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Analysis of a System of Two
Coupled Oscillators With Quadratic
Nonlinearities Possessing Chaotic
Motion

Auto and cross-bispectral analyses of a two-degree-of-freedom system with quadratic
nonlinearities having two-1o-one internal (gutoparameitric) resonance are presented.
Following the work of Nayfeh (1987), the method of multiple scales is used to
obtain a first-order uniform expansion yielding four first-order nonlinear ordinary
differential equations governing the modulation of the amplitudes and phases of
the two modes. The particular case of parametric resonance of the first mode
considered in this paper admits Hop{ bifurcations and a pure period doubling route
to chaos. Auto bicoherence spectra isolate the phase coupling between increasing
numbers of triads of Fourier componentis for a pure period doubling route to chaos
Jor the individual degrees-of-freedom. Cross-bicoherence spectra, on the other hand,
yield information about the phase coupling between the two degrees-of-freedom.
The results presented here confirm the capacity of bispectral technigues to identify
a quadratically nonlinear mechanical system that possesses chaotic motions. For the
chaotic case, cross-bicoherence specira indicate that most of the nonlinear energy
transfer between the modes is owing to cross-coupling between phase modulations

rather than between amplitude modulations.

1 Introduction

Polyspectral methods present detailed information about the
nonlinear modal couplings present in a given system. Bispectral
analysis has been used to study a wide variety of gquadratic
nonlinear systems, including fluid (Yeh et al., 1973; Liet al.,
1976; Helland et al., 1977; Van Atta, 1979; Kim et al., 1980;
Ritz et al., 1988; Choi et al., 1984), mechanical (Sato et al.,
1977), and a quantum mechanical systems (Miller, 1986). Ni-
kias and Raghuveer (1987) provide a recent review. These
higher-order spectral analysis techniques provide information
about a chaotic system complementary to that obtained with
other methods of dynamical system analyses, such as fractal
dimension (Farmer et al., 1983) and Lyapunov exponent cal-
culations (Wolf et al., 1985).

Power spectral techniques are adequate for the analyses of
linear systems, but do not, however, provide information about
nonlinear interactions between Fourier components in a non-
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linear system. Higher-order spectra, on the other hand, can
isolate and quantify the phase coupling between nonlinearly
interacting Fourier components. Bispectral analyses of the
quadratic interactions that produce a pure period-doubling
sequence to chaos in the Rossler equations resulted in successful
identification of this system for both nonchaotic and chaotic
cases (Pezeshki et al., 1990). Further application to mechanical
systems, such as the magnetically buckled beam governed by
a Duffing equation was useful for parameter ranges where
period doubling and other quadratic phenomena dominated
the dynamics. In the chaotic regime the bicoherence completely
vanished, consistent with the cubic nonlinearity that dominated
the system during chaos. The present study presents results of
bispectral analyses of quadratically nonlinear mechanical sys-
tems with two degrees-of-freedom. Such systems govern the
response of many elastic systems such as ships, elastic pen-
dulums, beams, arches, composite plates, and shells (Haddow
et al., 1984; Nayfeh, 1986). The bispectrum provides detailed
information about the nonlinear mode couplings on a fre-
quency by frequency basis, thus identifying the quadratically
interacting Fourier components.

The equations of a system of two coupled oscillators with
quadratic nonlinearities which govern the response of a ship
whose motion is constrained to pitch and roll are presented in
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Section 2. Following the work of Nayfeh (1983, 1983b), av-
eraged equations are obtained by the method of muitiple scales
for the case of parametric resonance of the first mode. Tra-
jectories of the modulation equations for the pure period-
doubling route to chaos are also presented in Section 2. Def-
initions of the relevant bispectral quantities and details of the
numerics are considered in Section 3. Auto and cross-bico-
herence spectra of the two degrees-of-freedom are presented
in Section 4. The quadratic interactions resulting in the pure
period doubling sequence to chaos are isolated by the auto and
cross-bispectra. Conclusions follow in Section 5.

