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DISPERSION, NONLINEARITY, AND VISCOSITY IN
SHALLOW-WATER WAVES

By Steve Elgar,' R. T. Guza,® and M. H. Freilich’

ApsTRACT:  The roles of frequency dispersion, nonlinearity, and laminar viscosity
in the evolution of long waves over distances of many wavelengths in constant
water depth are investigated with numerical solutions of the Boussinesq cquations.
Pronounced frequency doubling and trebling is predicted, and the initial evolution
to a wave shape with a pitched-forward front face and peaky crests is followed by
development of 2 steep rear face and a nearly symmetric crest/trough profile. While
reducing overall energy levels. laminar viscosity acts to prolong cycling of third
moments and 1o inhibit the onset of disordered evolution characteristic of nonlincar,
inviscid systems. Preliminary laboratory results show some qualitative similarities
10 the numerical simulations. However, these laboratory experiments were not
suitable for detailed model-data comparisons because dissipation in the flume could
not be accounted for with either laminar or quadratic damping models. More
carefully controlled experiments are required 1o assess the importance of viscosity
(and the accuracy of the Boussinesq model) in the evolution of nonlinear waves
over distances of many wavelengths.

INTRODUCTION

The Boussinesq equations have been used successfully to predict obser-
vations of the evolution of inviscid, weakly nonlinear, weakly dispersive,
unbroken gravity waves propagating on sloping beaches, both in the field
(e.g. Freilich and Guza 1984; Elgar et al. 1990b) and the laboratory (e.g.
Abbott et al. 1978; Madsen and Warren 1984; Liu et al. 1985; Vengayil and
Kirby 1986). On plane beaches, both the models and the observations show
nearly monotonic shoaling transformations, with initially symmetric, near-
Gaussian waves becoming asymmetric and non-Gaussian prior to breaking.
However, on even mildly sloping beaches, the shoaling region is typically
less than about 5 wavelengths wide.

Longer evolution distances are, of course, possible in constant depth, and
it is of interest to determine whether the monotonic shoaling transformations
observed and modeled on sloping topography are generic features of long
waves governed by the Boussinesq equations, or are the result of the de-
creasing depth in the direction of wave propagation. Furthermore, previous
comparisons of Boussinesq model predictions with field data have not in-
cluded dissipation. Although dissipation is not expected to have major ef-
fects over short distances characteristic of natural shoaling regions (and of
many laboratory experiments), it may significantly alter the nonlinear ev-
olution of the waves over longer distances.

For initial conditions of a single plane wave with frequency f,, two-mode
solutions of the Boussinesq equations—the only allowed motions are at
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frequencies f, and 2f, (e.g. Mei and Unlaata 1972)—predict perfect spatial
recurrence in the absence of dissipation. However, when many modes are
allowed (keeping the initial energy confined to f,), the Boussinesq equations
predict transfers of energy from the primary wave, first to its harmonics
(frequencies 2f,, 3f,, . . .}, but eventually also to nonharmonic frequencies,
with damped recurrence cycles followed by disordered evolution of the
Eourier modes (Elgar et al. 1990a). Numerical simulations, presented later,
of wave fields composed initially of a sinusoid within a low-level background
demonstrate that laminar viscosity increases the number of recurrence cycles
relative to inviscid cases.

Both few- and many-mode inviscid models predict unusual wave shapes
during various stages of evolution in constant depth. The initial evolution
to a pitched-forward front face and peaky crests (usually a precursor to
breaking on a sloping beach) is followed by development of a steep rear
face and a nearly symmetric crest/trough profile. The present study also
examines the effect of viscosity on these predictions.

There are few laboratory observations of the evolution of nonlinear long
waves over long [O(20) wavelength] distances. Mei and Unliata (1972)
showed that Goda’s appearance distances, the distance between successive
maxima of energy at frequency 2f,, were in agreement with theory for the
recurrence length of a two-mode system. However, owing to their short
laboratory tank, Mei and Unliiata could observe only a few recurrence cycles
and did not report details of the observed wave profiles. Other laboratory
studies (e.g. Buhr-Hansen and Svendsen 1974) span O(20) wavelengths,
but nonlinearity was very weak and cross-spectral energy transfers were
correspondingly small. An additional purpose of the present study that was
only marginally successful was to compare predictions of the viscous Bous-
sinesq model with new laboratory observations spanning many wavelengths.

