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The dynamics of a magnetically buckled beam excited by a two-frequency forcing
function are examined to determine the nature and cause of the system behavior into and
outside the parameter range where chaotic oscillations are observed. To facilitate the
analysis, the beam is modelled by Duffing’s equation with a negative linear stiffness.
Bispectral analysis is performed on the trajectorics in order to examine the nature and
effect of frequency coupling in the motion. Results indicate that varying the relative phase
angle of the higher frequency term can result in driving the system in and out of chaos.
Bispectral analysis indicates that this controlling behavior of the high-frequency excitation
term can be explained by quadratic interactions that transfer energy to the lowest non-linear
natural frequency of the beam.

1. INTRODUCTION

The magnetically buckled beam has been studied by a variety of authors (see references
[1, 2] and references therein), and behavior for the one spatial mode Galerkin reduction
of the beam, otherwise known as Duffing’s equation with a negative linear stifiness is
well documented. The beam’s motion is described by

A+ vA-3(A- A% = F,sin {21, (1)

where A is the displacement at the tip of the beam, vy is the sampling coefficient, the
excitation force has amplitude F, and frequency (2, and the overdot represents differenti-
ation with respect to time. Duffing’s equation and the buckled beam exhibit phenomena
such as period doubling and chaotic oscillations.

The magnetically buckled beam is often referred to as a two-well potential problem.
At rest, the physical system has two stable equilibria, one buckled about the left magnet,
the other about the right magnet (see Figure 1). The beam also has one unstable
equilibrium, located about the center of the two magnets. If excited with a small sinusoidal
force, the beam will oscillate about one of the two stable equilibria in a roughly sinusoidal
fashion. However, when the force amplitude is raised to a sufficient level, the beam will
jump back and forth between the two static equilibria, in effect “snapping through™ the
centerline of the system.

The purpose of the present study is to demonstrate the effect of supplemental forcing
terms on the global behavior of the magnetically buckled beam system. Since the system
is non-linear, the effects of these terms cannot be calculated readily by the method of
superposition.
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Figure 1. The magnetically buckled beam.

Two illustrative cases were analyzed, represented by the following equations:
A+yA-}A- A% =F,sin Q1+ Fysin 201 + ¢), (2)
A+ yA—3}(A~ A%} = F,sin Qyt+ Fysin £2,1. (3)

Systems with cubic non-linearities, including some with two-frequency excitation, have
been investigated previously (see references [3, 4] and references therein). The present
study is an investigation of methods of quenching chaotic motion by varying the phase
angle, ¢, of the forcing term in equation (2). A non-linear frequency response equivalent
of the system is determined from equation (3).

In order to obtain results that can be compared with previous work, parameter values
for the above equations were the same as values used in reference [2], in particular, the
damping value, v = (-168. A period doubling sequence into and out of chaos for equations
(2) and (3) was observed. For equation (2), the phase angle ¢ was varied and the system
was observed in the chaotic regime. For equation (3}, as the force amplitude F; was
raised, the system typically underwent a period doubling cascade, followed by an intermit-
tency crisis, as was also observed for equation (1) in reference [2]. Auto-bicoherences
were then calculated for the trajectories, and intuitive conclusions were reached by
examining these bicoherences.

Relevant bispectral quantities are defined and details of the numerics are presented in
the next section. Results of numerical integrations of equations (2) and (3), including
power and bicoherence spectra and phase plane analysis are presented in section 3.
Conclusions follow in section 4.

2. BISPECTRAL ANALYSIS AND NUMERICAL DETAILS

Details and applications of bispectral analysis can be found in references [5-8]. A brief
description is presented here for completeness.
For a discretely sampled time series 5(¢} with the Fourier representation

(1) =T Clw,) '+ C*(w,) 7, (4)
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the power, auto- and the cross-bicoherence spectra (normalized bispectra), are defined
respectively as

P(w}=E[C(w)C*(w)], (5)
B(w,, w3) = E[ C(w,)C(w;) C*(w,+ @2})/ P{w,) P(w;} P(w, + w,), (6)
XBj_k(wls w,) = E[C}(wl)cj(wz)cf(wl+w2)}/Pj(w1)ﬂ(a’2)Pk(a’l + w,), (7

where w, is the radian frequency, the subscript n is a frequency index, the Cs are the
complex Fourier coefficients of the time series, an asterisk indicates complex conjugate,
and E[ ] is the expected-value, or average, operator. The subscripts j, k in equation (7)
indicate separate time series; in the cases considered here, input and output, respectively.
Upon rewriting the complex Fourier coefficients as Clw,)=c¢, ¢'®n the bispectrum
becomes

B(w,, w;) =E[c,6:¢42 ei(¢l+¢2-¢|+2)]. (8)

If the three modes of the triad are independent of each other (i.e., ®,, ?, and P,,, are
random phases), then when averaged over many realizations the triple products in
equations (6-8) will be zero. On the other hand, if the modes at frequencies w,, @, and
w, + @, are quadratically coupled, the biphase (@, + @, ~ @, ;) will be non-random even
if @, and @, are randomly varying. Thus, the bispectrum will be non-zero. Consequently,
the bicoherence indicates the relative amount of quadratic phase coupling between the
three modes in a triad.

