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Various signal processing techniques are introduced into the structural dynamics literature, no-
tably higher-order spectra for steady-state response and wavelet transforms for transient re-
sponse of systems. The structural behavior of the buckled beam, modeled by the one-mode
Galerkin appeoximation is cxamined to demonstrate the utility of the techniques. Higher-order
spectra illuminate nonlinear energy coupling mechanisms in the frequency domain for the
steady state response. Wavelet wransforms show the development of the frequency spectrum in

the transient portion of the response.

INTRODUCTION

The magnetically buckled beam has been studied by a vari-
ety of authors [(Moon and Holmes, 1979], [Dowell and
Pezeshki, 1986] and behavior for the one spatial mode
Galerkin reduction of the beam, otherwise known as Puff-
ing’s equation with a negative linear stiffness, is well docu-
mented. When excited by a sinusoidal force, the beam’s mo-
tion is described by

A+vA-¥(A-AY = Fsinllt m

where A is the displacement at the tip of the beam, Y is the
damping coefTicient, the excitation force has amplitude F,
and frequency £2, and the overdot represents differentiation
with respect (o time. Duffing's equation and the buckled
beam exhibit phenomena such as period doubling and
chaotic oscillations.

The magnetically buckled beam is often referred to as 3
two- well potential problem. At rest, the physical system
has two stable equilibria, one buckled about the left magnet,
ﬂwothcraboutﬂwﬁgh(magnct.mbwmalsohasonc
unstable equilibrium, located about the center of the two
magnets. If excited with a small sinusoidal force, the beam
will oscillate about one of the two stable equilibria in a
roughly sinusoidal fashion. However, when the force ampli-
tude is raised 1o a sufficient level, the beam will jump back
and forth between the (wo static equilibria, in effect
“snapping through” the centerline of the system.

To demonstrate the use of cross-bispectral analysis, the
Duffing equation excited by 3 multifrequency excitation is
examined, represented by the following equation,

A +9A - Vo(A -A%) = Fsinlt + Fsin(2Q1+¢) 2
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Systems with cubic nonlinearities, including some with
two- frequency excitation, have been investigated previ-
ously {Plaut et al, 1986}, [Zavodney et al, 1989}. The pre-
sent study investigates methods of quenching chaotic mo-
tion by varying the phase angle ¢ of the forcing term in Eq
(2), and using cross-bispectral analysis for insight into the
rationale for system behavior. For demonstration of the use
of the wavelet transform, Eq (1) is considered. The system
with small damping is discussed, a sample trajectory is cal-
culated, and the transform is applied.

BISPECTRAL ANALYSIS AND NUMERICAL
DETAILS

Details and applications of bispectral analysis can be found
in references {Hassleman et al, 1963}, [Kim and Powers.
1979}, [Nikias and Raghuveer, 1987}, {Haubrich, 1965]. A
brief description is presented here for completeness .

For a discretely sampled time series 0(1} with the Founier
representation

a0 = X, Clw,) explin) + C*(w,) exp(-in,?). %))

the power, auto- and cross-bicoherence spectra (normalized
bispectra) are defined as

P(®,) = EIC@©)C*®,)] @)
_ E[C(0))C(m,)CHay+a)))
Bloy69) = T hg )P(@)P @) sl
_ EICA0)C0)C, @)
XBjx(0102) = ~p (3 1P ()P (y+iay) Q)
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respectively, where o, is the radian frequency, the subscript
a is & frequency index, the C's are the complex Fourier co-
cfficients of the time series, an asterisk indicates complex
conjugale, and E[ | is the expected-value, o avesage, opera-
1or. Tae subscripts j.k in (6) indicate separate time series; in
the cases considered here, input and output, respectively.
Rewriting the complex Fourier coefficients as C(w,) =
c,exp(i®,), the bispectrum becomes

B(w,.0y) = Elcicy6),3expli(®@+0,-® )1} M

If the three modes of the triad are independent of each other
(ie. ®,.0,.9,,, arc random phases), then, when averaged
over many realizations, the triple products in (5-7) will be
zero. On the other hand, if the modes at frequencies @, @,
and &3+, arc quadratically coupled, the biphase ©,+®,-
®,,, will be nonrandom cven if ®; and @, are randomly
varying. Thus, the bispectrum will be nonzero. Conse-
quently, the bicoherence indicates the relative amount of
quadratic phase coupling between the three modes in a
triad.

