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Pattern Recognition Using Invariants Defined from
Higher Order Spectra—One-Dimensional Inputs

Vinod Chandran, Member, IEEE, and Stephen L. Elgar, Member, IEEE

Abstract—A new approach to pattern recognition using in-
variant parameters based on higher order spectra is presented.
In particular, invariant parameters derived from the bispec-
trum are used to classify one-dimensional shapes. The bispec-
trum, which is translation invariant, is integrated along straight
lines passing through the origin in bifrequency space. The phase
of the integrated bispectrum is shown to be scale and amplifi-
cation invariant, as well. A minimal set of these invariants is
selected as the feature vector for pattern classification, and a
minimum distance classifier using a statistical distance measure
is used to classify test patterns. The classification technique is
shown to distinguish two similar, but different bolts given their
one-dimensional profiles. Pattern recognition using higher or-
der spectral invariants is fast, suited for parallel implementa-
tion, and has high immunity to additive Gaussian noise. Sim-
ulation results show very high classification accuracy, even for
low signai-to-noise ratios.

I. INTRODUCTION

HIS paper presentis an approach to pattern recognition

that utilizes information in the higher order spectrum
(or, equivalently, higher order correlations) [1]-{12] of a
signal. The use of higher order spectra for feature extrac-
tion is motivated by the following observations.

1) Information about the shape of a signal resides pri-
marily in the phase [13] and not in the amplitude of its
Fourier transform.

2) Higher order spectra retain both amplitude and phase
information from the Fourier transform of the signal, un-
like the power spectrum.

3) Higher order spectra are translation invariant and
functions can be defined from higher order spectra, as
shown here for one-dimensional inputs, that satisfy other
desirable properties, such as scaling and amplification in-
variance. These functions can then serve as invariant fea-
tures for pattern recognition,

4) Higher order spectra, of order greater than two, have
zero expected value for Gaussian noise. Therefore, fea-
tures derived from them will have high immunity to ad-
ditive Gaussian noise when higher order spectra from
multiple realizations of the signal are averaged [2], [5],
[6], [37]. Further, they will be robust to additive Gauss-
ian noise, even for single realizations, if the feature ex-
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traction procedure integrates in the higher order spectral
domain, as demonsirated below.

The various techniques used for pattern recognition
[14]-[30] may be subdivided into two groups: a) those
that derive local features which depend only on parts of
the object or pattern, and b} those that derive global fea-
tures or features that depend on the entire object or pat-
tern. The local-feature based methods [14] work well
when objects are in a cluttered environment, but local fea-
tures cannot be extracted from inputs with poor signal-to-
noise ratios. Also, several local features are required for
accurate classification and the tree of possible correspon-
dences between data features and model features is large,
and a search of this tree is often computationally expen-
sive. Global-feature based methods [19]-[30], such as the
moment invariant method [22]-125], usually work with
small dimensional feature vectors and can be made to sat-
isfy desirable invariance properties, but their feature ex-
traction procedure is computationally intensive and their
performance is poor for low SNR inputs. In this study, a
computationally efficient global-feature based pattern rec-
ognition method which works well at low signal-to-noise
ratios is presented. The features for this method are de-
rived from the bispectrum of the signal. Higher order
spectral or higher order correlation-based techniques [31]-
[37] have been employed for signal detection and object
identification. Some of these techniques [37] employ the
sample bicoherence as a detection statistic while others
[34], [36] use matched filtering in the cumulant domain.
Triple-correlation based classifiers that employ a bank of
matched filters [34], [36] are computationally intensive
when there are a large number of classes because there
must be one filter matched to each class. Moreover, the
filters must be normalized to have equal cumulant ener-
gies, adding to the complexity of the training process. The
technique presented here does not make use of matched
filters. It derives features directly from the higher order
spectrum of the input and is computationally more effi-
cient because the size of the feature vector required is typ-
ically smaller than the number of classes. The features
can also be computed in parallel. Monte Carlo simula-
tions show that the technique is capable of high classifi-
cation accuracy at low signal-to-noise ratios. The present
study is restricted to classification of one-dimensional in-
puts and features derived from the bispectrum, and fo-
cuses on the new technique. Invariants defined from the
bispectrum are presented in Section II. The significance
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of the feature values in terms of the symmetry of the pat-
tern and the procedures for feature extraction from sym-
metric patterns are described in Section III, while feature
extraction from multiple realizations of noisy patterns is
discussed in Section IV. The training and classification
procedures are explained in Section V, followed by an
application demonstrating the ability of the procedure to
distinguish similar, but different bolts, and Monte Carlo
simulations to test the classification accuracy of the
method on noisy input data in Section VI.

