process be represented as

N
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where ¢t is time, w is the radian frequency, the sub-
script n is a frequency (modal) index, asterisk
indicates complex conjugation, and the A, are com-
plex Fourier coefficients. The auto-bispectrum is
formally defined as the Fourier transform of the
third-order correlation function of the time series
[Hasselmann et al., 1963

Blwr, wy) = (%)Qf_: /_Z (1, )

X WA~ g dr, , (2)
where S(r1, 72} = Elp(t)n(t + m)n(t + )]  (3)

with E[-] the expected-value, or average, operator.
The discrete bispectrum, appropriate for discretely
sampled data, is [Haubrich, 1965; Kim & Powers,
1979]

B(w,, W) = E[Awl szA:;1+w2] . (4)

Similarly, the power spectrum is defined here as
1
P(w1) = 3BlAu, AL, 5)

From Eq. (4) the bispectrum is zero if the
average triple product of Fourier coefficients is zero.
This occurs if the Fourier components are inde-
pendent of each other, i.e., for the random phase
relationships between Fourier modes in a linear
process, such as a time series with Gaussian statis-
tics. Using symmetry properties of Fourier trans-
forms of discrete-time, real-valued processes, the
bispectrum can be shown to be uniquely described
by its values in a bifrequency octant. For a dis-
crete time series with Nyquist frequency wy, the
bispectrum is uniquely defined within a triangle in
(w1, we)-space with vertices at (wr = 0,wz = 0),
(w1 = wnyg, w2 = Wiy2), and (w1 = wy, wa = 0).

It is convenient to recast the bispectrum into
its normalized magnitude and phase, called the
squared bicoherence and biphase, given respectively
by [Kim & Powers, 1979

|B(w1, ws)|?

Povwd) = g d ato—r ©
B(w1, we) = arctan [;:E{B‘TS‘:’I ":3;}} : (7)

For a three-wave system, Kim & Powers [1979)]
show that b%(wi, we) represents the fraction of
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power at frequency w) + w2 owing to quadratic cou-
pling of the three modes (w1, wy, and w1 + we).
No such simple interpretation for the bicoherence
is possible in a broad-band process where a partic-
ular mode may be simultaneously involved in many
interactions [McComas & Briscoe, 1980]. Neverthe-
less, the bicoherence does give an indication of the
relative degree of phase coupling between triads of
Fourier components, with b = 0 for random phase
relationships, and b = 1 for maximum coupling.

The biphase is related to the shape (in a sta-
tistical sense) of the time series [Masuda & Kuo,
1981a; Elgar, 1987].

Cross bispectra between time series simul-
taneously measured at more than one spatial lo-
cation or between colocated, simultaneous time
series of different variables are defined similar to the
auto-bispectrum [Eq. {4)], with the complex Fourier
coefficients (A,,,) of the different time series used
in the expected value operation. Cross bispectra
have been used to study the coupling between tem-
perature, salinity, and density in the ocean [Rodin
& Bendiner, 1973], turbulent flows [Lii & Helland
1981], waves in different locations near the beach
[Elgar & Guza, 1985), ship motions and ocean waves
[Choi et al., 1985], a cylinder and its wake in lami-
nar flow [Elgar et al., 1990], beam vibrations and
external forces [Pezeshki et al, 1992, and other
systems. Similarly, bispectra can be defined for
two-dimensional random processes and have been
used to detect 2-D quadratic phase coupling in
measured spatial series in astronomy [Bartlet &
Wirnitzer, 1985), ocean waves [Chandran & Elgar,
1990; Herbers et al., 1993], pattern recognition
[Raghuveer & Dianat, 1988: Sadler, 1989; Chan-
dran & Elgar, 1993a], and other random processes.