3. RESULTS

For many weakly non-linear systems, non-linear resonances are often observed at the
linearized natural frequency and at twice the natural frequency [9]. Consequently,
equation (2) with {2 = 0-159 Hz, the first resonance of the system, was examined. F, was
set at 0-21, the chaos boundary at which chaotic oscillations are first observed for the
single-frequency excitation case [2]. The phase plane trajectories for ¢ =0-0, 0-20, 0-28,
0-31, 0-32 and 0-50 in Figure 2. Varying the phase angle for this forcing function produces
a classic period doubling sequence (Figures 2(f}-2(c)), followed by an intermittency crisis
into and out of chaos. The period doubling sequence into chaos is almost identical to
the single-frequency forcing case; see reference [2] for comparison. Power spectra for
the respective attractors are shown in Figure 3. As expected, for the power spectra shown
in Figure 3(a} and 3(e), a strong subharmeonic is present at half the excitation frequency.
The power spectrum shown in Figure 3(b) is broadband, typical of a chaotic system, and
the power spectra shown in Figures 3(c) and 3(d) contain the requisite subharmonics for
period octupling and period quadrupling.

Auto-bicoherences for the system are presented in Figure 4. Quadratic behavior is
pre-eminent. Strong peaks in the bicoherence are prevalent at triads that include the
driving frequency {(f=0-159 Hz) and its sub- and superharmonics (f, =0-159 Hz, f,=
0-159 Hz, f,,.=0-318 Hz), (f,=0-0795 Hz, f,=0-0795 Hz, f,+,=0-159 Hz}, and (f;=
0-159 Hz, /> =0-0795 Hz, f,+;=0-2385 Hz) in Figures 4(a), {c), (d) and (e). The system’s
bicoherences are almost identical to the case of single-frequency forcing [10]. There is
little quantitative difference between the bicoherences of the single-frequency excitation
period 1, 2, 4 and chaotic attractors and the period 1, 2, 4 and chaotic attractors generated
by equation (2).

The cross-bicoherence of the input signal relative to the output {Figure 5) for a
single-period limit cycle (i.e., Figures 2(f), 3(f) and 4(f)) shows a mechanism that is
consistent with the control frequency transferring energy back to the natural frequency,
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Figure 2. Phase plane trajectories, equations (2); Fy=0-21; 2, =1, 2,=2; ¢ = (a) 0-0, (b} 0-2, (c) 0-28, (d)
031, (e) 0-32 and (f) 0-5.

which then redistributes the energy between the harmonics as it had done with the
single-frequency excitation case [10]. A summing interaction is found between f=
0-159 Hz, the excitation at the natural frequency, and itself, creating the frequency triad
(fi=0:159 Hz, f, =0-159 Hz, f,+.=0-318 Hz). A differencing interaction is found between
the controlling frequency, f=0-32 Hz, and the main excitation, f = 0-159 Hz, creating the
frequency triad (f; =0-318 Hz, f;=0-159 Hz, f,_,=0-159 Hz). By varying the phase of
the controlling frequency input, an effect is observed whereby the phase of the frequency
generated by the differencing interaction between (f; =0-318 Hz, f;=0-159 Hz, f,_,=
0-159 Hz) effectively creates an out-of-phase motion between f,_, = 0-159 Hz and the main
excitation, also at £=0-159 Hz. This interaction thus enables quenching of the chaotic
motion to occur by effectively raising or lowering F; for the main sinusoidal input. Cases
were also run with the phase angle equal to 0-85 and  (not shown). Maximum quenching
was observed at 0-85. The slight phase angle shift from the maximum out-of-phase effect
is attributed to the cubic behavier of the system. This offers possibilities for the control
of non-linear systems with strong harmonic content by imposing oscillations at frequencies
other than the primary.
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Figure 3. Power spectra, equation (2); Fy=0-21; ¢ =(a) 00, (b) 0-2, {c) 0-28, (d) 0-31, (&) 0:32 and ([) O-5.
The units of power are arbitrary.

Once the system makes the transition to the chaotic regime, bicoherence spectra (Figure
4(b)} indicate very little quadratic coupling. This is because the system, the motion of
which in the chaotic regime spans the entire phase space, exhibits primarily cubic behavior,
since the dominant non-linearity is cubic. Thus, the bicoherence is of only limited vaiue
for analyzing this particular system in the chaotic regime.

The behavior of equation (3) was considered by setting 2, equal to the linearized
natural frequency of the system, £2,=0-159 Hz, while {2, was varied at 1-7 times (0-27 Hz),
twice (0-318 Hz) and four times £, (0-636 Hz). A period doubling sequence leading into
chaos was observed for each of the frequency combinations except for {2, =0-27 Hz.

