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Abstract—The technigues used for bispectrum estimation of har-
monic one-dimensional random processes are extended to two-dimen-
sional processes. Bispectral analysis of two-dimensional processes may
be used to obtain information not available in one dimensicn, such as
the detection of coupling between waves traveling in different direc-
tions. Such coupling is detectable in a noisy environment by the bi-
spectral techniques presented here. Symmetry relations are used to re-
duce the size of the region of bispectral computations, but unlike the
one-dimensional case, accounting for the directions of the interacting
waves influences the procedure for determining the minimum required
region of computation. Even with a reduced region of computation,
bispectrum estimation in two dimensions is both memory and compu-
tation intensive. Bispectral analysis of numerically simulated realiza-
tions of multidimensional wave data demonstrate a) detection of non-
linear coupling between waves traveling in different directions, b)
estimation of the degree of coupling of such an interaction, and c) the
effect of leakage of power into sidelobes on bicoherence values both
with and without windowing of the data,

I. INTRODUCTION

In the present study, one-dimensional (1-D) bispectral tech-
niques [1]-[6] are extended to two-dimensional {2-D) processes,
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allowing the question of phase coupling between waves traveling
in different directions to be directly addressed. Formal definitions
of the 2-D bispectrum are presented in Section II. Although ex-
tending bispectral calculations to two-dimensional processes is
conceptually straightforward, the technical details are nontrivial,
as described in Section III. Bispectral analysis of several numeri-
cally simulated two-dimensional random processes is presented in
Section 1V, followed by conclusions in Section V.

II. BISPECTRUM IN Two DIMENSIONS

The bispectrum B{ f,1, 1, fiz, f,2) of a stationary, real-valued,
two-dimensional random process g(x, y) is defined as the Fourier
transform of the third moment function {7, 7y, Tx2, T2 )

B(f;'l’f:vl’ fﬂ’ fyZ)

= S S S S . dry dry drg dry S(Ta, Ty T Ty2)

- W= Jmo

cexp [ =27 (fura + fatn + foTa + far)] (1)

where fand 7 are the spatial frequencies and lags, respectively, and
S(ra, Ty T T2) = Elg(x, yYg(x + 70, ¥y + 1) g{x + 70,
y + 7,2)]. E[ ] is the expectation operator, and in practice often
implies ensemble averaging. An alternative expression for the 2-D
bispectrum that eliminates the need of computing the multidimen-
sional integral is developed below similar to the 1-D case [1]-[4].
The power spectrum ( which is the Fourier transform of the auto-
correlation function R(r,, 7,} = E[g(x, ¥)g(x + 7.,y + 7))
and the bispectrum are members of a class of higher order spectra
for stationary random processes that are based on cumulants. The

nth order cumulant function is given by C, (7|, 7o, - * * , Ty_y)
Clriy 70 7 s Tac) = C[x(‘)x(f 7)) ecx(r + Tn—l)]
(2)

where C stands for the cumulant average [3]-16]. The Fourier
transform of the nth order cumulant function of the random process
is called its nth order cumulant spectrum [3], [4], F.(fi, b, -~ *
f1-1). The cumulant function vanishes for time differences greater
than the coherence time, thus ensuring absolute integrability, and
hence the existence of the comulant spectrum. The coherence time
7. is defined as the time interval such that x (¢ + 7) can be regarded
as independent of x(¢) when 7 = 7. For functions of spatial vari-
ables an analogous coherence length may be defined. For a zero-
mean, stationary random process g(x, y)

C[g(xv y)g(x + Txls ¥ + Ty])]

=E[g(x,y)g(x+rx.,y+1,..)] = R(y, Tyl) (3)
and

Clalx, y)glx + 7,y + 70) 8(x + 70, ¥ + 70)]
= E[g(x! y)g(x + Tx12 ¥ + Tyl)g(x + Tx2s ¥ + Tyl)]
= S(Txlv Tyl! Tx2s TyZ)' (4)

Fromi gquations (3) and (4) it can be observed that the power
spectrum and the bispectrum are the second- and third-order cu-
mulant spectra [2], [3], respectively, of the random process.

The cumulant spectrum for a one-dimensional process x(¢) may
be estimated in terms of the cumulant average of the Fourier coef-
ficients whose suin frequency vanishes, provided the record length
T > 1, [5]

Folfisfor s+ 2 fom1)8 (,_Z,ﬁ) = CLX(AX(A) - -~ X(£)]
()

where

1 iff=0
5(f)={ i

0 otherwise

[EEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 38, NO. 12, DECEMBER 1990

and

1T .
X(f) 1!1-.1-2, T S_m dt x(t) exp [ —j2wfit].
X( f,) are the Fourier coefficients fork = 1, 2, - - - , n. Note that
owing to the stationarity of x (), the cumulant average of the Fou-
rier coefficients will be nonzero only when the sum frequency is
zero, and thus with f, = —E7Z|' £, equation (5) is compatible with
the definition of the nth order cumulant spectrum as a function of
n — 1 frequencies.