Consider the time series given by

7{t) = cos(wit + 61) + cos(wat + 0,)
+ cos(wst + 03) + n(t) (8)

where w3 = w; + wp and wy = 27(0.0625), wy =
2m(0.1875), w3 = 2(0.2500), 6; is the phase of
each Fourier component and n(t) is low level
(less than 2% of the total variance) background
Gaussian noise. If the three Fourier phases are inde-
pendent and randomly distributed in [0, 27) (Case
A), then a time series consisting of many realiza-
tions with different sets of random phases will have
Gaussian statistics. The power spectrum of such
a time series is shown in Fig. 1, and one realiza-
tion of the time series is shown in Fig. 2a. Since
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the Fourier phases are independent of each other,
b(f1, f2) = 0 (where f = w/(2n) and f; = .0625,
f2 = .1875 Hz), as shown in Fig. 3a. In this case the
biphase, 8(f1, f2) is undefined and is distributed
between L.

If 6, and 6, are randomly distributed in [0, 27)
and 83 = 0; + 6, then aithough each of the three
Fourier phases is randomly distributed, the phase
relationship between the three Fourier components
is not random, and the biphase is 8(f1, f2) = 63—

sl 2 o

o 1 2 3 4 5
frequency (Hz)

Fig. 1. Power spectrum for the time series of Example 1
(Eqgs. (8)-(9)). Despite the differences in the time series ow-
ing to different phase relationships (see text), the power spec-
tra for each case are identical.
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Fig. 2. Amplitude versus time for short sections of the four
time series of Example 1. (a) random phase, (b) phase cou-
pled, 8 = 0, (c) phase coupled, 8 = —m/2, (d) partially phase
coupled. (See text for a complete description.)

(6; + 62) = 0. Such a phase relationship occurs
in a quadratic interaction between the components
at frequencies fi and f2 and their multiplicative
sum frequency, fi. In this case (B), although the
time series has the identical power spectrum as in
Case A (Fig. 1), it does not have Gaussian statis-
tics [Fig. 2(b)], and b(f1, f2) > 0 [Fig. 3(b)]. In
the absence of noise and for 7(t) infinitely long,
b(f1, f2) = 1.0. The low level background noise
reduces slightly the value of the bicoherence by
introducing some random (i.e., independent) com-
ponents at each frequency.

1f 8, and 8, are randomly distributed in [0, 27)
and 83 = 8, + 02+ 7/2 (Case C), the power (Fig. 1)
and bicoherence spectra [Fig. 3(c)] are identical to
Case B [Fig. 3(b)], but B(f1, f2) = —7/2, and the
time series has a different shape [Fig. 2(c)] than
when B(f1, f2) = 0. Unlike a Gaussian process,
time series with B(f1, f2) = 0 have nonzero skew-
ness (the mean of the cube of the time series, nor-
malized by the variance), and are characterized by
wave profiles that have sharp peaks, and broad,
flat troughs [an asymmetry with respect to a hor-
izontal axis, Fig. 2(b)]. As shown by Hasslemann
et al. [1963) the distribution of third moments in
bifrequency space is given by the bispectrum, sim-
ilar to the distribution of variance given by the
power spectrum. The skewness is the sum of the
real parts of the bispectrum. For a time series with
B(f1, f2) = —n/2, the skewness is zero, but the
time series is asymmetrical with respect to a ver-
tical axis [e.g., 20 < time < 35 in Fig. 2(c}), and
is characterized by fore-aft asymmetric wave forms
(e.g., the steep front faces and gently sloping rear
faces of nearly breaking ocean waves) [Masuda &
Kuo, 1981a; Elgar & Guza, 1985; Elgar, 1987]. A
quantity analogous to skewness, called the asym-
metry is the sum of the imaginary parts of the bis-
pectrum (asymmetry is the skewness of the Hilbert
transform (a phase shift by 7/2) of the time series
[Elgar & Guza, 1985; Elgar, 1987]).

In general, the Fourier components of a non-
linear random process are partially coupled, as
opposed to the complete coupling (neglecting the
additive noise) in the cases discussed above. If the
Fourier component of the sum frequency (ws) of
the example time series in Eq. (8) is given by

cos(wst + 63) = Bcos(w3t + B3;)

+4/1 = B2 cos{wst +63,), (9)
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Fig. 3. Bicoherence spectra for the time series of Example 1. Color contours indicate quadratic phase coupling between
motions with frequencies fi, f2, fi + f2. The minimum contour plotted is b = 0.2 and the scale for the contours is given by
the color bar at the top of the figure. This scale is used in all subsequent color figures. (a) random phase, (b) phase coupled,

B =0, (c) phase coupled, 3 =

where 63. = 61 + 03, 63, is randomly distributed,
and b = 0.8, then at frequency w; the time series
contains both a coupled triad of Fourier components
(with phases 81, 62, 85.) and a random component
(with phase 63,). The bicoherence (in the absence of
noise) is b(f1, f2) = 0.8, and is only slightly reduced
by the background noise, as shown in Fig. 3(d). The
power spectrum (Fig. 1) remains identical to the
other three cases and the time series [Fig. 2(d)] is
non-Gaussian.

