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Higher-order spectral (bispectral and trispectral) analyses of numerical solutions of the Duffing
equation with a cubic stiffness are used to isolate the coupling between the triads and quartets,
respectively, of nonlinearly interacting Fourier components of the system. The Duffing oscil-
lator follows a period-doubling intermittency catastrophic route to chaos. For period-doubled
limit cycles, higher-order spectra indicate that both quadratic and cubic nonlinear interactions
are important to the dynamics. However, when the Duffing oscillator becomes chaotic, global
behavior of the cubic nonlinearity becomes dominant and quadratic nonlinear interactions are
weak, while cubic interactions remain strong. As the nonlinearity of the system is increased, the
number of excited Fourier components increases, eventually leading to broad-band power spec-
tra for chaos. The corresponding higher-order spectra indicate that although some individual
nonlinear interactions weaken as nonlinearity increases, the number of nonlinearly interact-
ing Fourier modes increases. Trispectra indicate that the cubic interactions graduaily evolve
from encompassing a few quartets of Fourier components for period-1 motion to encompassing
many quartets for chaos. For chaos, all the components within the energetic part of the power

spectrum are cubically (but not quadratically) coupled to each other.

1. Introduction

Higher-order spectra provide information about en-
ergy exchange between, and phase coupling among,
the modes of motion ( i.e., the Fourier components)
of nonlinear systems. Since its introduction [Has-
selman, 1963], bispectral analysis has been used to
investigate quadratic nonlinear interactions in fluid
[Yeh & Van Atta, 1973; Lii et al., 1976; Helland
et al., 1977, Van Atta, 1979; Kim et al., 1980;
Miksad et al., 1983; Ritz et al., 1988], mechanical
[Sato et al., 1977; Choi et al., 1984; Pezeshki et al.,

1990], and quantum mechanical [Miller, 1986] sys-
tems (see Nikias & Raghuveer [1987] for a review).
Period-doubling and other quadratic phenomena in
the dynamics of the Duffing oscillator were inves-
tigated using bispectral techniques [Pezeshki et al.,
1990]. However, since the dominant nonlinearity of
the Duffing system is cubic, the bispectrum only
partially characterizes the system and trispectral
techniques [Dalle Molle & Hinich, 1989; Lutes &
Chen, 1991] are required for a fuller understanding
of the dynamics. In particular, when the system
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is chaotic the bicoherence spectrum is statistically
indistinguishable from that for Gaussian random
noise [Pezeshki et al., 1990]. In the present study,
trispectral analysis is used to demonstrate that
cubic nonlinear interactions occur as the Duffing
system undergoes a period-doubling route to chaos.
For limit cycles, tricoherence spectra isolate the
individual cubic interactions between quartets of
Fourier components, especially those associated
with oscillations at the power spectral primary peak
frequency and its sub- and super-harmonics, as well
as their combinations tones. Once the system en-
ters chaos the power spectrum broadens, but the
tricoherence spectra still isolate individual nonlin-
early coupled quartets. Moreover, the tricoherences
suggest that during chaos all the energetic motions
are involved in cubic nonlinear interactions, and are
coupled to each other.

The paper is organized as follows. Relevant
higher-order spectral quantities and the details of
the numerical processing are presented in Sec. 2.
Bicoherence and tricoherence spectra of the Duffing
oscillator are presented in Sec. 3 along with discus-
sions of mode coupling as the system period-doubles
and becomes chaotic. Conclusions follow in Sec. 4.

2. Higher-Order Spectra and
Numerical Details

A discretely sampled time series z(t) has a Fourier
representation given by

z(t) = Z [X (wn)e™t + X*(wp)e 0], (1)

where ¢ is time, X is the complex Fourier coefficient
at radian frequency wy,, and the subscript n is a fre-
quency (modal) index. The power spectrum P{w,),
the (auto) bispectrum B(w, w2), and the (auto)
trispectrum T'(wy, we, w3) are defined, respectively,
as

P(w) = E[X (w1) X" (w1)], (2)
B(wy, we) = E[X (w1} X (w2) X" (w1 + w2)}, (3)

T'(w1, wa, wa)
= E[X(wl)X(wg)X(wg)X*(wl + ws + L:J‘3)]
(4)
where an asterisk denotes complex conjugate, and

E[ ] is the expectation operator. In practice, the
expectation operation is replaced by an ensemble

average to yield estimates of the respective spec-
tra. The normalized magnitude of the bispectrum,
known as the squared bicoherence, is given by

|B(w1: W2)|2 (5)
P{un)P(ue)Plun +w2)

