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Bispectral analysis {which isolates quadratic nonlinear interactions among triads of
Fourier components) is used to investigate bifurcations in Chua's circuit. For period-
doubled limit cycles, the dominant interactions of the circuit are quadratically nonlinear,
and bicoherence spectra isolate the phase coupling between increasing numbers of triads
of Fourier components as the nonlinearity of the system is increased. For circuit pa-
rameters that result in a chaotic, Réssler-type attractor, bicoherence specira indicate
that quadratic nonlinear interactions are important to the dynamics. For parameters
that lead to the double scroll chaotic atiractor the bispectrum is zero, suggesting that
nonlinear interactions of order higher than quadratic dominate the dynamics. Higher-
than-second order spectra (e.g. trispectra) are required to isolate the individual nonlinear
interactions for the double scroll.

1. Introduction

Since their introduction almost thirty years ago,! bispectral and other polyspectral
techniques have been used to study many nonlinear systems, including fluid?1?
mechanical,''"!* and quantum-mechanical systems.!3:'® Bispectral analysis isolates
the nonlinearly-induced phase coupling between triads of Fourier modes in quadrat-
ically nonlinear systems. This phase coupling can lead to cross-spectral transfers of
energy (e.g. growth of super and/or subharmonics) and to non-Gaussian statistics
(e.g- nonsinusoidal wave profiles).

Another quantitative measure of nonlinear systems is the fractal dimension,
including the Grassberger-Procaccia, or correlation dimension,!”~!° the averaged
pointwise dimension,?® and the Lyapunov dimension.?! Along with dimension,
numerically generated or experimentally observed time series can be character-
ized by power spectra, phase space portraits, Poincaré sections, and Lyapunov
exponents??~2% and many others. Although these methods of modern nonlinear
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dynamics have been extremely valuable for investigating nonlinear systems, they
do not present information about nonlinear interactions between the Fourier com-
ponents of the system.

The primary purpose of the present study is to combine bispectral analysis
with nonlinear dynarmics analysis to obtain further understanding of the underlying
physics of Chua’s circuit {Chua, 1992).2% In particular, a single state variable is
analyzed as the system follows a period-doubling route to chaos to determine which
modes of motion are interacting with each other. The chaotic state which results
from this period-doubling cascade corresponds to a Réssler-like attractor. Although
the Rossler equations are quadratically nonlinear (Thompson and Stewart?® and
references therein), while Chua’s equation is piecewise-linear, bispectral analysis
suggests that quadratic nonlinear modal interactions are important in both cases.

In contrast, the double scroll chaotic attractor which appears in Chua’s
circuit?” is not dominated by quadratic nonlinearities, as demonstrated by low bi-
coherence values. Higher-than-second-order spectral analysis is necessary to inves-
tigate the modal interactions for the double scroll.

Definitions and properties of the bispectrum are reviewed in Sec. 2. Phase
planes, power spectra, and bicoherence spectra for experimental data obtained from
Chua’s circuit are discussed in Sec. 3, followed by conclusions in Sec. 4.

2. Definitions and Properties of the Bispectrum

Let a stationary random process be represented as

N
o) =) Anent 4 Afemivnt (1)

n=1

where w is the radian frequency, the subscript n is a frequency (modal) index,
asterisk indicates complex conjugation, and the A, are complex Fourier coefficients.
The anto-bispectrum is formally defined as the Fourier transform of the third-order
correlation function of the time series!

1 2 o0 poo ] .
B(w,wp) = (—) f f S(m, mg)e T g dry (2)
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where
S(r1,72) = E[n(t)n(t + m)n(t + 7)) (3)
with E[] the expected-value, or average, operator. The discrete bispectrum, appro-
priate for discretely sampled data, is?*2°
B(wk,uj) = E[Akaij;k_'_wj] . (4)

Similarly, the power spectrum is defined here as

P(@r) = 5BlAu, 42,1 (%)
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From (4) the bispectrum is zerc if the average triple product of Fourier coef-
ficients is zero. This occurs if the modes are independent of each other, i.e. for
the random phase relationships between Fourier modes in a linear process. Using
symmetry properties, the bispectrum can be uniquely described by its values in
a bifrequency octant. For a discrete time series with Nyquist frequency wy, the
bispectrum is uniquely defined within a triangle in (w;,w-)-space with vertices at
(w1 = 0,w2 = 0), (W1 = Wy, w2 = wpy2), and (W = wy,we = 0).