II. BiSPECTRAL INVARIANTS

The bispectrum B( f;, f;) of a one-dimensional, deter-
ministic, discrete-time signal, x(n), is defined as

B(fi, £) = X(LX(RHX*(fi + f) 8y

where X ( f) is the discrete-time Fourier transform of x (n)
and f is normalized frequency. By virtue of its symmetry
properties, the bispectrum of a real signal is uniquely de-
fined by its values in the triangular region of computation,
0= f =<f <f +f = 1, provided there is no bispectral
aliasing [3].

Parameters, P (a), that are translation, dc-level, ampli-
fication, and scale invariant, are defined from the bispec-

trum of x(n) as follows:
I
i’l) @

P(a) = arctan ( L@

where
L/(L +a)
I(@) = L(a) + jli(a) = §f|=0* B(fi, afy) dfi (3}

for0 <a=<1,andj = v—1.

Note that the bispectral values are integrated along
straight lines with slope a passing through the origin in
the bifrequency space, as shown in Fig. 1.

Claim: P(a) are translation invariant.

Proof: Any time shift in the sequence x(n) intro-
duces a linear, frequency dependent phase shift in its
Fourier transform X ( f), and this phase shift is cancelled
in the triple product defined in (1). Thus, the bispectrum
is translation invariant. Integrating the bispectrum along
lines passing through the origin in bifrequency space pre-
serves the translation invariance because the integral is
translation invariant if the integrand is. Finally, the phase
of the complex entity /(a) must also be translation invari-
ant because its real and imaginary parts are. Thus, P(a)
are translation invariant.

Claim: P(a) are dc-level invariant.

Proof: A constant added to the sequence x(n)
changes only the discrete-time Fourier transform coeffi-
cient X(0). Therefore, only those bispectral values change
for which either f; or f; is zero. The definition of P(a)
excludes these bispectral values because the integration
(see (3)) is from f; = 0" tof; = 1/(1 + @) and a is strictly
positive.

Claim: P(a) are amplification invariant.
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Flg 1. The bispectrum is integrated along the dashed line and the phase
is taken to yield feature P(a). Frequencies f, and f; are shown normalized
by one haif the sampling frequency, and the triangular region is the region
of computation of the bispectrum assuming no bispectral aliasing.

Proof: Multiplication of the sequence x (n}) by a con-
stant affects the real and imaginary parts of X( f) equally,
and hence, the real and imaginary parts of the bispectrum
and the integrated bispectrum /(a), also equally. There-
fore, P(a) will remain invariant for any a.

Claim: P(a) are scale invariant.

Proof: Scaling involves decimation or interpolation
of the sequence x(n).