Similar to the bispectrum, the auto-trispectrum
is formally defined as the Fourier transform of the
fourth-order auto-correlation. The discrete trispec-
trum is thus

T(wls Wa, W3) = E[Awl A"92‘4‘03A:J1+W2+w3] . (10)

The normalized magnitude and phase of the trispec-
trum are known as the squared tricoherence, t2 and
triphase, respectively, where (see Chandran et al.
[1993a] for alternative normalizations)

|T(w1’ wa, w3) :
E“AwlAmAwa|2]E[|Aw1+w2+W3|2] ’
(11)

t* (w1, wa, w3) =

w2, (d) partially phase coupled.

The tricoherence is a measure of the fraction of
the power of the quartet of Fourier components
(w1, wo, w3, wit243) that is owing to cubic nonlin-
ear interactions.

Owing to symmetry relations, the trispectrum
need be calculated only in a subset of the complete
(w1, wa, ws)-space. For sum interactions, this re-
duced region of computation is a tetrahedron with
base (lying on the plane w3 = 0) equal to the tri-
angle given above for the region of computation
of the bispectrum and with apex given by (w; =
wn/3, we = wN/3, w3 = wy/3). For difference
interactions an additional region is necessary
(Chandran & Elgar, 1993b). These regions assume
there is no spectral aliasing (i.e., the time series
has no energy above frequency = wy). Complete
descriptions of nonredundant regions of computa-
tion for general higher-order spectra are given by
Dalle Molle [1992] and Chandran & Elgar [1993b].
In many cases, the sum interactions are sufficient,
and the display of the tricoherence {(which is a func-
tion of three variables) can be simplified and shown
as contours drawn in the two-dimensional {w;, ws)-
space for fixed values of the sum frequency, wy =
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wq + wo + ws, as shown in Fig. 4. By repeating
for different values of wy, all the information con-
tained in the trispectrum is displayed. In the ex-
ample display (Fig. 4) ws = 0.75, and given any
point in the figure (i.e., given values for w; and ws),
ws is uniquely determined. The point labelled A
in Fig. 4 corresponds to the quartet consisting of
(w1 = w2 = wg = wy/3). Along the line from point
A to point B, w1 = we, and w3 = w4 — 2w;. Point B
corresponds to w1 = wp = w4/2 and w3 = 0. From
point B to point C, w3 = 0 and we = wq — w1. At
point C, wp = wg = 0 and w; = wy. Between point
C and point A, w2 = 3(ws—w1) and w3 = wy. Lines
parallel to BC have w; + wo = congtant and thus
the line AB can serve as an w3 axis.
Consider the time series given by

n(t) =cos(wt+61)+b cos(2wt+26;)
+4/1-B2 cos(2wt+82, )+t cos(3wt+361)
(12)

where 81, 62,, and 83, are uniformly distributed in
[0, 27), and w = 27(0.0625). The corresponding
power spectrum is shown in Fig. 5. Thus, n{t) con-
sists primarily of three Fourier components, whose
dependence on each other is given by the values of b
and £. If b = £ = 0 then, when averaged over many
realizations of the random process, the Fourier com-
ponents are statistically independent and both the
bicoherence and tricoherence are zero, as shown in
Figs. 6(a) and 7(a). If b= 0.9 and { = 0, the process
consists of a triad of quadratically phase coupled
components (f1, fi1, 2f1), but no cubically coupled
components. Thus, b(f1, f1) = 0.9 [Fig. 6(b)] and
the tricoherence = 0 [Fig. 7(b)]. On the other hand,

+1/1—#2 cos(3wt+83,+n(t),
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Fig. 4. The nonredundant region of computation of the tri-
coherence for sum interactions {wq = w1 + w2 + w3, and all
frequencies are greater than zero) for a particular (constant)
wyq (wa = 0.75 in the figure).