WAVELET TRANSFORMS

Recently, much attention has been directed in the clectrical
engineering and applied mathematics communitics towards
the use of wavelet transforms {Grossman et al, 1989),
[Meyer, 1989]. {Daubechies, 1989], [Flandrin and Rioul,
1990), [Ameodo and Grasseau, 1988], [David and Chapron,
1990]. Wavelet transforms can be defined as a new type of
formalism of signal energy represeniation depending on
time and scale [Flandrin and Rioul, 1990). Because of their
unique properties involving their scalability, they can be
used very successfully to study fractal signals, nonstation-
ary phenomena, and other signals not tractable to ordinary
Fourier analysis {Ameodo and Grasseau, 1988). The defini-
tion of the wavelet transform, as given by Grossman[1989],
is

Sb.a) = a2 g*[(s-bYalsts) dr ®)

where g* represenis complex conjugate of g, the analyzing
wavelet, defined on the open time and scale half-plane 4, b
representing a waveform correlation delay time, “a” repre-
senting wavelet frequency or dilation factor and s(s) the sig-
nal being processed. Though this definition is concise, in
ocder (o understand the physical sense of what information
is contained in wavelet transform, it is helpful for structural
dynamicists 10 first consider its Fourier transform counter-
part, the Short-Time Fourier transform (STFT) (Flandrin
and Rioul, 1990). The definition of an STFT is

F(ba) = | s)h*(-b) exp(-i2mar)dt ©)

where h* is the windowing function for the transform. The
STFT uses modulated versions of a low pass filter 1o ana-
lyze spectral content [Flandrin and Rioul, 1990]. It is impor-
tant to understand the restrictions (hat this form places upon
the analyzed signal. The STFT correlates a complex wave-
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form of constant envelope in lime with the signal, but
changing frequency, meaning that as the frequency is in-
creased, the number of oscillations inside the eavelope also
increases.

For a large window in time, low frequencies are abie to
be analyzed; however, poor high frequency localization is
also the result. Individual frequency events are poorly de-
fined. If the window is made small, so that high frequencies
are successfully localized, bandwidth is small also and reso-
lution on the lower end of the frequency scale is sacrificed.
Accuracy also suffers from the fundamental assumption
concerning the computation of a Fourier Transform; that the
signal is infinite in time, and the window employed repre-
sents a period of an infinite signal. This assumption is, of
course, patently wrong for many nonstationary signals, in-
cliding many that would be of interest in engineering sci-
ence, especially those that are primarily concerned with the
stari-up of machinery or any transient phenomena.

The wavelel transform has a significantly different struc-
ture than the STFT discussed above. Here, a selected ana-
lyzing waveform, modified by a given envelope, is defined
to have a fixed number of oscillations inside this envelope.
See Fig 1. The width of the envelope and the frequency
scale together as the frequency is increased to hold the
number of oscillations constant. Thus, as frequency is in-
creased, the time envelope of the signal is namrowed. This
propesty gives good resolution in the frequency domain (up
to theoretical Nyquist limitations), and good localization in
the time domain, since the envelope size, or the leagth in
time of the wavelet directly scales with the frequency of the
sinusoid inside the cnvelope.
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Fig 1. Typical analyzing wavelet.
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Because of these properties, the wavelet transform can
serve as a sort of signal processing microscope for analyz-
ing local frequency content {Ameodo and Grasseau, 1988].
It is also important to consider the normalization factor
placed in the functional form, a™'/2. This facior normalizes
the autocorrelation of an actual wave packet as shown in
Fig 1, thus sciting the wavelet transform of a wavelet equal
to unity. For structural dynamicists, of more practical inter-
est is a normalization that sets the correlation of a sine wave
with a wavelet compaosed of that sine wave frequency equal
10 unity. This transforms the normalization 10 o', leaving
the preferred functional form to be

Sb.a) = a'f g*l(t-bals(0) dt

This is the transform used for the calculations in this pa-
per. Because of the form of the transform, use of a different
normalization factor will obviously yield different results.
One possible modification of the normalization factor might
be to deal with fractal signals possessing a certain roll-off in
the frequency spectrum [Ameodo and Grasseau, 1988]. The
noemalization factor could be used to compensate for
average trends in the frequency spectrum, leaving only dis-
crete events to be illuminated by the wavelet transform.

Nonstationarity of the signal also becomes less signifi-
cant in wavelet analysis. Since the wavelet transform is de-
fined locally over a given interval, it does not depend on the
long-time behavior of the signal, nor are assumptions as
such made in the formulation. This tums out to be impor-
tant in analyzing transients present in mechanical systems,
especially ones with constamly increasing carrier frequen-
cies, as would be encountered in the spin-up of a shaft.

(10)

Computational details of the wavelet transform

Since wavelet ransform encompasses a wide variety of
waveforms meeting certain admissibility conditions that are
explained in [Meyer, 1989]. it is necessary (o design a
wavelet that will give the user the information desired to
complete the analysis. When considering problems in struc-
tural dynamics, the traditional wavelet formulation used is
adequale, after consideration of the appropriate normaliza-
tion. The gencrating function for the wavelet family used

for analysis in this paper is
glc) = e exp(-v2n?) (1)

which, upon substitution of the scaled time, T = wi/c cen-
tered about 0 yields

gl = & expl-22(cnw)?) (12)

where e/ is the standard deviation of the Gaussian distri-
bution used to modulate the complex waveform, ¢ is a con-
stant used to determine the number of oscillations inside the
main body of the Gaussian envelope, and @ is the frequency
of the sinusoid being modulated. For the figure in this
paper, ¢ = 1. The wavelet is set to span the distance of six
standard deviations of the Gaussian, thus giving three
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complete oscillations of the complex sinusoid. The wavelets
generated are then correlated with the signal to be analyzed.