Let the sequence x (n) be interpolated by scale factor s
(an integer greater than 1) to yield x(n/s). Assume that
X(f) is band limited, such that X(f) = 0 for | f| >
1/(2s). Although this assumption is not strictly true for
duration-limited signals and signals of interest in pattern
recognition are duration limited, it is a good assumption
provided X(f) is negligible for | f| > 1/(2s). The dis-
crete-time Fourier transform, X,(f), of the scaled se-
quence is given by sX(sf). The bispectrum of the scaled
signal, B,(fi, f2} is given by s 3B(sf,, sf>). Let I, (a) denote
the integrated bispectrum of the scaled signal. Note also
that since 0 < a = 1 < s,

0<—l—<l< !
2s 2 l+a

and the upper limit of the integral defining P(a) can be
any frequency in the interval [1/(2s), 1 /(1 + a)] because
X(f) is band limited to 1/(2s). Then

Sl/(1+a)
fi=0*
Sl/(lﬂ
f1=0"
1/2
f1=0*%

L/ +a)
2| B a @

I (a) s B(sf, asf)) df,

s'B(sfy, asfy) dfy

B(fi, af) dfy

s ). @)
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Since s is a real constant, the phase of J,(a) is the same
as the phase of /(a). Thus, P(a) are invariant to interpo-
lation under the band-limited assumption.

Let the sequence x(n) be decimated by S (an integer
greater than 1) to yield x(8n). Then the discrete-time
Fourier transform of the decimated sequence is (1/5)
X(f/S) and the bispectrum is (1/5%) B(f,/S, f2/5). As-
sume again that x (n) is band limited, such that X{f) = 0
for | f| > 1/(25). Note also that since 0 < a < 1 < §,

1 1 1
0<5=50+a “d+a <!
and the upper limit of the integral defining P(a) can be
any frequency in the interval [1/(25), 1/(1 + a)] be-
cause X( f) is band limited to 1 /(28). If /;(a) denotes the
integrated bispectrum of the decimated sequence, then
similar to (4), it can be shown that

Is(@ = 2 1@, ®)
Since S is a real constant, the phase of I;(a) is the same
as the phase of I(g#). Thus, P(a) are invariant to decima-
tion under the band-limited assumption.

If the input is not strictly band limited as assumed
above, the parameters P (a) will not be strictly invariant
for scaled inputs, and the minimal set of parameters for
classification is selected taking this into consideration.

The computational procedure to calculate P(a) given
an N-point real sequence x (n) is as follows. The sequence
is discrete Fourier transformed (using an FFT routine) to
yield X (k). The bispectrum is calculated as

Bk, ky) = X(k) X (ko) X*(k) + kp) (6)
forQ <k, = k =k + &k, = (N/2 — 1). The integral
in (3) is approximated by a sum, yielding

v/ 2=1/0 +a)]

I@) = kZI

Bk, ak) )
for 0 < a = 1. The bispectrum is interpolated for this
summation by

Bk, aky) = pB(k, [ak,1) + (1 — p) B(k,, |ak,|)

®

where p = ak, — |ak,], | x| represents the largest in-
teger contained in x, and [x7| represents the smallest in-
teger containing x. The invariant parameters P (a) are the
principal component of the phase of I(a), ~7 < P(a) =
+7.

III. FEATURES FROM SYMMETRIC AND ASYMMETRIC
PATTERNS

It is well known that the phase of the bispectrum is
related to the shape of the signal, and thus some general
observations can be made about P(a) for signals accord-
ing to their symmetry. Consider a real signal x (n) that has
nonzero values only over a finite region of support, say
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N, = n = N,. Since the parameters P(a) are dc-level
invariant, a pattern over a finite support ¢mbedded in a
constant background is equivalent to such a x(n).

A. P(a) for Even-Symmetric Patterns

An even-symmetric sequence has a discrete-time Fou-
rier transform whose phase is linear with frequency. This
phase is cancelled in the triple product defined in (1).
Therefore, the bispectrum is real. The integrated bispec-
trum is also real (positive or negative), and P(a) = O if
I(a) is positive, or P(a) = = if I(a) is negative, for 0 <
a=<1.

Note that if the even-symmetric sequence, x{n), is ne-
gated, the negative sequence will have those parameters
P (a) that were originally equal to zero take on value =,
and those parameters P (a) that were originally equal to 7
take on value zero.