1)
o
N

power (dBs)

H
o

'60 . L 1

o 1 2 3 4 5
frequency (Hz)
Fig. 5. Power spectrum for the time series of Example 2

[Eq. (12)]. Despite the differences in the time series (see
text), the power spectra for each case are identical.

if b = 0 and £ = 0.9 the process has no quadratically
coupled components [Fig. 6(c)], but contains a cubi-
cally phase coupled quartet and t(f1, f1, fi) = 0.9
[Fig. 7(c)]. b ={ = 0.9, there are two quadrat-
ically coupled triads [f1, f1, 214, and f1, 2f1, 3f1,
Fig. 6(d)] and a cubically coupled quartet [f1, fi,
fls 3f1a Flg 7(d)]

For the examples discussed above, the back-
ground noise level is low, and reduces only slightly
the observed bicoherence and tricoherence from the
noise-free values. Many observed time series have
significantly larger background noise levels, but
higher-order spectra are zero for nonphase-coupled
Fourier components, including components with
power owing to random noise. Thus, higher-order
spectral analysis can detect even relatively weak
nonlinear phase coupling in the presence of linear
components and/or significant noise. However, to
determine if observed values of higher-order coher-
ences are significant (as opposed to being the
result of statistical fluctuations) the statistics of es-
timates of higher-order spectra must be known. For
example, even a truly Gaussian process will have
a nonzero higher-order spectrum if a finite-length
time series is examined. Beginning with Brillinger
[1965], Rosenblatt & Van Ness [1965], and Brillinger
& Rosenblatt [1967a, b] there have been many stud-
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Fig. 6. Bjcohergnce spectra for the time series of Example 2. The format is the same as Fig. 3. (a) b=f=0, (b) & = 0.9,
t=0,(c)5=0,t=0.9, (d) b={ = 0.9 (See text for complete description of the time series.)
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Fig. 7. Tricoherence spectra for the time series of Example 2. In each panel f; = 0.1875 Hz, and color contours indicate
cubic phase coupling between motions with frequencies f1, fa, f3, fi = Sf1 + f2 + f3.(See Fig. 4 and accompanying text for a
complete description of the format.) The minimum contour plotted is ¢ = 0.2 and the scale for the contours is given by the
color bar at the top of Fig. 3. (a) b={=0, (b) b=0.9,£=0, (c) b=0, {=0.9, (d) b= = 0.9.

ies of the statistics of estimates of higher-order
spectra. These are not reviewed in detail here.
Haubrich [1965], Hinich & Clay [1968], Kim &
Powers [1979], Elgar & Guza [1988], Elgar & Sebert
[1989], Chandran & Elgar [1991], and others dis-
cuss the statistics of estimates of bicoherence and
biphase. Statistical properties of trispectral esti-
mates are discussed by Dalle Molle & Hinich [1989),

Kim [1991], and Chandran et al. {1993b).
A 95% significance level on zero bicoherence is
given by Haubrich [1965] as

base, = 6/d.o.f. (13)

where d.o.f. is the number of degrees of freedom
used in the estimate of the bicoherence. Thus, there
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is only a 5% chance that a bicoherence estimate
would exceed this value if the process were truly
Gaussian. Chandran et al. [1993b] demonstrate that
this relationship holds for any higher-order coher-
ence, and give expressions for other significance
levels. Similarly, given an observed (i.e., estimated)
higher-order coherence from a finite-length data
record, the most likely true value can be deter-
mined using maximum likelihood techniques [Elgar
& Sebert, 1989; Chandran et al., 1993b]. Elgar &
Sebert [1989)] also discuss the statistical fluctuations
associated with estimates of the biphase.

Similar to power spectral estimates, higher-
order spectra are subject to corruption owing to
spectral leakage [Subba Rao & Gabr, 1984;
Chandran & Elgar, 1991] and/or smearing (owing
to finite record lengths and smoothing to reduce sta-
tistical fluctuations). For the examples presented
above, and for the analysis of the Chua circuit pre-
sented below, tests with different spectral windows
and record lengths indicate that the conclusions
based on the power spectra and higher-order spec-
tra presented here are not significantly affected by
leakage or smearing.