2 The Coupled Oscillator

Comprehensive analyses of coupled oscillators with quad-
ratic nonlinearities possessing internal resonances have been
considered by numerous authors (Sethna, 1965; Nayfeh and
Zavodney, 1986). Froude (1863) observed that ships have un-
desirable roll characteristics when subjected to internal (au-
toparametric) resonance. Mook et al. (1974), Nayfeh et al.
(1973) and Nayfeh (1983a) provide a detailed analysis of a
coupled oscillator with quadratic nonlinearities that governs
the response of a ship that is restrained to pitch and roll. Miles
(1985) showed that Hopf bifurcations do not exist for the case
of an internally resonant, perfectly tuned, pendulum when the
lower mode is excited by a principal parametric resonance.
Nayfeh (1987) relaxed this assumption, and subsequently found
Hopf bifurcations and calculated responses with period mul-
tiplying bifurcations leading to chaos.

Following the work of Nayfeh (1987), let u, and u; be two
generalized coordinates which describe the motion of the sys-
tem. Formulating Lagrange’s equations and considering si-
multaneous harmonic parametric and external excitations,
yields

ﬁl +wfu, + 6[2}11 t.l| + 6111} + Sathliy + 63!1%4’ 6‘u"|'
+ Bsth Uz + Sgti + Sattyth + Sybtybiy + Sttty
+ Sygtagtiy + (fiy1ay + frauz)c0s Qi8] = Ficos (St + 1)

(N
s+ o)%llz + 6[2#2!‘!2 + a.uf + oty + a;ll% + a..uf

+ asﬁ ll‘lz + ﬂsfl%‘i‘ dj“gﬁ] + ﬂgﬂzﬁl + aglllﬁz

+ ayotiatiz + (faiuy + Sz )cos (@
+ T)] =Fz cOs (ﬂzf"' 13) (2)

where u, and g, are the damping coefficients. The Fp, fum, {ns
Tn, 8y and a, are constants and w, and w; are natural fre-
quencies. F), @, and F3, ©; are the amplitudes and frequencies
of the parametric and external excitations, respectively. The
parameter ¢ is a small dimensionless parameter which has been
used as a bookkeeping device in the perturbation analysis. If
S=h=b=d=b=dp=m=as=ap=m =0,
the equations that govern the response of a ship constrained
10 pitch and roll are recovered. Using the method of multiple
scales (Nayfeh and Mook, 1979), u; and u, are expanded as

(66} = 1yl To, Th) + €1y (T, T1) ()]
uz(1;€)=uz(To, Ty) +eun(To, Ty) @

where T, is a fast time scale on which the main oscillatory
behavior occurs and T,(n = 1) are scales on which amplitude
and phase modulations take place.

Time derivatives are given by

d d
;'=Do+w.+...,55=p§+w.,p.+... (5)
]
where D, = T

Substituting Eqs. (3)~(5) into Eqs. (1) and (2), equating like
powers of ¢ and solving for O(c") yields
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Fig. 1 of the modulation squations

= 0.02, o5/1 = 0.18; (#) period 1 motion, e,/ = 0.205; (b) period 2 motion,
ot = 0.2025; (c) period 4 motion, «,/f = 0.2014; (d) pertod 8 motlon,
"” = :ﬂ& {s) petiod 16 motion, ¢,/f = 0.20128; { /} chaotic motion,
omir s

on &, - & plane for x,/!

uio=A, (T;)e104 cc ®)

uz= A (T))€“?70+ cc ™M

where cc is the complex conjugate of the preceding terms. A,
can be represented by

An.=1/2a,£% for n=12 )

where a, and 8, are the amplitude and phase of the nth mode,
respectively. The particular case of parametric resonance of
the first mode given by

0, =2, + €0y and own=2w +e€0 ')

is studied here, where o, and o3 are detuning parameters. Sub-
stituting Eqs. (6)~(9) into O(¢') equations and annulling the
resultant secular term gives

2i(A| +mA,) + 80,44, 4+ 24, 211=0
2i( Ay + pzA;) +4A, 4% 1 =0

(10)
(11)

where the prime denotes ad?' and fi; = 4w,f. A, and A; are
defined by

4wy =8y + Bywywr = by} — B0 (12)

dunhy = a — o} — anf. (13)

Substituting Eq. (8) into Eqs. (10) and (11) and separating real
and imaginary parts yields

) = — e - Aa; Sin v (14)
a; = — @y — Agd} Sin 1y (15)
Bl =Aay cos v +fcos 12 (16)
B: =, :—i cos 13 an
where
n=0T+6:-28) and y=0;T-28:. (18)