B. P(a) for Odd-Symmetric Patterns

An odd symmetric sequence has a discrete-time Fourier
transform whose phase is linear with frequency plus a
constant phase of = /2. Therefore, the bispectrum is
imaginary. The integrated bispectrum is also imaginary,
and P(a) = = /2 if I{(a) is positive, or P(a) = = /2 if I{a)
is negative, for0 < a = 1.

Note that if the odd-symmetric sequence, x(n), is ne-
gated, then the parameters P (a) will also be negated.

C. P(a) as Features for Asymmetric Paiterns

Any arbitrary, real sequence x(n) that has nonzero val-
ues only over a finite region of support, say N, = n =<
N,, can be expressed as

x(n) = Ax,(n) + Bx,(n) ®

where x,(n) is even-symmetric about (N, + N,)/2, the
center of the region of support, and x,(n)} is odd-sym-
metric about (N, + N,)/2, and A, B are real constants.

The phase of the Fourier transform of an asymmetric
sequence will be a nonlinear function of frequency. This
nonlinearity is isolated by the parameters P(a), and thus
P(a) can be used as elements of a feature vector to clas-
sify asymmetric sequences.

If an asymmetric sequence is flipped about its center of
support, the parameters P (a) are negated because the odd
component of the sequence is negated.

D. Feature Extraction from a Symmetric Pattern

For two classes of patterns that are both even sym-
metric or both odd symmetric, the parameters P{a) de-
fined above are the same for the two classes, and thus
insufficient to discriminate between them. For example, a
symmetric rectangular pulse and a symmetric triangular
pulse are both linear phase and have P(a) = 0 for all 0
< a = 1. In such a case, the phase of the Fourier trans-
form does not contain information to distinguish the
shapes. On the other hand, if the phases of the two dis-
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x (n)

Magnitude of
the OFT of x{n)

y (n)

Compute P(a) for the New Asymmetric Sequence y(n)

Fig. 2. The procedure to extract features P(a) from a symmetric pattern
x(n).

P (1/19) deg
5

20 L i 1 1

1000

Pulsewidth
(b)

Fig. 3. Paramelers P(1/19) and P(1) as a function of the width of the
input pulse. Triangles and squares are the values for the triangular and
rectangular pulse patterns, respectively. These parameters have been com-
puted by the procedure shown in Fig. 2 for feature extraction from sym-
metric patterns. (a) P(1/19), (b) P(1).

similar sequences are identical, the Fourier magnitudes
must differ. In this case, a new sequence, y(n) is formed
by discarding the phases and zero padding the magnitude
of the Fourier transform, |X(k)|, of x (n) for positive fre-
quencies only. Note that by including only the right half
of the symmetric Fourier transform magnitude sequence,
an asymmetric sequence is obtained. The parameters P (a)
computed from y(n) satisfy the same invariance as those
computed from x(n). Parameters P (a) may now be com-
puted for the y(n) and used as features to discriminate

between the original sequences. This procedure is illus-
trated in Fig. 2. Consider the case where the inputs are
rectangular or triangular pulses of different widths, zero
padded to 1024-point long sequences. The pulses have
arbitrary amplitudes and may be translated in time or level
shifted. Parameters P(1/19) and P (1) computed from the
asymmetric sequences composed of positive frequency
halves of the magnitudes of the respective Fourier coef-
ficients are shown as a function of the width of the pulse
in Figs. 3(a) and (b), respectively. Note that either param-
eter is sufficient to distinguish rectangular from triangular
pulses over a large range of pulsewidths, and that these
parameters are fairly constant in that range. When the
width tends to zero, both classes of pulse tend toward a
unit sample and the parameters approach zero degrees.

IV. FEATURES FROM PATTERNS IN NOISE

The expected value of the bispectrum for Gaussian
noise is zero and therefore the effect of noise can be re-
duced by averaging [2], [5], [37]) the triple products of
Fourier coefficients in (6) over many realizations. P(a)
may then be computed as the phase of this averaged in-
tegrated bispectrum. Even for the case of only one real-
ization of a noisy pattern, the averaging that occurs by
integrating the bispectrum over the many values along the
line with slope a in bifrequency space before calculating
the phase, P(a), results in noise rejection. Examples of
classification of noisy patterns are presented below.