3. Higher-Order Spectra of
Chua’s Circuit

In this section higher-order spectral analysis is
applied to data obtained from Chua’s circuit
[Matsumoto, 1984; Chua. et al., 1985]. In partic-
ular, a single state variable is analyzed as the sys-
tem follows a period-doubling route to chaos to
determine which Fourier components are interact-
ing with each other. Higher-order spectra suggest
that both quadratic and cubic nonlinear interac-
tions are important during the period-doubling
cascade. A chaotic state which results from this
period-doubling cascade corresponds to a Rdssler-
like attractor. Although the Rossler equations are
quadratically nonlinear [Thompson & Stewart, 1986
and references therein], while Chua’s equation is
piecewise-linear, bispectral analysis suggests that
quadratic nonlinear modal interactions are impor-
tant in both cases.

In contrast, the double-scroll chaotic attractor
which appears in Chua’s circuit [Chua et al., 1985,
Matsumoto et al., 1985] is not dominated by quad-
ratic nonlinearities, as demonstrated by low bico-
herence values. On the other hand, tricoherence
analysis suggests that cubic interactions play an
important role in the double scroll.

3.1. Chua’s Circuit

Chua’s circuit (Fig. 8) consists of a linear inductor
L, two linear capacitors C; and C2, a linear resis-
tor R, and a nonlinear resistor Np. This circuit
is described by a set of three ordinary differential
equations [Chua et al., 1985; Zhong & Ayrom, 1985]

dv
C'1 dfl = G(UCQ - ‘Ucl) - g('UCl) 3
d
Ca Z? = G(ve, — vg,) + 4L, (14)
dir, _
Lg = voe

where v¢, and vc, are the voltages across capacitors
C, and Cj; respectively, and iy, is the current flow-
ing upwards through the inductor. G denotes the
conductance of R(G = 1/R) and g(') is a piecewise-
linear function relating the current in the resistor
[g(vr)] to the voltage (vr):

9(vR) =movr+0.5(m1—mo){Jvr+Bp| = |vr—Bpl) .
(15)

The slope of the current versus voltage curve
changes from mg to m; when the voltage changes
in absolute value from greater than B, to less than
B,. Chua's circuit has been studied extensively
both experimentally and analytically and exhibits
every type of bifurcation and attractor reported for
a third-order continuous time dynamical system (for
a comprehensive bibliography of papers on Chua’s
circuit see Kennedy [1992al).

Realizations of Chua’s circuit can be obtained

— W/
+ +

'm
+

L
% —_— Y2 Yor—— 'R
c2

Fig- 8. Chua’s circuit, consisting of a linear inductor, L, a
linear resistor, R, two linear capacitors, C1, Cz, and a nonlin-
ear resistor, Ng. Dimensional values for the circuit parame-
ters are given in the text.



using standard or custom-made components. While
the linear elements are readily available as two-
terminal devices, the nonlinear resistor (a Chua.
diode [Kennedy, 1992a]) must be constructed from
active circuit elements. The implementation of
Chua’s circuit used in the present study is discussed
in Kennedy [1992b] and Elgar & Kennedy [1993].
Here, Ng consists of a negative impedance con-
verter and two ideal-diode subcircuits [Chua. et al.,
1987] which determine the breakpoints B, in the
v — ¢ characteristic [Eq. (15)]. A complete list of
the circuit elements used here is given in Elgar &
Kennedy (1993]. The nonlinearity of the system
is varied by fixing all components except the ca-
pacitance C;. Larger values of C; correspond to
greater nonlinearity. For the data discussed here,
Cy = 1785 nF, R = 1.001 k2, L = 12.44 mH,
By, =1V, my=-0.712, and m; = —1.14.

3.2. Ezxperimental results for
Chua’s circuit

A period-doubling sequence and two chaotic states,
corresponding to a Réssler attractor (a model of the
Lorenz attractor, Thompson & Stewart [1986] and
references therein) and to the double scroll [Chua
et al., 1985, Matsumoto et al., 1985] were examined.