Equations (14)-(17) were numerically integrated using a fourth-
order Runge-Kutta subroutine with a time step of 0.05. (Tests
with larger and smaller time steps indicated that 0.05 was
sufficient for numerical accuracy and stability.) g,/ f was fixed

Transactions of the ASME



at 0.02 and o,/f = 0.16. Varying the value of ¢,/f produces
a period doubling sequence leading to chaos, as illustrated in
Fig. 1:

Although the averaged equations demonstrate chaotic be-
havior, an analysis of the original equations has not been
performed for the chaotic regime. Indeed, this is not the pur-
pose of the present work. Further work is needed to confirm
whether the multiple scales analysis actually represents the
physical system in the chaotic regime.

3 Spectral Analysis and Numerical Details

Consider a discretely sampled time series n,{#) with the
Fourier representation

()= D Am(wn)€ + Ag(wp)e™  (19)

where the subscript m = 1, 2 refers to each degree-of-freedom
and the asterisk indicates complex conjugation. The power
spectrum of mode m is defined as

Po{wy) = ElAn (@) Am(w))] (20)

where E] ] is the expected value. The auto bispectrum of
mode m and the cross-bispectrum between modes m and » are
defined, respectively, as

B (i0,0) = ElA (@) Ap(wp) Am{wr + )] 1)
XBpy p(w1,07) = ElA (@) ) Am (@) A7 (0 +@2)).  (22)

The normalized magnitude of the bispectrum, known as the
squared bicoherence, is given by

bf,,(wpwz)-Pm(wl VP (w3 )Py (w0 + @3}

and the normalized magnitude of the squared cross-bicoher-
ence is given by
IBM;" (w..w;_)_l g

2 =
XDy (an,07) Pr{() Pr(w) Pl +wy)

The squared bicoherence represents the fraction of power at
the sum frequency (w, + w>) of the triad owing to quadratic
interactions between the two other Fourier components (w,
and wy).

The time series produced by the numerical integrations of
Eqgs. (14)-(17) were sampled (in dimensional units) at 1 Hz,
and subdivided in 32 segments, each of 128 s duration for
processing, resulting in a frequency resolution of 0.0078 Hz
and 64 statistical degrees-of-freedom. Bicoherence values of b
> 0.40 are statistically significant at the 95 percent level for
64 degrees-of-freedom (Haubrich, 1979). Although higher fre-
quency resolution was possible, the associated decrease in sta-
tistical] stability of bispectral estimates was deemed
unacceptable. The frequency resolution used here is sufficient
to resoive the power spectral primary peak, its super harmon-
ics, and one subharmonic. Finer frequency resofution does not
alter any of the conclusions that will be presented as follows.

(23)

4

4 Results

Phase-plane portraits of the period-doubling route to chaos
are shown in Fig. 1. Power spectra for the first and second
degree-of-freedom motions corresponding to period one, two,
four, eight, sixteen, and chaotic motions are presented in Figs.
2 and 3, respectively. The harmonic structure is clearly dis-
played in the power spectra. For period-one motion, the spec-
trum is dominated by a primary spectral peak at f = 0.045
Hz and its higher harmonics for the first-degree-of-freedom
motion (Fig. 2a). For period two and subsequent period-dou-
bled motion, the subharmonic (f = 0.0215) is excited (Fig.
2(b)-2(f). The subharmonics for period four, eight, and six-
teen are not resolved owing to the frequency resolution used,
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.2 Power spectra of the first-mode amplitude modulations; (2) pe-
riod 1 motion; (b} period 2 motion; (c) period 4 motion; (d) perlod 8
motion; (e) period 18 motion; { /) chaotic motion. The units of power are
arbitrary.

as discussed above. Owing to the quadratic nonlinearities, the
spectrum contains peaks at frequencies corresponding to sum
interactions between the subharmonic, the primary, and their
harmonics. For the second degree-of-freedom motion shown
in Fig. 3, intermediate frequencies, in addition to the subhar-
monic, the primary, and their harmonics, are excited by the
cross-couplings of both the degrees-of-freedom. Bicoherence
spectra quantify the coupling of and energy exchange between
triads of Fourier components as the system progresses toward
chaos as ¢,/ is decreased from ¢,/f = 0.205 to 0,/f = 0.200.
Auto-bicoherence spectra for the first and second degree-of-
freedom motions are presented in Figs. 4 and 5, respectively.
Fer periodic motions, the coupling is centered about the dom-
inant frequencies composing the limit cycles. Through the pe-
riod doubling cascade up to period 16 motion (Figs. 4{a)-
4(d) and 5(a)-5(d), additional Fourier components are non-
linearly excited by quadratic interactions between the dominant
frequency and itself, as well as smaller interactions among the
superharmonics and subharmonics.