Phase portraits for the frequency combinations into chaos showed little difference
between the single frequency excitation [2] and the multi-frequency excitation used in



6 C. PEZESHKI ET AL.

£, Hz}

o5 00 01 Q4 05

f, (Hz2)

Figure 4. Auto-bicoherences, equation (2); Fy=0:21; ¢ =(a) 0:0, (b) 0:2, (¢) 0:28, (d) 0:31, (e) 0:32 and
(f} 0-5, Triads consist of modes with frequencies f,, f; and f, + f;. The minimum contour shown is B =0-3, the
95% significance level, with contours every 0-1.

equation (3), with the exception of (2, =0-27. In this case, £2, and {2, are nearly incom-
mensurate (£2,/ 2, =+/3), and thus a quasi-periodic oscillation occurs in the system below
chaos (Figure 6). The power spectrum (not shown) shows a clearly delineated spike at
F=0-159 Hz as well as % 0-270 Hz for F; well below the value necessary for chaos. The
steady state limit cycle generated by the main forcing function is perturbed by a force at
an incommensurate frequency, causing quasi-periodic motion, similar to that for the
sinusoidally forced Van der Pol equation.

Auto-bicoherence spectra (not shown) for the cases where the control frequency was
an integer multiple of the natural frequency were similar to those for equation (2). The
only effect of adding an excitation at one of the frequencies automatically generated by
the system through quadratic interaction was to vary the phase portrait shape by a minor
amount and add more energy to the power spectrum at the frequency. The cross-
bicoherence between input and output for 2,=0-159 Hz, {2, =0-636 Hz (Figure 8) indi-
cates that the same summing and differencing interactions occur. The main input excitation
interacts with itself in the triad (f, =0-159 Hz, f,=0-159 Hz, f,.,=0-318 Hz), while the
control frequency interacts with the main frequency for a frequency differencing effect
(f,=0-636 Hz, f,=0-159 Hz, f,_,=0-477 Hz). This similar behavior occurs even for the
quasi-periodic oscillation (Figure 7).

As the higher frequency forcing term moves further away from the fundamental
frequency of the system, interaction between the controlling and driving frequencies
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Figure 5. Cross-bicoherence between the forcing function (f,, f;) and displacement (f, +f;) corresponding
to Figures 2(f), 3(f) and 4(f). The minimum contour plotted is XB=0-4, with contours every 0-1. (Fp=0-21,
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Figure 6. Quasi-periodic limit cycle, equation (3); 2, =0-15% Hz, {1, =0-270 Hz; F,=0-10.

diminishes, as.can be seen by comparing Figures 4, 7 and 8, the cross-bicoherences
between input and output for the excitation cases (£2,=0-159 Hz, 2, =0-318 Hz), ({2, =
0-159 Hz, 2,=0-270 Hz) and (§2,=0-159 Hz, £2, =0-636 Hz) respectively. For Figure 5,
the cross-bicoherence value for the triad (f; =0-318 Hz, f,=0-159 Hz, f,_,=0-159 Hz) is
XB =09, For Figure 7, the cross-bicoherence value for the triad (f, =0-270 Hz, f.=
0-159 Hz, fi+.=0:111 Hz) is XB =0-9. For the case shown in Figure 8, the cross-
bicoherence value for the triad (f, =0-636 Hz, f,=0-159 Hz, f,_,=0-477 Hz) is only
XB=0-5. As the system is driven by excitations further away from the fundamental
frequency, the behavior of the system, in a sense, becomes more linear for the same
amplitude of the controlling force because the degree of non-linear interaction decreases.

The physical behavior of the beam confirms the validity of these results. Preliminary
observation of the system in the laboratory indicates that if the beam is excited at a
frequency other than the natural frequency of the system, energy is transferred to the
dominant natural mode. Once the system is excited by a higher frequency force, with an
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Figure 7. Cross-bicoherence between forcing function and displacement, equation (3);

,=0-159 Hz, {2, =0-270 Hz. The format is the same as Figure 5.
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Figure 8. Cross-bicoherence between forcing function and displacement, equation (3);
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amplitude past the range of linear response, large-amplitude limit cycle or chaotic motion
always occurs, with the same fundamental characteristic as if the system were excited at
the linearized natural frequency. Although the system will respond at that particular
excitation frequency, most of the excitation energy is transferred to the lower mode,
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4. CONCLUSIONS

The effects of multi-frequency forcing for Duffing’s equation were considered. Control
of chaos, including its elimination and the restoration of periodic oscillations, was shown
to be possible by varying the phase angle of a secondary sinusoid. Bispectral analysis
techniques allowed the different motions to be separated into distinct, non-linear modes
of vibration. Lower excitation frequencies, occurring near the natural resonances of the
system, were shown to cause most of the non-linear effects; higher frequencies, further
away from resonance, were shown to transfer energy back down to the fundamental
modes through difference interactions. This offers novel methods of control for non-linear
systems.
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