Because the signals analyzed are not assumed (o be peri-
odic, the analyzing waveforms do not wrap around from the
beginning to the end of the signal. Therefore, the waveform
comrelation magnitude is only formed when the complete
waveform can be correlated with the signal. The correlation
sequence begins when the left end of the wavelet is aligned
with the left end of the time signal, and ends when the right
end of the wavelet is aligned with the right end of the time
signal. The wavelet correlation magnitude is plotted on the
graphs at the time where the center of the wavelet coincides
with the time signal. This implementation results in the
broad U shape associated with the figures. As the wavelet
frequency is increased, the temporal length of the analyzing
wavelet shrinks, leaving a much smaller temporal distance
between the left side and the center of the analyzing wave-
form, thus giving the U shape.

BICOHERENCE RESULTS

For many weakly nonlincar systems, nonlinear resonances
are often observed al the linearized natural frequency and at
twice the natural frequency [Nayfeh and Mook, 1979). Con-
sequentty, Eq (2) with Q = 0.159 Hz, the first resonance of
the system, was examined. F, was set at 0.21, the chaos
boundary where chaotic oscillations are first observed for
the single frequency excitation case [Dowell and Pezeshki,
1986). Figure 2 shows (he phase plane trajectories for @ =
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Fig 2. Phase planc trajectorics, Eq 2, F,=0.21, ¢ =00 (a),
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0.0. 0.20, 0.28, 0.31, 0.32, and 0.50. Varying the phase an-
;leforthisfomingfmcﬁmprodmaclassic period dou-
bling sequence (Figs 2f-c), followed by an intermittency
crisis into and out of chaos. The period doubling sequence
into chaos is almost identical to the single frequency forc-
ing case; see {Dowell and Pezeshki, 1986) for comparison,
Power spectra for the respective attractors are shown in Fig
3. As expected, for the power spectra shown in Fig 3a and
e, a strong subharmonic is present at 1/2 the excitation
frequency. The power spectrum shown in Fig 3b is broad-
band, typical of a chaotic system, and the power spectra
shown in Figs 3c and 3d contain the requisite subharmonics
for period octupling and period quadrupling.

The cross bicoherence of the input signal relative to the
output (Fig 4) for a single period limit cycle (ie Figs 2f, 3f)
shows a mechanism that is consisient with the control fre-
quency transferring energy back to the natural frequency,
which then redistributes the encrgy between the harmonics
as it had done with the single frequency excitation case
[Pezeshkd et al, 1990]. A summing interaction is found be-
tween £ = 0.159 Hz, the excitation at the natural frequency,
and itself, creating the frequency triad (f, = 0.159 Hz, f, =
0.159 Hz, f,; = 0.318 Hz). A differencing interaction is
found between the controlling frequency, f = 0.32 Hz, and
the main excitation, f = 0.159 Hz, creating the frequency
triad (f, = 0.318 Hz. f,=0.159 Hz, f} 5 = 0.159 Hz).
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Fig 3. Power spectra, Eq2,F =021, @= 0.0 (a), 0.2 (b), 0.28
(c), 0.31 (d), 0.32 (). 05 (). The units of power are arbitrary.
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By varying the phase of the controiling frequency input,
an effect is observed whereby the phase of the frequency
generated by the differencing interaction between (f, =
0.318 Hz, f, = 0.159 Hz, f,,, = 0.159 Hz) effectively cre-
ates an out-of- phase motion between f, 5 = 0.159 Hz and
the main excitation, also at = 0.159 Hz. This interaction
thus enables quenching the chaotic motion by effectively
raising or lowering F, for the main sinusoidal inpat. Cases
were also run with the phase angle equal to 0.85x and x
(not shown). Maximum quenching was observed at 0.85x.
The slight phase angle shift from the maximum out-of-
phase effect is attributed to the cubic behavior of the sys-
tem. This offers possibilities for control of nonlinear sys-
tems with strong harmonic content by imposing oscillations
at frequencies other than the primary.

WAVELET TRANSFORM RESULTS

Figures S a,b show an analysis of the transient for Eq (1) for
y= 0.0168, and F, = 0.05 . The frequency development in
the oscillator is clearly illustrated by the wavelet transform.,
The oscillator initially experiences snap-through dynamics,
coupled by a saddle-node intermitiency pause, and then
settles down to single period motion. By examining the
wavelet transform of the transients for the system, one can
see a spread of energy at many different frequencies being
dissipated and being directed into the primary resonances,
Pseudo- chaotic high-frequency encrgy bursts are followed
by a dramatic collapse to the limit cycle attractor, due pri-
marily to the saddle-node instability present in this prob-
lem. The steady-state wavelet transform for the low damp-
ing case once again assumes the familiar f = 0.16 Hz, f =
0.32 Hz peak paltern after the transient dies out.
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Fig 4. Cross-bicoherence between the forcing function (f), /)
and displacement (f+f,) comresponding to Figs 21, 3f, and 4f.
The minimum contour plotted is XB = 0.4, with contours every
0.1. (Fy=0.21, (9= 05)
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Fig 5. (2) Time his-
tory, Duffing equa-
tion, F, = 0.05, y =
0.0168,r=0-400s.
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