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Bispectra of the vibrations of a cantilevered pipe conveying fluid are calculated from
numerical integrations of the equations of motion. Previous experimental and theoretical
work has shown that for certain parameter ranges the vibrations follow a period-doubling
route to chaos. Bispectral analysis isolates the nonlinear phase coupling and energy
exchange between Fourier components of the vibrating pipe. As flow through the
nonlinear stiffened pipe increases, phase-coupled harmeonics of the power-spectral primary
frequency grow. For parameters close to those associated with chaotic vibrations,
subharmonics become phase-coupled to the primary frequency. Cross-bispectra indicate
that both sum and difference interactions result in nonlinear phase coupling and energy
exchange between the modes of pipe vibration.

1. INTRODUCTION

Paipoussis & Moon (1988) RECENTLY PRESENTED EXPERIMENTAL and theoretical evidence
of a period doubling route to chaos in vibrations of a cantilevered pipe conveying fluid.
In particular, the general equation of motion [equation (1) of Paidoussis & Moon’s]
was discretized in accordance with Galerkin’s technique, truncated to two modes of
vibration (i.e., two eigenfunctions), and recast in first-order, state variable form
[equation (8) of Paidoussis & Moon’s]. Numerical integrations of the equations of
motion produced power spectra, phase plane portraits, Lyapunov exponents and
bifurcation diagrams of pipe displacement that were remarkably similar to experimen-
tal observations.

Power spectra of a system undergoing a period-doubling route to chaos typically
develop super- and sub-harmonics of the power-spectral primary peak frequency as the
effects of the nonlinearity of the system are increased, corresponding to period one,
two, four, ... motion. When chaos is reached, the power spectrum becomes broad,
and individual harmonic peaks are less easily distinguished. Since they are produced by
nonlinearities, the Fourier components of the system are not independent of one
another, but are phase-coupled. This phase coupling can be isolated and quantified
using higher-order spectral analysis [see Nikias & Raghuveer (1987) for a recent
review]|. Quadratic nonlinear interactions are detected by the bispectrum.
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In this study, displacements of cantilevered pipe conveying fluid as described by the
equations of motion presented by Paidoussis & Moon (1988) are analysed with
bispectral techniques. As the fiow through the nonlinear piping system is increased,
causing period doubling, phase coupled harmonics are produced. Cross-bispectra
indicate that the two modes of pipe displacement are coupled to each other and
exchange energy.

In Section 2 bispectral quantities are defined, and details of the numerical
integrations of the equations of motion are presented. Results are described in Section
3, followed by conclusions in Section 4,

2. DEFINITIONS AND NUMERICS

Details and applications of bispectral analysis are given by Nikias & Raghuveer (1987)
and Kim & Powers (1979). A brief description is presented here for completeness.
For a discretely sampled time series 4(r) with the Fourier representation

v(t) =D Clw,)e™ + C*(w,)e ™", (1)

the power, auto- and cross-bicoherence spectra (normalized bispectra) are defined,
respectively, as

P(w) = E[C(w)C*(w)], (2)
_E[Clw)C(a,)C*(w, + w,)]
Bl @2 == P Plw, + @) (3)
_ E[G(B1)C(0)Ci(w, + ;)]
XBial 00, @2) == b VB (wn)Pe(wr + @) )

where w, is the radian frequency, the subscript n is a frequency index, the C’s are the
complex Fourier coefficients of the time series, an asterisk indicates complex
conjugate, and E [] is the expected-value, or average, operator. The subscripts j, & in
(4) indicate separate time series; in the cases considered here, input and output,
respectively. )

It is illustrative to consider the bispectrum to understand the function forms
discussed above. Rewriting the complex Fourier coefficients

C(w,) = c,e'*,
the bispectrum becomes
B(w;, w2} =E[c,¢5¢,,,6" "+ P14, (5)

If the three modes of the triad are independent of each other (i.e., ®,, ®,, ®,,, are
random phases), then when averaged over many realizations the triple products in (5)
will be zero. On the other hand, if the modes at frequencies w,, w,, and w, + w, are
quadratically coupled, the biphase (@, + ®,— ®,,,) will be non-random even if ®,
and &, are randomly varying. Thus,the bispectrum will be non-zero. Consequently, the
bicoherence indicates the relative amount of quadratic phase coupling between the
three modes in a triad.