Five time series of the voltage waveform ve,
for five different values of the capacitance
(Table 1) were recorded. Analog-to-digital conver-
sion was achieved by means of a 16-bit data ac-
quisition board with fourth-order lowpass (20 kHz
corner frequency) filters. The data acquisition
board was preceded by an amplifier whose gain was
adjusted to match the signal level to the input
dynamic range of the convertor. The sampling fre-
quency was 49.9 kHz.

Table 1. Values of C; for the five case studies
of the Chua circuit discussed in the text.

Case Ci(nF}
Period 1 17.5
Period 2 17.2
Period 4 16.9
Rossler 16.6
Double scroll 15.0

Power and higher-order spectra were calculated
by subdividing the voltage time series into 384 short
records, each 256 points long. A Hanning window
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with 75% overlap was applied to each short time
series to reduce spectral leakage, and power and
higher-order spectra from each of the 384 records
were ensemble averaged producing estimates with
about 768 degrees of freedom and a final frequency
resolution of 0.195 kHz. There are several sources
of noise in these data. The circuit elements are not
perfect and both the analog to digital conversion
and finite-word length computations cause some
truncation (roundoff) of the signal. Nevertheless,
although the data from the Chua circuit are mea-
sured voltages, the noise levels are extremely low.
In a deterministic system there are no random phase
relationships between the Fourier components, and
all higher-order coherences are 1. In the presence
of very low background noise, spectral leakage ow-
ing to finite record lengths can result in artifically
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Fig. 9. Power spectra of voltage v, measured from Chua’s
circuit. (a) period-1 limit cycle, (b) period-2 limit cycle, and
(c) period-4 limit cycle. The corresponding values of the
capacitance, Cy are given in Table 1. The units of power are
arbitrary.
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large higher-order coherences for Fourier triads and
quartets with one or more very low energy compo-
nents. Both to avoid such artifacts and to demon-
strate the power of higher-order spectral analysis to
detect nonlinear interactions in a random process
with significant background noise, Gaussian noise
(less than 2% of the total variance) was added to
the measured voltages for the cases discussed below.

The harmonic structure of the limit cycles is
clearly displayed in the power spectra (Fig. 9),
which are characterized by narrow peaks. For
period-1 motion, the spectrum is dominated by a
primary spectral peak with frequency f = 2.5 kHz,
and its higher harmonics. As C is increased, the
subharmonic (f = 1.25 kHz) is excited [pericd-2
motion, Fig. 9(b)] and, owing to nonlinear inter-
actions the spectrum contains peaks at frequencies
corresponding to sum interactions of the subhar-
monic, the primary, and their harmonics. As Ci
is increased further, another period-doubling oc-
curs (f = 0.625 kHz is excited, period-4 motion),
and the power spectrum [Fig. 9(c)] contains many
peaks, corresponding to the two subharmonics, the
primary, and their combination tones.

The quadratic and cubic interactions between
triads of Fourier components for the limit cycles
of Chua's circuit are isolated by bicoherence and
tricoherence spectra (Figs. 10 and 11). For the
period-1 case, bicoherence spectra clearly show the
quadratic coupling between motions at the primary
spectral peak frequency and its harmonics [f; = 2.5,
f2 = 2.5 and f; = 5.0, fo = 2.5 kHz, Fig. 10(a)].
The high bicoherence values associated with fz =
2.5 kHz [Fig. 10(a)] indicate nonlinear energy trans-
fer from the primary to higher-frequency compo-
nents. The quadratic interactions are restricted to
triads of Fourier components that include the
primary and its harmonics. Cubic interactions also
occur for period-1 motion, as shown in Fig. 11, and
there is strong coupling among the quartet of com-
ponents consisting of fi = fa = fi = 2.5 and
f4 = 7.5 kHz [Fig. 11(d)], a self-self cubic interac-
tion transferring energy from motions at the power
spectral peak frequency (f = 2.5 kHz) to those at
three times the peak frequency (f = 7.5 kHz), as
well as between the primary and higher harmonics
[e'g“r Hh =5 fa = 2.5, f3 = 2.5, J1s = 10 kHz,
Fig. 11(g)].