[t is convenient to recast the bispectrum into its normalized magnitude and
phase, called the bicoherence and biphase, given respectively by?®

= |B(wi,wa)f”
b2 (w1, wa) = E[IA‘“IAwnI;]E[:iAmW,P] (6)
B(w1,wq) = arctan —l:‘,:}é?iil::;})} . @)

For a three-wave system, Kim and Powers show that b?(w;,w;) represents the
fraction of power at frequency w;+w; owing to quadratic coupling of the three modes
(wi,w;, and w; 4+ w;). No such simple interpretation for the bicoherence is possible
in a broadband process where a particular mode may be simultaneously involved
in many interactions.?® Nevertheless, the bicoherence does give an indication of the
relative degree of phase coupling between triads of Fourier components, with & = 0
for random phase relationships, and b = 1 for maximum coupling.

The biphase is related to the shape (in a statistical sense) of the time series.3!:32

For a finite length time series even a truly Gaussian process will have a nonzero
bispectrum. A 95% significance level on zero bicoherence is given by Haubrich?® as

b2y, = 6/d.0f. (8)

where d.of. is the number of degrees of freedom. All bicoherences presented below
are significant at the 95% level. Tests with different windows and record lengths
indicate that the power spectra and bispectra presented here are not significantly
affected by leakage or smearing.

3. Chua’s Circuit

In this section phase plane portraits, power spectra, and bicoherence spectra for
data measured from Chua’s circuit are presented.

Chua’s circuit (Fig. 1) consists of an inductor L, two capacitors C; and C3, a
linear resistor R, and a nonlinear resistor Ng. This circuit is described by a set of
three ordinary differential equations??33

d
Cl :;fl = G(Ucz - vcl) - g(vcl)
(9)
C. dve, _ G(ve, —ve,) +1iL

dt
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Fig. 1. Chua’s circuit, consisting of a linear inductor, L, a linear resistor, R, two linear capacitors,
C'1,C3, and a nonlinear resistor, Ng.

(b)

Fig. 2. (a) Three segment, piecewise-linear v—i characteristic of the nonlinear resistor in Chua's
circuit. The outer regions have slopes mg and the inner region has slope m;. The breakpoints in

slope are denoted by —Bp, By (b} in dimensionless form, the breakpoints are at +1. The inner
and outer regions of the characteristic have slopes ¢ and b respectively.
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dig,
Lo =ve
where ve, and vc, are the voltages across capacitors Cy and C3 respectively, and
iz is the current flowing upwards through the inductor. G denotes the conductance
of R (G = 1/R) and g(-) is a piecewise-linear function (Fig. 2) given by

g(vr) = movp + 0.5(m; — mo)(|Jvr + B,| — |[vr — B,l)- (10)

Chua’s circuit has been studied extensively both experimentally and analytically
and has been shown to exhibit every type of bifurcation and attractor reported for
a third-order continuous time dynamical system (for a comprehensive bibliography
of papers on Chua’s circuit see Ref. 34).

Most analytical studies of Chua’s circuit have investigated a dimensionless form
of the equations obtained by rescaling the parameters of the system.

Defining

x = ve, /By, ¥ = ve,/By; 2 = iy [(B,G)
T =1G/Coia = m /G = mefG
& = C2/CI;B = Cz/(LG'z)

the dimensionless equations become

L - ay-z - f(a)
Y oayss (1)
j—i =—fy
where (see Fig. 2(b))
f@) = b+ gla=B)lle+ 1o~ 1] (12)

Realizations of Chua’s circuit can be obtained using standard or custom-made
components. While the linear elements are readily available as two-terminal devices,
the nonlinear resistor (a Chua diode®®) must be constructed from active circuit
elements. Figure 3 shows the implementation of Chua’s circuit®® used in the present
study. Here, Ng consists of a negative impedance converter Ng, and two ideal-
diode®® subcircuits Ng, and Ng, which determine the breakpoints B, and —B, in
the v—i characteristic (Figure 2). A complete list of the circuit elements is given
in Table 1. By fixing all components and varying only the capacitance Cp, the
parameter « in the normalized equations (11) can be adjusted.
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Fig. 3. Experimental realization of Chua's circuit used in this study.

Table 1. Components and circuit parameters commeon to all
time series. The corresponding normalized circuit parame-
ters are a = —RfRy = -1.14,b = R/Ra+ R/Rs = —0.712,

and 8 = R2C, /L = 14.38.

Parameter Value

L 12.44 mH

Ca 178.5 nF

R 1.001 k2

R 150.0 -
Ay ADT11KN op amp

R, 1500 &

Ra 8781 Q

Ry 2.2 k2

Dy 1N4148 silicon switching diode
Az %ADT]?KN dual op amp

Rs 10 kil

By 1V

Rg 2,339 Q

R; 2.2 k2

Dy 1N4148 silicon switching diode
Az %AD?]ZKN dual op amp

Rs 10 k2
-B, -1V
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3.1. Ezperimental resulls for Chua’s circuil

A period-doubling sequence and two chaotic states, corresponding to a Rdssler
attractor (a model of the Lorenz attractor, Thompson and Stewart?® and references
therein) and to the double scroll®* were examined.