For a digital time series with Nyquist frequency w,, the auto bicoherence is
completely described by values within a triangle with vertices at (@, =0, w,=0),
(0, = wnp, ;= wnp) and (w; = oy, X2= o) (Kim & Powers 1979). The resulting
plot is a contour plot, with the abscissa value for the frequency adding to the ordinate
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value to give the sum frequency. The contour represents the energy at the sum
frequency due to the nonlinear quadratic interaction between the abscissa frequency
value and the ordinate frequency value.

Because of the existence of both sum and difference interactions due to input and
output trajectories, the cross-bispectrum requires the additional region bounded by
(0,=0, w,=0), (0, = @y, w,=0) and (0, = Oy, W= —wy).

The equations of motion that describe the displacement of the free end of the
cantilevered pipe are given by Paidoussis & Moon (1988), equations (1)-(11), and will
not be repeated here. Similar to that work, the equations here were integrated with a
fourth-order Runge-Kutta scheme on an IBM 3090. For each set of parameters, an
8192-point time series (corresponding to 4096s in dimensional units) was produced,
with @y =20x rad/s. The time series were subdivided into 64 sections, and auto- and
cross-bispectra were calculated for each section and ensemble averaged for equation
(1) over the collection of 64 sections. Thus, the power and bispectra presented here
have 128 degrees-of-freedom and the final frequency resolutions of 0-49 rad/s.

Nondimensional constants identical to those given by Paidoussis & Moon’s (1988)
equation (10) were used here, and the dimensionless flow velocity, u, was used as a
variable parameter. The displacement and velocity at the free end of the pipe were
calculated from equation (11) of the same reference, with the mode-one and -two
eigenfunctions having values of 2-0000 and —2-0000, respectively (Thomson 1988).
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Figure 1. Phase portraits of the vibrations of the free end of the pipe for four different values of «. Phase
portraits are of total displacement.
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3. RESULTS

The power spectra and auto-bispectra of displacement at the end of the pipe for
period-1 motion (u = 7-82) are shown in Figure 2. The corresponding phase portrait is
Figure 1(a). Even for period-1 motion, there are superharmonics of the power spectral
primary peak frequency (w =14 rad/s). These harmonics are phase-coupled to the
primary, as indicated by the auto-bicoherence (Figure 2). In particular, the first
harmonic (@ = 28) of displacement is coupled to the primary [b*(14, 14) = 0-5], as well
as to a range of lower frequencies [the diagonal line labelled “A” in Figure 2(b)]. The
second harmonic (@ = 42) is coupled to the primary and first harmonic [6%(28, 14) =
0-6].

As the flow through the nonlinear system is increased, the coupling between the
primary, first and second harmonic also increased (Figures 3 and 4). In addition, for
u =792, a subharmonic appears {Figure 3{(a), @ =7] in the displacement power
spectrum. Motions at this frequency are weakly coupled to motions at the primary
[6%(7, 7} =0-4). For u=7-97, a second subharmonic appears [w = 3-5, Figure 4(a));
the subharmonic at w =7 becomes coupled to the primary and to motions at w =21
[6%(14, 7) = 0-6, Figure 4(b)].