Power spectra for the period-2 case [Fig. 9(b))
show narrow peaks between the harmonics of the
primary peak. The corresponding bicoherence spec-
trum [Fig. 10(b)] shows the coupling between mo-

0 2 4 6 8 10
f, (kHz)

Fig. 10. Bicoherence spectra of voltage vc, measured from
Chua’s circuit. (a) period-1 limit cycle, (b) period-2 limit
cycle, and (c) period-4 limit cycle. The format is the same
as Fig. 3.

tions at the primary peak frequency (f = 2.5 kHz),
its harmonics, the period-doubled frequency (sub-
harmonic, f = 1.25 kHz), and its harmonics.
Quadratic interactions between oscillations at the
primary and the period-doubled subharmonic are
transferring energy into higher harmonics. Simi-
larly, there are strong cubic interactions between
the subharmonic and the primary [Fig. 11(b)], as
well as between the subharmonic and higher fre-
quency motions (the range of significant tricoher-
ences for period-2 motion, f; = 7.5 and f3 = 10kHz
[Figs. 11(e), (h)] include more low frequency compo-
nents than the period-1 motion tricoherences
[Figs. 11(d), (g)]-

For period-4 motion an additional subharmonic
is excited (f = 0.625 kHz), and the power
[Fig. 9(c)], bicoherence [Fig. 10(c}], and tricoher-
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Fig. 11. Tricoherence spectra of voltage v, measured from Chua's circuit. The rows of panels are [top, (a, d, g)] period-1
limit cycle, [middle, (b, e, h)] period-2 limit cycle, and [bottom (c, £, i)] period-4 limit cycle. The columns are for constant
sum frequencies [left (a, b, )] f4 = 2.5, [center (4, e, f)] f4 = 5, and [right (g, h, )] fa = 10 kHz. The format of each panel is

the same as Fig. 7.

ence [Figs. 11(c), (f), (i)] spectra contain peaks
associated with the primary (f = 2.5 kHz), both
subharmeonics (f = 1.25 kHz and f = 0.625 kHz),
and all their combination tones. The higher-order
spectra indicate that these interactions are quad-
ratic and cubic, and delineate precisely which
Fourier components are interacting with each other.

Time series corresponding to the Réssler at-
tractor exhibit similarities to, and differences from,
the period-doubling sequences shown in Figs. 9-11.
The Rassler-like attractor is chaotic and has a fairly
broad power spectrum [Fig. 12(a)] with only rem-
nants of the sharp primary and harmonic peaks of
the period-doubled cases [Fig. 9]. However, as can
be seen in the bicoherence [Fig. 12(b)] and trico-
herence (Fig. 13) spectra, both quadratic and cubic
interactions are still important. Motions corre-
sponding to the remnant of the primary peak
(f2 = 2.5 kHz) are quadratically coupled to both
higher frequencies [horizontal band of contours at
f2 = 2.5 kHz in Fig. 12(b)] and to lower frequencies
(vertical band of contours at f; = 2.5 kHz). Weaker
quadratic interactions occur between motions at the
harmonics (f = 5.0 and f = 7.5 kHz) of the primary
spectral peak and both higher- and lower-frequency
motions. Bicoherences are statistically significant

for many frequency triads, indicating that quadratic
nonlinear interactions occur between nearly all the
frequency components of the Rdssler system. Cu-
bic nonlinear interactions (Fig. 13), although indi-
vidually weaker than the quadratic interactions are
also important in the Réssler attractor, and occur
between nearly all the components of the system.
Unlike the period-doubled and Réossler attrac-
tors, the double scroll is not dominated by quadratic
interactions. The double-scroll attractor is charac-
terized by a very broad power spectrum [Fig. 14(a)],
with only a vestige of the primary peak (f =
2.5 kHz) and much more energetic low-frequency
motions [compare Fig. 14(a) to Figs. 9 and 12(a)].
There are no statistically significant bicoherences
[Fig. 14(b)], indicating that the nonlinearities for
the double scroll are not quadratic. A Réssler-type
attractor in Chua’s circuit is confined to two regions
of the piecewise-linearity. In contrast, trajectories
in the double scroll visit all three regions. While a
two-segment nonlinearity can be approximated by a
quadratic, the three-segment nonlinearity requires
a higher-order approximation. Since the motion
is global in nature, the absolute value term dom-
inates the motion, thus leaving only an insignifi-
cant amount of quadratic phase coupling and energy
transfer in the system’s motion. Similar behavior
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= 80
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Fig. 12. (a) Power spectrum and (b) contours of bicoher-
ence of voltage ve, measured from Chua’s circuit when the
system exhibits a Réssler-like attractor. The units of power
are arbitrary and the format of the bicoherence spectrum is
the same as Fig. 3.