V. TRAINING AND CLASSIFICATION

The feature extraction algorithm proposed in this study
can be combined with any standard parametric or nonpar-
ametric classifier [16], [38]. The performance of the clas-
sifier will depend on the probability density functions of
the features in feature space. The dimensionality of the
feature vector can also be reduced by classical techniques
such as principal component analysis [39]. If the features
form isolated, compact clusters in feature space for noise-
free input, the probability density functions will tend to-
ward multivariate Gaussian as the noise power increases.
Each class is then adequately described by the mean and
standard deviation of the feature vector, and simpler train-
ing and classification procedures are applicable. Given
below are a training procedure and a variation of the min-
imum distance classifier [16], [38] which work under the
assumption of a Gaussian probability density. The choice
of this classifier is motivated by the application to low
SNR inputs. For high SNR inputs when discriminating
between very similar shapes is of prime importance, and
the probability density functions are unknown, other clas-
sifiers [16], [38] should perform betier. The tests on noisy
data, however, show that even the simple classifier used
here yields high classification accuracies.

During the training phase of this classifier, parameters
P{(a) are computed at some integer number of values of a
for representative inputs from each class under consider-
ation, at different scales. These parameters should be in-
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variant within the same class under the assumptions stated
in Section II. If the shape varies within a given class, the
input is not strictly band limited, or the input is noisy,
there will be a nonzero intraclass variance. The intraclass
mean and intraclass standard deviation of P(a) are com-
puted for each class and each parameter g over the entire
training data set. The interclass separation between two
classes for a given parameter is defined as the mean-square
difference between the values of P(a) for the two classes
over the entire training set divided by the sum of the two
intraclass standard deviations. A set of parameters a to
form the feature vector, P(a) for the chosen values of a,
is now selected as follows.

1) Choose the parameter a which yields the maximum
separation between classes over all the pairs of classes
and all the parameters under consideration.

2) Choose an acceptable level of separation between
the maximum and minimum separations (say, midway be-
tween them), as a threshold.

3) Eliminate from further consideration those pairs of
classes that have separations equal to or above this thresh-
old.

4) If all possible pairs of classes are eliminated, the
procedure is successfully completed, otherwise to go to
step 1 to select an additional parameter.

Feature vectors to represent each class, i.e., model fea-
tures, are formed by using the mean values of the selected
parameters for that class. Although many schemes exist
to select a minimal feature vector, the procedure de-
scribed above is fast and worked very well for-the Monte
Carlo simulations discussed in Section VI.

Given an input pattern, the data feature vector (using
selected parameters) is computed for the input data and
compared to the model feature vectors representing each
class. A minimum distance classifier is used to ascribe the
input to that class whose feature vector is ‘‘closest’ to
that of the pattern. The distance between an element, P (a)
for a particular value of a, of the data feature vector and
the corresponding element of a model feature vector rep-
resenting a particular class is defined as the Euclidean dis-
tance between them divided by the standard deviation of
the P(a) for that particular class. The distance between
the two feature vectors is defined as the sum of the squares
of the distances between their elements. This minimum
distance classifier using a statistical distance measure is
also fast and yields good results, as seen in Section VI,

Although the minimum distance classifier is a linear
classifier, it is possible to obtain piecewise approxima-
tions to nonlinear discriminant functions by representing
each class by a set of model feature vectors instead of a
single vector. An enhanced version of the training pro-
cedure described above would take this into account by
dividing each class into subclasses, with each subclass
representing a range of variation of the scale factor. A
minimal subset of the feature vectors for each subclass is
retained as a model feature vector set for the class. The
procedure for feature extraction proposed here can be
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combined with many other classifiers [16], including a
neural net classifier [27]-[29].