For large values of u (u > 8-05) the displacement time series become chaotic, and
their power spectra become broad band [Figure 5(a)]. In this case, the cubic
nonlinearity imposed by the nonlinear stiffness terms dominates the motion: one can

(a)

Magnitude

w (rad’s)
30
(b)
20 |-
s A b

10 |-

] 1 J 1 |

0 15 30 45 60

LU}

Figure 2. Power spectra (above) and contours of bicoherence (below) of pipe displacement for u = 7-82.
The units of power are arbitrary. The minimum bicoherence contour plotted is b% = 0-4, with contours every
0-1.
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Figure 3. Power spectra (above) and contours of bicoherence (below) of pipe displacement for « = 792,
The units of power are arbitrary. The minimum bicoherence contour plotied is 5% = 0-4, with contours every
0-1.

see that the spike at w =14 is one-third that of w =42, the other predominant
frequency spike in the power spectrum of the chaotic motion. This indicates a strong
cubic nonlinearity. Trispectral analysis is required to detect these cubic nonlinearities,
while the bispectrum is small [Figure 5(b)].

The coupling and energy exchange between the two modes of displacement are
displayed by the cross-bicoherence between time series of each mode, as shown in
Figure 6. Cross-bispectra for u =7-82 [Figure 6(a)] above the w,=0 line indicate
coupling between motions at the primary power spectral frequency of mode 1 and its
harmonic in mode 2 [b*(14, 14) =0-7], as well as coupling between the mode-1
primary, mode-1 first harmonic, and mode-2 second harmonic [b%*(28, 14)=0-5],
similar to the auto-bispectra [Figure 2(b)]. In addition, lower frequencies of mode 1
(w < 14) are coupled to the first harmonic of mode 2. Difference interactions couple
mode-1 motions at the first harmonic (w,=28), a range of mode-1 motions
(—28< w, <0), and a range of mode-2 motions (0 < w, + w, <28), as indicated by the
vertical band of high bicoherence values in Figure 6(a). As period doubling takes
place, the coupling between the modes also increased [Figure 6(a—c)], and spreads to
include coupling to subharmonics. Once the system becomes chaotic {« = 8-05, Figure
6(d)] the cross-bicoherence becomes small, as cubic interactions dominate the
displacement of the pipe.

The structure of the cross-bicoherence spectra of the displacement of the can-
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Figure 4. Power spectra {above} and contours of bicoherence (below) of pipe displacement for i = 7.97.

tilevered pipe is similar to that of a multi-frequency excited buckled beam described by
the Holmes-Moon Duffing equation (Pezeshki et al. 1991). The beam was forced by
motions at frequencies corresponding to the first resonance and twice the first
resonance of the system. Quadratic interactions lead to a transfer of energy from the
higher frequency forcing to the lowest nonlinear natural frequency of the system. This
low frequency energy was then redistributed to many frequencies via a quadratic sum
interaction, eventually producing a broad power spectrum. Through a variation of the
phase angle of the higher-frequency forcing term, the period doubling route to chaos
would be controlled, and chaos prevented. Similar dynamics may occur in the
cantilevered pipe, where difference interactions between the two modes of vibration
produce motions at low frequencies. Sum interactions between the low frequencies and
the harmonics redistribute energy to motions at a range of frequencies, eventually
broadening the power spectrum.

4. CONCLUSIONS

Previous experimental and theoretical work demonstrated a period doubling route to
chaos, as flow increases in a cantilevered pipe conveying fluid with nonlinear stiffness.
In the present study, bispectra of time series of pipe displacement produced by
numerical solutions to the equations of motion describing the cantilevered pipe system
were calculated. Bispectra indicate nonlinear phase coupling between pipe displace-
ments at the primary power spectral peak frequency and its super and subharmonics.
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The coupling increases and spreads to incorporate motions at more frequencies as the
system undergoes a period doubling route to chaos. Once the pipe displacement is
chaotic, the bicoherence becomes small because the system is dominated by cubic
interactions. Trispectra are necessary to investigate the pipe system in the chaotic
regime.

Cross-bispectra between the two modes of motion of the pipe indicate they are
phase-coupled to each other, and exchange energy. In particular, low frequency
motions of one mode are coupled to and exchange energy with motions at harmonic
frequencies in the other mode.
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