BoussINEsG MoDEL RESULTS

The Boussinesq equations {Peregrine 1967, 1972) for unidirectional waves
in a constant depth fluid are satisfied by a water surface m given by

M= i a(x)cos[kx + @) —waf] oo {1

n=1

where a, and ®, = Fourier amplitudes and phases of the wave field, re-
spectively; k, = wave number at radian frequency w, (where w, = nAw
with Aw the frequency resolution); and N = number of modes used to
represent the wave field.

Substituting the expression for v into the Boussinesq equations and in-
cluding the effects of laminar viscosity yields differential equations describ-
ing the spatial evolution of the modal amplitudes and phases, given sche-
matically by

d, = NL — @Dy oot (2a)
S | I 5 P PP (2b)

where the overdot indicates differentiation with respect to the propagation
direction x; and NL = nonlinear terms (Freilich and Guza 1984). The viscous
term D, based on laminar boundary layers, both at the bottom and at the
clean free surface is
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v k, 5 {wih
D, = é—‘;’:z[1+3(g)] ................................ 3

where v = Kinematic viscosity; # = water depth; and g = gravity (e.g.
Van Dorn 1966; Vengayil and Kirby 1986). The inviscid, small amplitude
(linear) wave number £, is given by

—_ Wy hmﬁ
k, = (gh)"? (1 + 6g) ...................................... (4

Sidewall damping is negligible in the present case of a flume much wider
than the depth (Van Dorn 1966).

The evolution equations (2) are strictly applicable to a deterministic sys-
tem composed of motions at a finite set of fixed, discrete frequencies. Given
a set of initial amplitudes and phases, (2) can be integrated numerically, as
discussed in Freilich and Guza (1984) and Elgar et al. (1990a). Previous
work comparing model predictions with field observations simulated the
random sea surface by averaging results from many similar model integra-
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FIG. 1. Comparison of Evolution of Harmonic Amplitudes between Linear Inviscid
(i}, Nonlinear Inviscid (ni), and Nonlinear Viscous (nv) Boussinesq Models
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FIG. 2. Comparison of Evolution of Water-Surface Elevation Asymmetry and
Skewness between Linear Inviscid (li), Nonlinear Inviscid (ni), and Nonlinear Vis-
cous {nv) Boussinesq Modeis

tions that were initialized by either observed Fourier coefficients or by
synthetic amplitudes and phases chosen from a Gaussian population having
the desired frequency spectrum. In the present paper, however, the purely
deterministic model is entirely appropriate. Averages across ensembles of
initial conditions are not necessary because the laboratory data were gen-
erated by deterministic paddle motions at fixed frequencies.

Unless stated otherwise, the numerical simulations allowed 256 frequency
modes, and had initial conditions consisting of a single sinusoid within a
low-ievel background. Background energy levels were 1% that of the power
spectral primary peak frequency, and the initial phases of the background
waves were random with a uniform distribution. Energy transfers to several
harmonics were allowed, with the maximum frequency (~6f,) included in
the calculations corresponding to about kA = 2.6. Previous simulations have
shown that the results are not sensitive to the precise high-frequency cutoff
used in the integrations.

For the present nearly monochromatic initial conditions, discrete modal
amplitudes at the primary and harmonic frequencies (£, 2f,, 3f,, . . .) will
be examined. For the case of a fixed number of modes and essentially
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FIG. 3. Comparison of Evolution of Harmonic Amplitudes between Waves with
Different Ursell Numbers

monochromatic initial conditions, the wave evolution is primarily a function
of f,, h, and the initial amplitude at f>- The Ursell number U given by

i$ a convenient nondimensional representation of injtial nonlinearity. The
wave number k in (5) corresponds to the power spectral peak frequency f,,
and the amplitude a is defined as twice the standard deviation of the wator
surface.

As shown by (2), both nonlinearity and dissipation can cause spatial
changes in modal amplitudes and phases, which determine the sea-surface
geometry (wave shape). Because the waves are weakly dispersive, their
shapes change slowly as they propagate even in the absence of nonlinearity
and viscosity. Laminar viscosity acts to increase the dispersive nature of the
waves, while nonlinear-phase effects can have either sign, depending on the
modal phases of the interacting waves. Just as significant wave height can
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FIG. 4. Comparison of Evolution of Water-Surface Elevation Asymmetry and
Skewness between Waves with Different Ursell Numbers

be used as an overall measure of wave amplitudes, the normalized third
moments, skewness and asymmetry, are used as measures of nonsymmetric
wave shapes and indicate asymmetry about horizontal and vertical axes,
respectively (Elgar and Guza 1985). A pitched-forward wave (steep front
face and gently sloping rear face) has positive asymmetry, while a Stokes
wave (peaky crest and broad, flat trough) has positive skewness. Both skew-
ness and asymmetry are zero for linear waves.