Five time series of the voltage wave form vc, (equivalently, the dimensionless
variable z) for five different values of the capacitance C; (Table 2) were recorded.
Analog-to-digital conversion was achieved by means of a 16-bit data acquisition
board with fourth-order lowpass (20 kIlz corner frequency) filters. The data acqui-
sition board was preceded by an amplifier whose gain was adjusted to match the
signal level to the input dynamic range of the convertor. The sampling frequency
was 49.9 kHz.

Table 2. Values of C) and a = C2/C) for the five case

studies discussed in the text.

Case ) o
Period 1 17.5 nF 10.20
Period 2 17.2 nF 10.38
Period 4 16.9 nF 10.56
Rassler 16.6 nF 10.75
Double scroll 15.0 oF 11.92

Power and bicoherence spectra were calculated by subdividing the voltage time
series into 192 short records, each 512 points long. A Hanning window with 76%
overlap was applied to each short time series to reduce spectral leakage, and power
spectra and bispectra from each of the 192 records were ensemble, averaged pro-
ducing estimates with 384 degrees of freedom and a final frequency resolution of
0.097 kHz.

Ordinary power spectral analysis cannot detect the phase coupling between
Fourier components, nor the cross-specfral transfer of energy between motions at
the primary spectral peak frequency and motions at sub- and super-harmonics, be-
cause the power spectrum does not contain any phase information. On the other
hand, Chua’s circuit undergoes a period-doubling route to chaos, which is usually
associated with quadratic nonlinear interactions, and thus bispectral analysis may
be used to investigate the coupling of/and energy exchange between the various
components of the system.

Phase plane portraits for period-1, period-2, and period-4 limit cycles of Chua’s
circuit are shown in Fig. 4. Corresponding power spectra are shown in Fig. b and are
characterized by narrow spectral peaks. The harmonic structure of the attractor is
clearly displayed in the power spectra (Fig. 5). For period-1 motion, the spectrum
is dominated by a primary spectral peak with frequency f = 2.5 kHz, and its higher
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Fig. 4. Reconstructed phase portraits for voltage vz, measured from Chua’s circuit. The voltage
at time i 4+ § is plotted versus the voltage at time i. The delay of five samples corresponds to
approximately 1/4 cycle of the power spectral primary peak frequency. Top to bottom, period-1
limit cycle, period-2 limit cycle, period-4 limit cycle. The corresponding circuit parameters are
given in Tables 1 and 2.
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Fig. 5. Power spectra of voltages measured from Chua's circuit. Top to bottom, period-1 limit
cycle, period-2 limit cycle, period-4 limit cycle. The corresponding circuit parameters are given in
Tables 1 and 2. The units of power are arbitrary.

harmonics. As « is increased, the subharmonic (f = 1.25 kHz) is excited (period-2
motion) and, owing to quadratic nonlinearities, the spectrum contains peaks at
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frequencies corresponding to sum interactions of the subharmonic, the primary,
and their harmonics. As a is increased further, another period-doubling occurs
(f = 0.625 kHz is excited, period-4 motion), and the power spectrum (Fig. 5)
contains many peaks, corresponding to the two subharmonics, the primary, and
their combination tones.

The quadratic interactions between triads of Fourier modes for Chua’s circuit
are isolated by the bicoherence spectrum as shown in Fig. 6. For the period-1
case, bicoherence spectra clearly show the coupling between motions at the primary
speciral peak frequency and its harmonics, as well as between the first and second
harmonics, the first and third harmonics, and so on. The high bicoherence values
associated with f» = 2.5 kHz indicate nonlinear energy transfer from the primary
to the higher-frequency modes. The interactions are restricted to triads of Fourier
components that include the primary and its harmonics.

Power spectra for the period-2 case (Fig. 5) show narrow peaks between the
harmonics of the primary peak. The corresponding bicoherence spectrum (Fig. 6)
shows the coupling between motions at the primary peak frequency (f = 2.5 kHz),
its harmonics, the period-doubled frequency (subharmenic, f = 1.25 kHz), and
its harmonics. Quadratic interactions between oscillations at the primary and the
period-doubled subharmonic are transferring energy into the higher harmonics, giv-
ing a greater number of peaks in the frequency spectrum with a much richer struc-
ture than the period-1 case.

For period-4 motion both the power (Fig. 5} and bicoherence (Fig. 6) spectra
contain peaks associated with the primary (f = 2.5 kHz), both subharmonics (f =
1.25 and f = 0.625 kHz), and all their combination tones. The bicoherence spectrum
indicates that these interactions are quadratic and it delineates precisely which
Fourier components are interacting quadratically with each other.