VI. APPLICATION

The technique described here can classify objects from
one-dimensional profiles. These profiles can be obtained
using a sonar or laser rangefinder which scans across the
object, or an imaging device. To demonstrate the feasi-
bility of this application, profiles of two types of bolts
were selected. They may be left or right oriented, ac-
counting for four different patterns, as shown in Fig. 4.
Test sequences consisting of 1024 points were used. Fig.
5 shows a comparison of the inputs for scale factors 0.5,
1.0, and 2.0. Parameters P(a) for these patterns were
computed fora = 1/19, 2/19, - - - , 1. Fig. 6 shows
the values of a feature vector consisting of {P(a), a =
1/19 and a = 1} for bolts 1 and 2 with left and right
orientations, for scale variations between 0.5 and 2.0. As
shown in Fig. 6, given P(1/19) and P (1), the two similar
looking bolts clearly can be distinguished.

For noisy realizations, this particular feature vector may
not be able to provide good classification accuracy. How-
ever, the training algorithm given above takes the inter-
class separations into account in selecting the feature vec-
tor. The classification accuracy of the method for noisy
input data was tested as follows,

A. Test I (Invariance)

The test was performed to test the extent of invariance
of the features to amplification, shift, and scaling (dc-level
invariance is trivially satisfied and need not be tested).
The input consisted of rectangular and triangular pulses,
zero padded to form 1024-point sequences. The ampli-
tude of each pulse was uniform random in {1, 2), the
pulsewidth was uniform random in [64, 704), and the shift
was uniform random in [1, 1016-pulsewidth). Uncorre-
lated Gaussian noise of variance (0.1 was added to each
input, The training set consisted of 32 realizations from
each class. The feature extraction procedure shown in Fig.
2 was employed. A feature vector composed of the single
feature, P(9/19), was selected by the training algorithm.
For the triangular pulses, P(9/19) had a mean value of
—11.0° and a standard deviation of 1.4°, over the train-
ing data set. For the rectangular pulses, the mean and
standard deviation of P(9/19) were —21.0° and 0.6°,
respectively. The classifier was tested with 128 realiza-
tions from each class, and the classification accuracy was
100%, verifying the invariance properties of the feature
vectors.

B. Test 2 (No Ensemble Averaging)

The classifier was trained using 32 noisy realizations
from each of the four classes of bolts shown in Fig. 4.
The noise was additive Gaussian, uncorrelated with the
pattern, and the signal-to-noise ratio (SNR) was 10 dB.
The acceptable level of separation between classes was
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Fig. 4. The four classes of patterns. (a), (b) Bolt 1 and (c), (d) Bolt 2.
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Fig. 5. Bolt 2 (pattern (c) in Fig. 4) shown for scale factors 0.5, 1.0, and
2.0.

set to be one half the sum of the maximum and minimum
separations. The feature vector selected was composed of
parameters P(14 /19) and P(1). Table I shows the means
and standard deviations of these parameters for each class,
over the 32 realizations in the training set. The classifier
was then tested with 132 realizations (input test data) from
each class for SNR equal to 10, 3, 0, and —3 dB. The
classification accuracy as a function of SNR is shown in

100 | 2.0
50 Scale
on
3
05 . :
= g 0.5 ' '
o Bolt 1 Left
s Boit 1 Right
e Scale Bolt 2 Left
Bo't 2 Right
400 b 2.0
L ] 1 [ L I 1 L 1
0.8 0.4 0 0.4 0.8

P(1/19), deg

Fig. 6. A feature vector comprising P (I /19) and P(1) traced as the scale
factor is varied from 0.5 to 2.0 for the four patterns shown in Fig. 4.