The effects of linear dispersion, nonlinearity, and viscosity on wave ev-
olution are illustrated in Figs. 1 and 2. For these weakly nonlinear waves,
U = 0.1 and kk = 0.26. In Fig. 1 (and all subsequent similar figures), the
upper panel is the amplitude of the power spectral primary peak f,, and the
center and lower panels are the harmonic amplitudes at 2f, and 3f,, re-
spectively. The amplitudes have been normalized by the value of the primary
amplitude at the initial conditions (distance = 0).

For inviscid linear waves on a flat bottom (solid line in Fig. 1) there is,
of course, no amplitude evolution. Frequency dispersion between motions
at f, and the harmonics results in cycles in the normalized third moments
(asymmetry and skewness, solid line in Fig. 2), with both asymmetry and
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FIG. 5. Comparison of Evolution of Harmonic Amplitudes between Waves with
Different Dispersiveness

skewness oscillating slightly about 0. It can be shown that the initial phase
of the oscillations depends on the initial modal phases.

When nonlinear interactions are allowed (dashed lines in Figs. 1 and 2)
energy is exchanged between the primary and its harmonics, leading to
oscillations in modal amplitudes (Fig. 1). On the linear scales used in Fig.
1, the amplitude of the primary wave does not change appreciably, while
that of the second harmonic periodically increases to more than 2.5 times
its initial value (but never becomes significantly less than its initial value),
while the third harmonic amplitude oscillates approximately about its initial
value.

The most striking difference between the (inviscid) linear and nonlinear
cases is in the evolution of third moments. The introduction of even weak
nonlinearity significantly increases the amplitudes of the oscillations of third
moments. Furthermore, the character of the oscillations changes funda-
mentally. In the linear case the initial derivatives of both asymmetry and
skewness depend on the initial modal phases. That is, the asymmetry and
skewness may initially increase or decrease. In the nonlinear case, with
monochromatic initial conditions, asymmetry still oscillates about 0 (cor-
responding to wave shapes cycling from pitched forward to pitched back-

357



nl, kh=.26
nl, kh.1

0.4
0.2
0.0

—Asymmetry

-0.2
-0.4

it
22}
T

Skewness
o ©
T

L] 1 1

0 10 20 30 40 50
Distance (wavelengths)

o
o

FIG. 6. Comparison of Evolution of Water-Surface Elevation Asymmetry and
Skewnes between Waves with Different Dispersiveness

ward), but the initial derivative is always toward greater negative asymmetry
(corresponding to increasingly pitched-forward shapes), independent of the
initial modal phases (Elgar and Guza 1986). Nonlinear interactions force
the phase of the (initially small) second harmonic to become locked to that
of the primary, and the relative phase between the harmonics is primarily
determined by the nonlinear term in (2b). Similarly, the skewness oscilla-
tions result from nonlinearly induced phase locking (rather than the initial
phases), and skewness initially increases.

When both nonlinearity and viscosity are included, laminar viscosity (long
dashes separated by dotted lines) reduces the energy levels at each frequency
band as the waves propagate. Because the total energy of the system is
monotonically decreasing, nonlinear interactions become progressively weaker
(Fig. 1). The effect of viscosity on the normalized third moments (asymmetry
and skewness) is less pronounced than on amplitudes (Fig. 2).

The fluctuations of harmonic amplitudes (Fig. 3) and third moments (Fig.
4) for viscous, moderately nonlinear waves (U = 0.4, solid line) have larger
amplitudes than for weakly nonlinear waves (U = 0.1, long dashes separated
by dotted lines). On the other hand, the wavelengths of the cycles of har-
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FIG. 7. Comparison of Evolution of Harmonic Amplitudes between Waves with
Difterent Viscosity

monic amplitudes and third moments are similar in the moderately nonlinear
and weakly nonlinear cases.

The effect of dispersion on the evolution of nonlinear, inviscid waves is
shown in Figs. 5 and 6. More dispersive waves (kh = 0.26, solid line) have
much more rapid oscillations in the evolution of harmonic amplitudes and
third moments than do less dispersive waves (kh = 0.1, long dashes sep-
arated by dotted lines). However, at constant U(U = 0.4 here) the sizes of
the modulations are similar, with harmonic amplitudes (as a percentage of
the primary amplitude) and third moments reaching almost equal minimum
and maximum values. The results illustrated in Figs. 1-6 are predicted by
a two-mode model (Mei and Unliiata 1972) and appear to also hold in the
present many-mode formulation.