Time series corresponding to the Réssler attractor exhibit similarities to and
differences from the period-doubling sequences shown in Figs. 4-6. The Réssler-like
attractor is chaotic. Note how the corresponding phase portrait (Fig. 7) differs sig-
nificantly from those of the relatively simple orbits of the period-doubling sequence
(Fig. 4). The Rossler attractor has a fairly broad power spectrum (Fig. 7), with only
remnants of the primary and harmonic peaks of the period-doubled cases (Fig. 5).
However, as can be seen in the bicoherence spectrum (Fig. 7) quadratic interactions
are still important. Motions corresponding to the remnant of the primary peak
(f2 = 2.5 kHz) are quadratically coupled to both higher frequencies (horizontal
band of contours at f3 = 2.5 kHz) and to lower frequencies (vertical band of con-
tours at f; = 2.5 kHz). Similar quadratic interactions occur between motions at
the harmonics (f = 5.0 and f = 7.5 kHz) of the primary spectral peak and both
higher- and lower-frequency motions. The minimum contour levels shown in the
bicoherence spectrum for the Réssler attractor (Fig. 7) is & = 0.7. However, bico-
herences are statistically significant for many more frequency triads (bosey = 0.13,
not shown), indicating that quadratic nonlinear interactions occur between nearly
all the frequency components of the Rossler system.
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Fig. 6. Bicolerence spectra of voltages measured from Chua’s circuit. Contours indicate quadratic
phase coupling between motions with frequencies fy, f2, fi + f2. The minimum contour plotted
is b = 0.98. Top to bottom, period-1 limit cycle, period-2 limit cycle, period-4 limit cycle. The
corresponding circuit parameters -are given in Tables 1 and 2.
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Fig. 7. Reconstructed phase portrait {upper), power spectrum (center), and bicoherence spectrum
{lower) for voltage vg, measured from Chua’s circuit when the system exhibits a Réssler-like
attractor. The units of power are arbitrary and the minimum contour plotted is & = 0.7.
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Fig. 8. Reconstructed phase portrait (upper), power spectrum {center), and bicoherence spectrumn
{lower) for voltage vo, measured from a double scroll attractor in Chua's circuit. The units of
power are arbitrary and there are no contours above b = 0.13, the 95% significance level.
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Unlike the period-doubled and Réssler attractors, the double scroll (Fig. 8) is not
dominated by quadratic interactions. The double scroll attractor can be seen in the
phase portrait (Fig. 8). It is characterized by a very broad power spectrum (Fig. 8),
with only a vestige of the primary peak (f = 2.5 kHz) and much more energetic
low-frequency motions (compare Fig. 8 to Figs. 7 and 5). There are no statistically
significant bicoherences (Fig. 8), indicating that the nonlinearities for the double
scroll are not quadratic. A Réssler-type attractor in Chua’s circuit is confined to
two regions of the piecewise-linearity. In contrast, trajectories in the double scroll
visit all three regions. While a two-segment nonlinearity can be approximated by
a quadratic, the three-segment nonlinearity requires a higher-order approximation.
Since the motion is global in nature, the absolute value term dominates the motion,
thus leaving only an insignificant amount of quadratic phase coupling and energy
transfer in the system’s motion. Similar behavior has been observed in the driven
Sine-Gordon chain!® and the Duffing equation.’ Higher-than-second order spectra
are required to isolate the individual interacting Fourier components for the double
scroll.

4, Conclusions

As Chua’s circuit undergoes a period-doubling sequence to chaos, quadratic non-
linear interactions couple, and transfer energy between, triads of Fourier compo-
nents. The individual quadratic interactions are isolated by the bicoherence, and
bicoherence spectra show increasing numbers of phase coupled components as the
nonlinearity of the system is increased. For a period-1 limit cycle, motions at the
frequency corresponding to the power spectral peak frequency and its harmonics
are coupled. For a period-2 limit cycle, motions at the subharmonic, the primary,
and their super harmonic frequencies are quadratically coupled, while for period-4
motion the many combinations of lowest subharmonic, subharmonic, primary, and
corresponding super harmonics are quadratically coupled.

When the system becomes chaotic the power spectrum broadens, but in the
case of the Rossler attractor, quadratic nonlinear interactions remain important.
Motions at the primary frequency and its harmonics are quadratically coupled to
motions at many other frequencies. In the case of the double scroll attractor,
however, the system is no longer dominated by quadratic nonlinear interactions, and
bicoherence values are essentially zero. Higher-order spectra (e.g. trispectra, work
in progress) are necessary to isolate the individual nonlinear interactions between
Fourier components for the double scroll.
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