The spread of nonlinear interactions to include more Fourier
components as ¢,/ is reduced from 0.205 t0 0.2014 is shown
by the increasing number of triads with high auto-bicoherence
in Figs. 4{a)-4(d), 5(a)-5(d). For ¢\/f corresponding to
0.2013 and less, the superharmonics decrease in level (Figs.
2(e)-2(/) and Figs. 3(e)-3(/)) as do the bicoherence of triads
containing these superharmonics (Figs. 4 (e)-4(/); $(e)-5(/)).

Figure 6 shows the Fourier component couplings of the first
degree-of -freedom motion to those of the second (m = 1, n
= 2). Figure 7, on the other hand, shows couplings between
frequencies of the second degree-of-freedom motion to the
first (m = 2, n = 1). Both the figures display the cross-
coupling owing to amplitude modulations of the respective
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degree-of-freedom motion. The cross-bicoherence increases
steadily up to period 8 with the reduction of ¢,/f from 0.205
10 0.2013 (Fig. 6(a)-6(d); Fig. 7(a)-7(d)). For ay,; < 0.2013,
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Fig. 3 Powsr spectra of the second-mode amplitude modulations; (a)

period 1 motlon; (b) period 2 motion; (c) period 4 motion; (d ) period 8

r.r::hn:(o)porlod 18 motion; { /) chaotic motlon. The unlts of power are
teary.

the superharmonics are suppressed, resulting in the reduction
of the cross-bicoherence (Figs. 6(e)}-6(/) and T(e)-7(f)). The
auto and cross-bicoherence spectra suggest that there is very
little nonlinear energy transfer between amplitude modulations
during chaos; in other words, there is very little cross-coupling
owing to amplitude modulations in the chaotic regime. If both
the modes are decoupled (i.e., if w; # «y), then the system of
averaged equations cannot exhibit chaos, as is true for a sec-
ond-order homogeneous system. Consequently, in order to
admit chaos, there must be a strong cross-coupling between
the phase and amplitude modulations or between the phase
modulations of the two modes. Cross-bispectra between am-
plitude and phase modulations are small (Figs. 8{(a}, 8(b)),
thus negating the first possibility. On the other hand, there is
very strong cross-coupling of the phase modulations, as dem-
onstrated by high values (as great as xb = 0.8) of cross-bi-
coherence between the phases of the two modes of motion
(Fig. 8(a)-8{c)). Thus, the entire source of coupling, or the
nonlinear energy transfer is through the cross-coupling of phase
modulations in the chaotic regime.

§ Conclusions

Auto and cross-bicoherence calculations were performed for
a system of two coupled oscillators with quadratic nonlinear-
ities possessing chaotic motions. Since the nonlinear interac-
tions among the Fourier components are quadratically
nonlinear, they are characterized by the auto and cross-bico-
herence both outside and inside the chaotic regime. The period
one, two, four, eight, sixteen, and chaotic trajectories all pos-
sessed strong auto bicoherence, originating primarily from in-
teractions involving the fundamental frequency of oscillation.
There is negligible cross-bicoherence between the amplitude
modulations in the chaotic regime. On the other hand, there
is a strong cross-coupling of the phases. In the averaged equa-
tions, the cross-couplings of both the amplitude and phase
modulations must be assessed (e.g., with bispectral analysis)
in order to understand the dynamics of nonlinear energy trans-
fer.

The different bispectral analyses presented here clearly show
the coupling mechanisms responsible for chaotic motion of
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Fig. 4 Contours of auto-bicoherence of the first-mode smplitude mod-
ulations. #, and £, are shown, while the sum frequency £, + 4 is implled.
The minimum contour plotted is b = 0.40, with contours every 0.1. Panels
(8)=~( 1} are described In the caption to Fig. 1.
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