The inclusion of viscosity for moderately nonlinear waves (U = (0.4, kh
= {).26) results in decreasing harmonic amplitudes, and the evolution is
qualitatively similar for viscosities varying by a factor of 4, as shown in Fig.
7 [the dotted line is the nonlinear inviscid model, the solid line is a nominal
viscosity for water (v = 0.01 cm?s), equal sized dashes are 2v, and long
dashes separated by 1 and 2 short dashes are 4v]. In all cases shown, non-
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FIG. 8, Comparison of Evolution of Water-Surlace Elevation Asymmetry and
Skewness between Inviscid and Viscous Waves

linearity causes spatially periodic modal energy transfers, although the rel-
ative maximum amplitudes of the harmonics decrease with increasing fre-
quency at all propagation distances. While viscosity decreases all modal
amplitudes, it does not qualitatively change the nature of the nonlinear
cross-spectral energy transfers for this moderately nonlinear system.

Dissipation does, however, qualitatively modify the spatial evolution of
more nonlinear systems, as shown in Fig. 8 for U = 1.6 and kk = 0.26.
Whereas several recurrence cycles (defined here as near returns to initial
amplitudes and third moments} are evident for inviscid waves with U/ = 0.4
(Figs. 5 and 6), the inviscid model for U = 1.6 (dotted line in Fig. 8) predicts
a relatively rapid damping of the cycles in the evolution of third moments
(see also Elgar et al. 1990a). The addition of viscosity (solid line) prolongs
the cycling of third moments, and although the maximum and minimum
values of asymmetry and skewness decrease as the waves evolve, the cycles
persist for at least 50 wavelengths.

LABORATORY EXPERIMENTS

In all the nonlinear, viscous cases described earlier, the Boussinesq model
predicts significant energy exchange between motions with frequency f, (the
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FIG. 9. Time Series of Water Elevation Observed in Laboratory

initial power spectral peak) and motions at 2f,, 3f,, and so forth. When the
harmonic amplitudes are comparable to the primary amplitude, multiple
crests appear (frequency doubling and frequency trebling). In addition, the
Boussinesq model predicts rather extreme changes in the shapes of the
waves, with profiles that steepen and pitch forward and then unsteepen and
pitch backward, as indicated by the cycles of third moments,

To test these predictions, experiments were conducted in a 1.8 m wide,
10.5 cm deep, wave flume (Hughes and Fowler 1990) at the U.S. Army
Corps of Engineers Waterways Experiment Station in Vicksburg, Miss. The
distance from the piston-type wavemaker, driven at a single frequency, to
the toe of a 1/40 sand beach was 46 m. Wave elevations were measured
over the constant depth portion of the flume with 4 capacitance gauges
located 4, 19, 31, and 46 m from the wavemaker. Waves with peak fre-
quencies in the range 0.25 < f, < 0.4 Hz and amplitudes between approx-
imately 0.25 and 5 cm were generated. Thus, 0.2 < U < 8 and 0.16 < kh
< 0.26. The water surface elevation at each gauge for the case of f, = 0.25,
U~ 2, and kh = 0.26 is shown is Fig. 9. At the gauge closest to the
wavemaker (X = 0 in Fig. 9), the water-surface oscillations have a 4 sec
period, although the profile is not sinusoidal. At X = 4L and X = 7L,
where L is the wavelength corresponding to £, (L ~ 3.9 m in this case), the
waves have frequency trebled, with 3 distinct crests over each 4 sec period
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FIG. 11. Power Spectrum of Water Elevation (Fig. 9) Observed at X = 0

(frequency doubling was observed in other cases). The power spectrum (not
shown) at X = 11L shows spectral levels at 3f, and 4f, as high as those at

Not only was frequency doubling, trebling, and possibly quadrupling ob-
served, but the laboratory waves developed steep, pitched-forward profiles,
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and then unsteepened and pitched backward, as shown by the symbols in
Fig. 10. As shown by the solid line in Fig. 10, the observed evolution of
asymmetry and skewness is qualitatively stmilar to nonlinear, viscous Bous-
sinesq model predictions for the case of an initial sinusoid (f, = 0.25 Hz)
in a low level background with U = 1.6 and kh = 0.26. ﬁowever, the
comparison is only approximate because the initial conditions differed be-
tween the laboratory and model runs.