It is well-known [Kim & Powers, 1979} that the bi-
coherence represents the fraction of power at the
triad of frequencies that is owing to quadratic in-
teractions. Similarly, the normalized magnitude of
the trispectrum, referred to as the squared ¢ricoher-
ence, is given by

b* (w1, wo) =

|T (w1, we, ws)®
P(wn) P(wz) P(ws) P(wr +wz +ws) '

(6)

and the squared tricoherence represents the frac-
tion of power at the quartet of frequencies that
is owing to cubic interactions. For a time series
with Nyquist frequency wy (that is, the highest fre-
quency component for which the spectrum of the
time series is nonzero or non-negligible), the bico-
herence is unique within a triangle with vertices
at (w1 = 0, ws = 0), (w1 = wN/2, wp = wN/Z),
and (w1 = wy, w2 = 0). It is also completely
described by values in this triangle if there is no
bispectral aliasing. The tricoherence is uniquely de-
fined within a pyramid in trifrequency space, whose
base is the triangle referred to above (lying on the
plane w3 = 0) and whose apex is (w1 = wn/3,
we = wn/3, w3 = wy/3). Although this is not
the complete nonredundant region of computation
of the tricoherence [Chandran & Elgar, 1993], it is
sufficient here.

The time series analyzed were generated by nu-
merically integrating the Duffing equation using a
classic fourth order Runge-Kutta subroutine with
an integrating time step of 0.0625 sec for a system
with a fundamental period of 6.28 secs. A 1000 sec
interval was discarded to allow the transient re-
sponse to decay after starting from zero initial con-
ditions. The remaining 16384 sec long time series
were sampled at 2.0 Hz for power spectral, bispec-
tral, and trispectral analyses. Thus, each time series
consisted of 32768 samples and was divided into 256
blocks. Each 64 sec long block was Fourier trans-
formed to yield the complex Fourier coefficients
X (wn) with a frequency resolution of 0.015625 Hz.
A Hanning window was used on each block to re-
duce leakage. Power spectra, bispectra, and trispec-
tra were calculated from each 64 sec block and then

tz(wl: W, W3) =



Bispectral and Trispectral Characterization of Transition to Chaos in the Duffing Oscillator 553

averaged over the ensemble of 256 blocks, producing
estimates with 512 degrees of freedom. It is well-
known that for Gaussian noise the true values of
the bicoherence and triccherence are zero [Hassel-
mann, 1963; Nikias & Raghuveer, 1987; Dalle Molle
& Hinich, 1989]. The 99% significance level for esti-
mates of bicoherence and tricocherence for Gaussian
noise are given by 1/9.2/dof, where dof is the num-
ber of degrees of freedom of the estimate [Elgar &
Guza, 1988; Chandran et al., 1993). Thus, bicoher-
ence and tricoherence values above 0.134 are signif-
icant at the 99% significance level for 512 degrees
of freedom. The addition of noise to the time series
results in a decrease in higher-order spectral values
such that the bicoherence and tricoherence still rep-
resent the fraction of phase coupled power, which
is proportionally reduced owing to the presence of
uncoupled noise.

3. Results

In this section, phase portraits, power spectra, bi-
coherence spectra, and tricoherence spectra for the
Duffing oscillator as it undergoes a period-doubling
route to chaos are presented.

3.1. The Duffing oscillator

The model for the Duffing oscillator used here is
[Dowell & Pezeshki, 1986]
i + v — 0.5(u — u3) = F cos{wt), (7N
where u is the displacement, v = 0.168, w 1,
F is the amplitude of the forcing, and the over-
dot denotes differentiation with respect to time t.
This equation, which is a second order differential
equation with a cubic nonlinear term, in addition
to linear damping and stiffness terms, is commonly
referred to as a Duffing equation with a negative
linear stiffness. The Duffing system has a range of
nonlinear behavior [Dowell & Pezeshki, 1988], in-
cluding periodic and chaotic motions as F is varied.
There exists a strong set of modal couplings
in the oscillator output because of the nonlinearity,
resulting in energy exchange between, and phase
coupling among, the modes of oscillation. These
nonlinear interactions cannot be detected by the
power spectrum because it does not contain any
phase information. On the other hand, bispectral
analysis isolates the quadratic phase coupling
between triads of oscillations. Although the bico-
herence is significant for periodic motions [Pezeshki
et al., 1990], it fails to characterize chaotic motion

in the Duffing oscillator because the dominant
nonlinearity in the system is cubic. Consequently,
trispectral analysis is used here to isolate the cubic
nonlinear interactions between quartets of Fourier
modes as the Duffing system undergoes a period-
doubling route to chaos.