TABLE 1
MEAN VALUES AND STANDARD DEVIATIONS, IN DEGREES, FOR THE FEATURE
ELEMENTS, P{14/19) aND P (1), SELECTED TO FORM THE FEATURE
VECTOR 1N TEST 2. THE Four CLASSES OF PATTERN, (a), {b), (¢), AND
{d), CORRESPOND TO THE BOLTS SHOWN IN FiG. 4. THE STANDARD
DEVIATIONS ARE THE NUMBERS SHOWN BELOW THE MEAN VALUES iIN EaCH

Box
Class
Feature
Element (a) (b) {c} (d)
25.2 =251 21.1 -21.2
P(14/19) +12 +1.1 +1.1 $1.2
P 45.0 —-45.1 32.7 =327
+3.1 +2.5 +2.3 +2.4

Fig. 7. Note that the classification accuracy is high even
without any ensemble averaging in the feature extraction
phase because some averaging is obtained by the integra-
tion over bifrequencies implicit in the calculation of I(a)

M.

C. Test 3 (Ensemble Averaging)

For this test the input data (both training and testing)
was available in ensembles of 16 realizations each. The
classifier was trained using 32 noisy (10-dB SNR) ensem-
bles from each class. The noise was additive Gaussian,
uncorrelated with the pattern. Features were computed
after averaging the bispectra of the 16 realizations in each
ensemble. The acceptable level of separation between
classes was again set to be one half the sum of the maxi-
mum and minimum separations. The feature vector se-
lected was composed of P{13/19) and P(1). Table II
shows the means and standard deviations of these param-
eters for each class, over the training data set. The clas-
sifier was then tested with 64 ensembles from each class
for SNR of 10, 3, 0, and —3 dB. Fig. 8 shows the clas-
sification accuracies obtained in each case. Note that the
classification accuracy for bispectra computed from an
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Fig. 7. Classification accuracy versus the signal-to-noise ratio of the test
patterns for test 2. There was no ensemble averaging in the feature extrac-
tion phase for this test. The training set had a 10-dB SNR.

TABLE I
MEAN VALUES AND STANDARD DEVIATIONS, IN DEGREES, FOR THE FEATURE
ELEMENTS, P(13/19) aND P(1), SELECTED To FORM THE FEATURE
VECTOR IN TEST 3. THE FOUR CLASSES OF PATTERN, (a), (b), (c), AND (d),
CORRESPOND TO THE BOLTS SHOWN IN FIG, 4. THE STANDARD DEVIATIONS
ARE THE NUMBERS SHOWN BELOW THE MEAN VALUES IN EacH Box. THE
BISPECTRUM WaAS AVERAGED FOR 16 REALIZATIONS BEFORE COMPUTING
THE FEATURE ELEMENTS, ACCOUNTING FOR THE LOWER STANDARD

DEVIATIONS
Class
Feature
Element (a) (b} () (d}
21.8 ~-21.8 19.0 -18.9
PU3/19) +0.3 +03 £0.2 +0.2
P(1) 449 -44.9 32.6 -32.5
+0.9 +0.7 +0.6 +0.6
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Fig. 8. Classification accuracy versus the signal-to-noise ratio of the test
pattens for test 3. Bispectra from 16 realizations were averaged to compute
the feature elememts for this test. The training set had a 10-dB SNR.

ensemble of realizations is significantly higher than the
accuracy obtained when only one realization is available
{compare Figs. 7 and 8).

VII. CoNcCLUSION

Phases of integrals of the bispectrum are shown to be
translation, dc-level, amplification, and scale invariant,
and can be used to classify patterns. A minimal set of
these invariants can be selected as a feature vector, allow-

2t

ing similar patterns to be distinguished. Two similar
shaped, one-dimensional bolts are readily distinguished
even for inputs with low signal-to-noise ratios because the
higher order spectral approach to pattern classification has
high immunity to additive Gaussian noise. A 1024-point
FFT can be performed rapidly, and formation of the triple
products of Fourier coefficients and the summations re-
quired to determine the features can be implemented in
parallel. Thus, the approach to distinguishing patterns
presented here is fast. Extensions to two-dimensional ob-
jects will be presented in another paper.
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