To compare laboratory data quantitatively to model predictions, the model
must be initialized using the observations at the first gauge. The observed
spectrum (units are arbitrary) at X = 0 (Fig. 11) shows that the laboratory
waves for X = 0 do not consist of a single sinusoid within a low-level
background. The substantial harmonic peaks in the spectrum are much
larger than predicted by nonlinear wavemaker theory (Madsen 1971). If the
viscous Boussinesq model is initialized with a wave field similar to that
shown in Fig. 11, linear dispersive effects dominate the evolution of the
third moments, as shown in Fig. 12 for kk = 0.26 and U = 0.1 {dashes
separated by dotted lines) and U = 0.4 (solid line). The dashed line is
linear, viscous Boussinesq theory. Linear dispersion results in phase shifts
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between the Fourier components similar to that shown in Fig. 2. However,
in the case of many large, phase-coupled harmonics in the initial spectrum
(Fig. 12), the third moments initially have large values of asymmetry and
skewness, and the linear and nonlinear evolution of third moments are very
similar. Thus, although the nonlinear Boussinesq model can be compared
to the observations, in this case it would be difficult to separate nonlinear
from linear effects.

Inviscid linear waves on a flat bottom have no amplitude evolution, and
linear, but viscous waves have exponentially decaying amplitudes. On the
other hand, nonlinear waves have more complicated evolution of harmonic
amplitudes, and thus, in principle, model-data comparisons of harmonic
amplitudes could be used to distinguish linear from nonlinear evolution in
cases where third moments evolve similarly (e.g. Fig. 12). However, the
dissipation observed in the flume was not laminar, and could not be ac-
counted for with a simple increase in the effective value of viscosity nor
with a quadratic parameterization. As shown in Fig. 13, more dissipation
occurred between the first two gauges then between gauge 2 and gauge 4.
If the dissipation was laminar, all four points would lie on a straight line
and the slope of the line would be the same for all wave heights. If the
dissipation was quadratic, there would be relatively more dissipation for
large waves than for small waves. As shown in Fig. 13, between gauges 2
and 4 the relative rate of change of energy flux (EC,, where E is the wave
energy and C, is the group velocity corresponding to f,) with propagation
distance is more-or-less constant for wave fields varying by two orders of
magnitude in initial energy. However, the rate of change of EC, with dis-
tance between gauges 1 and 2 differs substantially from that between gauges
2 and 4. The reasons for this apparently nonlaminar dissipation are un-
known. It may have resulted from inhomogeneities in the wave flume, or
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from a more fundamental difficulty related to estimating the damping of
these nonlinear, nonbreaking, waves. Regardless, nonlaminar dissipation is
not incorporated in the Boussinesq model used here, and no further model-
data comparisons were made.

CONCLUSIONS

The roles of frequency dispersion, nonlinearity, and laminar viscosity in
the evolution of long waves in constant depth were investigated with nu-
merical solutions of the discretized and truncated many-mode Boussinesq
equations. The parameters of the simulated waves were suitable for ob-
serving wave evolution over many wavelengths in a moderately long labo-
ratory flume. As expected, viscosity reduces the effect of nonlinearity by
decreasing the wave energy. In particular, the predicted broadening of an
initially narrow wave spectrum as a consequence of moderate nonlinearity
(with no viscosity) is delayed.

Preliminary laboratory results show some qualitative similarities to the
numerical simulations. As predicted, wave crests were not conserved, and
frequency doubling and trebling were pronounced. The initial evolution of
the wave shape to a pitched-forward front face and peaky crests (usually a
precursor to wave breaking on a sloping beach) was followed by develop-
ment of a steep rear face and a nearly symmetric crest/trough profile.

However, these laboratory experiments were not suitable for detailed
model-data comparsions. First, although the piston wavemaker was pro-
grammed to oscillate in simple harmonic motion, it generated waves with
significant amplitudes at the harmonics of the primary motion (these har-
monics were larger than predicted by nonlinear wavemaker theory). Nu-
merical simulations show that these initially large harmonics obscure some
of the effects of nonlinearity by amplifying the importance of linear fre-
quency dispersion. Although the initial conditions were not ideal, in prin-
ciple the large harmonic amplitudes could have been accounted for in the
numerical model. On the other hand, the dissipation observed in the flume
was not laminar, and could not be accounted for either with a simple increase
in the effective value of viscosity, or with a quadratic parameterization.
More carefully controlled experiments are required to provide observations
over long propagation distances for quantitative comparisons to Boussinesq
model predictions.
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