has been observed in the driven Sine—Gordon chain
[Milier, 1986] and the Duffing equation [Pezeshki
et al., 1990; Chandran et al., 1993a]. Higher-than-
second order spectra are required to isolate the
individual interacting Fourier components for the
double scroll. As shown by the tricoherence spectra
(Fig. 15), although the strength of individual cubic
interactions is not as great as in some of the cases
discussed above, many of the Fourier components
of the double-scroll system are cubically coupled to
each other. Tricoherence spectra suggest that in-
teractions involving low frequency components are
important to the dynamics of the double scroll (i.e.,
there are many cubically coupled triads involving
low frequencies for the double scroll, as shown in
Fig. 15). Similar importance of nonlinear interac-
tions involving very low frequency components has
been observed in other chaotic systems [Miksad et
al., 1983; Elgar et al., 1989; Pezeshki et al., 1990;
Chandran et al., 1993a, and others].

t, (kHz)

f, (kHz)

f, (kHz)
X 2
y v
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Fig. 13. Tricoherence spectra of voltage vc, measured from
Chua's circuit when the system exhibits a Rossler-like
attractor. The constant sum frequencies are (a) fi = 2.5,
(b) fs =5, and (c) fa = 10 kHz.

{2)
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Fig. 14. (a) Power spectrum and (b) contours of bicoberence
of voltage vg, measured from the double-scroll attractor in
Chua’s circuit. The units of power are arbitrary and the
format of the bicoherence spectrum is the same as Fig. 3.
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Fig. 15. Tricoherence spectra of voltage ve, measured from
the double-scroll attractor in Chua’s circuit. The constant
sum frequencies are (a) fy = 2.5, (b) f4 = 5, and (c) f; =
10 kHz.

4, Conclusions

Higher-order spectral analysis detects and isolates
the phase coupling caused by nonlinear interactions
between the Fourier components of a random pro-
cess. Quadratic nonlinear interactions between tri-
ads of components are detected by bispectra and
cubic interactions between quartets of components
are detected by trispectra. Higher-order spectra are
zero for linear and/or Gaussian processes and, thus,
reject background noise. Consequently, higher-
order spectra provide information about nonlinear
systems in addition to that provided by the power
spectrum and phase portraits (and associated
measures). :

Higher-order spectral analysis of time series of
voltages measured in a realization of Chua’s circuit,
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a canonical nonlinear dynamical system, isolate the
individual nonlinear interactions between the many
Fourier components of the system. As Chua’s cir-
cuit undergoes a period-doubling sequence to chaos
quadratic and cubic nonlinear interactions couple,
and transfer energy between, triads and quartets
of Fourier components. The individual interactions
are isolated by bicoherence and tricoherence spec-
tra, which show increasing numbers of phase cou-
pled components as the nonlinearity of the system
is increased. For a period-1 limit cycle, motions
at the frequency corresponding to the power spec-
tral peak frequency and its harmonics are coupled.
For a period-2 limit cycle, motions at the subhar-
monic, the primary, and their super harmonic fre-
quencies are coupled, while for period-4 motion the
many combinations of lowest subharmonic, subhar-
monic, primary, and corresponding super harmonics
are nonlinearly coupled.

When the system becomes chaotic the power
spectrum broadens, but in the case of the Réssler
attractor, quadratic and cubic nonlinear interac-
tions remain important. Motions at the primary
frequency and its harmonics are coupled to motions
at many other frequencies. For the double-scroll
attractor the system no longer contains quadratic
nonlinear interactions, and bicoherence values are
essentially zero. However, tricoherence spectra
demonstrate the continued importance of cubic non-
linear interactions.
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