3.20

Phase portraits of the limit cycles of the Duffing
equation as it undergoes a period-doubling sequence
to chaos are shown in Fig. 1. Figure 1(a—) shows
period-1, period-2, and period-4 motion respec-
tively. This cascade ends with a saddle-node
bifurcation catastrophe with intermittency [Licht-
enberg & Liebermann, 1983; Thompson & Stewart,
1986] leading to the attractor shown in Fig. 1(d).
The corresponding power spectra are shown in
Fig. 2. The period-1 spectrum [Fig. 2(a)] consists

Phase portraits and power spectra
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Fig. 1. Phase portraits for the Duffing oscillator, velocity
(%) vs displacement (u). (a) period-1 motion, F = 0.05;
(b) period-2 motion, F = 0.178; (c) period-4 motion, F =
0.197; (d) chaotic motion, F = 0.210.
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Fig. 2. Power spectra for the Duffing oscillator. (a) period-1
motion; (b) period-2 motion; (c) period-4 motion; {(d) chaotic
motion. The units of power are arbitrary.

of a primary peak at f = 0.16 Hz [the driving fre-
quency in Eq. (7)] and its superharmonics. The
period-2 spectrum [Fig. 2(b)] has a subharmonic
peak at f = 0.08 Hz, one half of the driving
frequency and a new set of superharmonics cor-
responding to harmonics and combinations of the
two lower-frequency spectral peaks. The period-4
spectrum [Fig. 2(c)] has an additional subharmonic
at f = 0.04 Hz and additional combination tones.
When the system becomes chaotic [Fig. 2(d)], the
power spectrum becomes quite broadband with sig-
nificantly increased energy levels at low frequencies.

3.3. Bicoherence spectira

The bicoherence spectra for the four cases are
shown in Fig. 3. For period-1 motion {Fig. 3(a)],
the bicoherence is high at bifrequencies involving
the driving frequency (f» = 0.16 Hz) and its su-
perharmonics (f; = 0.16, 0.32, 0.48 Hz, etc). The
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Fig. 3. Contours of bicoherence for the Duffing oscillator.
(a) period-1 motion; (b) period-2 motion; (c} period-4 mo-
tion; (d) chaotic motion. The minimum contour is & = 0.1
with contours every 0.1125 up to b = 1.0. The regions be-
tween the contours are colored as shown by the scale in (d).
The three modes of each triad are fi, fo and fi + fa.

spreading of bispectral values around the peaks is
owing to leakage [Chandran & Elgar, 1991]. As the
force amplitude F is increased, resulting in period-
doubling, additional clusters of high bicoherence are
generated corresponding to the additional modes of
motion that are excited [Fig. 3(b)]. The period-
quadrupled limit cycle [Fig. 3(c)] indicates a merg-
ing of the bicoherence peaks and a weakening of
many of the individual bicoherences (i.e., weakening
of the individual quadratic nonlinear interactions)
as additional frequencies are generated by period-
doubling. Finally, when the system becomes chaotic
[Fig. 3(d)] quadratic interactions have weakened to
an extent that there are hardly any bicoherence
values above the 99% significance level. The bi-
coherence spectrum for the chaotic system is thus
indistinguishable from that for a Gaussian random
noise process [Pezeshki et al., 1990).
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3.4. Tricoherence spectra

Tricoherence spectra for the four cases are shown
as slices in trifrequency space along the plane f3=

0.16 Hz (the driving frequency) in Fig. 4. Note
that the tricoherence at the quartet consisting of
f1=0.16, fo = 0.16, f3 = 0.16, and f4 = 0.48 Hz
continues to be significant as the system period dou-
bles [Fig. 4(a—c)] and even when it becomes chaotic
[Fig. 4(d)]. The tricoherence spectra for period-1,
period-2, and period-4 motions, shown in Figs. 4(a),
4(b), and 4(c) respectively, are similar to the cor-
responding bicoherence spectra, indicating that the
additional frequencies generated by period-doubling
are also cubically phase-coupled to the driving
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Fig. 4. Contours of tricoherence for the Duffing oscillator
when f; = 0.16 Hz as a function of the other two frequen-
cies, f1 and f2: (a) period-1 motion; (b) period-2 motion;
(c) period-4 motion; (d) chaotic motion. The minimum con-
tour is £ = 0.2 with contours for every 0.1 up to ¢ = 1.0.
The regions between the contours are colored as shown by
the scale in (d). The four modes of each quartet are S, fo,
fa =0.16, and fi1 + fo + fa.

frequency. The tricoherence spectrum for chaotic
motion [Fig. 4(d)] shows that the tricoherence is sig-
nificant over a large region in trifrequency space in-
dicating that cubic interactions are important when
the system is in chaos. The tricoherence spectrum,
therefore, characterizes this chaotic motion
as being associated with a cubic nonlinearity.
The phase coupling of the first subharmonic
(f3 = 0.08 Hz) of the driving frequency with other
frequencies is shown in Fig. 5. Similarly, the phase
coupling between the mode with frequency 0.24 Hz
and other modes is shown in Fig. 6. As shown in
Figs. 4-6, the tricoherence is significant for quartets
consisting of the primary mode of motion and its
sub- and super-harmonics both for period-doubled
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Fig. 5. Contours of tricoherence for the Duffing oscillator
when f3 = 0.08 Hz as a function of the other two frequen-
cies, f1 and fo: (a) period-1 motion; {b) period-2 motion;
(c) period-4 motion; {d) chactic motion. The minimum con-
tour is ¢ = 0.2 with contours for every 0.1 up to ¢t = 1.0.
The regions between the contours are colored as shown by
the scale in (d).
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Fig. 6. Contours of tricoherence for the Duffing oscillator
when fs = 0.24 Hz as a function of the other two frequen-
cies, f1 and fa: (a) period-1 motion; (b) pericd-2 motion;
(c} period-4 motion; (d) chaotic motion. The minimum con-
tour is + = 0.2 with contours for every 0.1 up to t = 1.0.
The regions between the contours are colored as shown by
the scale in (d}.

limit cycles and for chaotic motion. For chaotic mo-
tion, the tricoherence is strongest for quartets that
contain the primary peak frequency [f = 0.16 Hz,
compare Fig. 4(d) to Figs. 5(d) and 6(d)].

4. Conclusions

Bicoherence and tricoherence spectra were calcu-
lated for numerical simulations of a period-doubling
cascade of the Duffing oscillator. The periodic tra-
jectories (limit cycles) possessed strong bicoherence
and tricoherence originating primarily about the
driving frequency, suggesting that quadratic and
cubic nonlinear interactions between modes of
motion are important to the dynamics of periodic

motion. The chaotic trajectory was characterized
by statistically insignificant bicoherence, but statis-
tically significant tricoherence, consistent with the
cubic nature of the dominant nonlinearity.
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Appendix

The sinusoidal forcing function is the only source
of external excitation for the Duffing oscillator, and
the nonlinearities present in the system are respon-
sible for redistributing the signal energy to the
higher harmonics. It is not very obvious how a Sys-
tem with cubic and linear stiffness terms seems to
be dominated by a quadratic nonlinearity for part of
its behavior. An explanation can be provided by us-
ing a Taylor series expansion of the first-order form

of the differential equation about its fixed points.
The Duffing system in state space form is

1'1.1 = U3, (8)

tiy = —0.168u2 + 0.5(u; — uf). (9

The Taylor series expansion up to third order is
given by

8y = 68U, , (10)
§Uy = —0.1688U; + 0.5(1 — 3U2)8U,
— 301 (6U1)% — 0.5(80,)3, (11)

where 6U; and 6U, are the perturbation variables
about the fixed point, and U/, and U; are the values
of the phase variables at the fixed points. When the
motion is centered around the stable fixed points
(1,0) and (-1,0), as is the case for the period-
doubled limit cycles, the quadratic nonlinearity
plays a dominant role in the system. It can be ob-
served from the phase portraits that §U; < 1 away
from the fixed point for any of the period-doubled
limit cycles, so that (6U;)® will be small. Once the
system goes into chaos, trajectories of the system
surround all the fixed points. The cubic behavior
will then dominate, and this is directly observed
by examining the high values in the tricoherence
spectrum and the corresponding low values in the
bicoherence spectrum.

Coupled sets of nonlinear equations can be
feedback loops, and depending on the parameter
values and the type of equation, are capable of gen-
erating any number of higher harmonics. All these
harmonics may then be phase-coupled to the same
fundamental mode, yielding high values for several
different higher-order coherences. For example, if
w1 is coupled to w; to yield w3 = wy +ws, and ws is
coupled to w3 to yield ws = we + wa, then the trico-
herence at the quartet wy, ws, w; +we, w1 +ws +wo
will be high, although the governing mechanism
behind energy redistribution is quadratic. The
period-doubled limit cycles for the Duffing oscilla-
tor exhibit both high bicoherence and high tricoher-
ence at the modal groups of interest, and the energy
redistribution for such motion may be attributed
to a dominant quadratic nonlinearity and feedback.