Invoking the separability of the 2-D Fourier transform into a
one-dimensional Fourier transform with respect to one independent
variable followed by another one-dimensional transform of the re-
sult with respect to the other independent variable, (5) can be ex-
tended to 2-D random processes, yielding

ClG(fun £)G(fin £)) * -+ Gl fis £)]

= Fhu b+ s et (Z5) 8 (2 5). ©

This equation suggests that the cumulant spectrum for a 2-D ran-
dom process may be estimated in terms of the cumulant average of
the product of the Fourier coefficients G( f, f,), whose sum fre-
quency is zero in the x and y components separately. Since the
Fourier coefficients are zero mean

ClG (o ) G e £)G (£ )]

= E[G( f. £,)C fir £:YC (S )] (7)

From (6) and (7), the bispectrum, defined as the third-order cu-
mulant spectrum, is

B(j:n'f;'u f;'z!fn) = FJ(frlvaI’f;bf;-l)
= E[G(fu £)G(fa £2) G*{ S 1)) (8)

where f, + fo = fz and £, + f,» = f,3. The Fourier coeflicients
are easily computed using a two-dimensional FFT routine. For 2-D
random processes, the bispectrum is a function of 4 spatial fre-
quency components and the triads of Fourier components are such
that the component of the triad at the *‘sum’’ frequency is in the
direction of the vector sum of the two “‘lower’’ frequencies. These
are the same conditions on the frequencies that would be satisfied
by two waves traveling in the directions represented by spatial fre-
quencies ( f;,. f,,) and ([, f,) interacting nonlinearly to produce a
third wave traveling in a direction represented by spatial frequency
{ fus» f1»)- The bispectrum is zero for all triads of Fourier compo-
nents that do not satisfy this condition, as evident from (6), pro-
vided the signal consists only of harmonics with random phases.

III. DiGiITAL COMPUTATION OF THE 2-D BISPECTRUM

Two main approaches have been used to estimate the bispectrum
of one-dimensional processes given a finite set of measurements.
The parametric approach which is based on autoregressive (AR),
moving average (MA) or ARMA models, provides higher resolu-
tion estimates, and may be suitable for short data records. The con-
ventional (*‘Fourier type’") approach is easy to implement and ap-
propriate when there are sufficient data. An extensive list of
references for each approach may be found in [6]. Two-dimen-
sional bispectral analysis has been employed for shift-invariant im-
aging of photon-limited data [7]. The parametric approach for de-
tection of nonlinear phase coupling [8] and phase reconstruction
[9]-[11] has been discussed earlier, as have nonparametric models
for phase reconstruction of multidimensional processes [10]. The
direct ‘‘Fourier type’’ estimation of the bispectrum of a two-di-
mensional process shall be considered here with the emphasis on
identifying the ‘‘nonredundant’’ region of computation and per-
forming numerical simulations to demonstrate the usefulness of 2-D
bispectral techniques in detecting and quantifying 2-D quadratic
wave coupling.
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A. Computational Procedures

Let g;(m, n), where —M/2 <= m,n = (M/2 — 1)andi =1,
2, + -+, K be K realizations of a two-dimensional, zero-mean, sta-
tionary, ergodic (at least to third order) process. The realizations
may be obtained from different spatial locations at the same instant
of time or from the same spatial locations at different times. Let
these 2-D data sets or images be Fourier transformed using a two-
dimensional FFT routine to yield the DFT coefficients

| M2-1 M-
Ci(fm f2) = M m=—ZM/2 n-§w/2
- exp [—j2x (mf,, + nf,)/M| (9)

for —M/2 = f,, f, < (M/2 — 1). Analogous to the 1-D case
[1]-[6], the unnormalized bispectral estimate for the data is the
ensemble average over the K realizations of the triple product of
Fourier coefficients given by

gi(m, n)

K
B fot it s i) = ¢ B Gifons o) Gol o £2) G (i i)

(10)

where f,3 = fml + 2o S = + Joz and —'M/2 = fml:fmZv S
Jovs Fazs fu3 = (M /2 — 1). In practice it is desirable to normalize
this estimate to remove the dependence on the power at the com-
ponent frequency pairs [5], [6). A normalized estimate of the bi-
spectrum may be defined as

1
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Fig. 1. Region of computation: The shaded region shows the range over
which ( f,,,, fo1) is selected.

variables, implies that the minimum region of computation is con-
tained in

Bnn( fm]v ﬁrl » fmz’ f;uZ)

B(fml’ .ﬁulvfmb f;ﬂ) =

(11)

Using the Cauchy-Schwarz inequality [5], it can be shown that
0 < |B| < 1. The bispectrum is in general a complex quantity
with magnitude b (bicoherence) and phase ¢, (biphase). For the
detection of quadratic phase coupling, the bicoherence, which pro-
vides a measure of the strength of the coupling [2], [5] may be
preferable to the unnormalized bispectrum.

The computation of the 2-D bispectrum even for small data sets
requires large arrays. For example, when M = 32, without a re-
duction in the region of computation, the size of the bispectrum
array would be 32%, which is 1 048 576 complex numbers. The size
of the arrays required can be reduced by taking advantage of the
symmetry properties of the 2-D bispectrum, which follow from its
definition and the fact that G( £, f,) = G*(—f,,, —f,) for a real
two-dimensional process g (m, n). These symmetries [7], [10], [11]
differ from the one-dimensional case [1]-[6] because negation of
one spatial frequency component results in an unrelated mode and
does not contribute to any symmetry in the bispectrum. Thus

B(fml:.ﬁalvfmzvﬁﬁ) = B'(_fmls '_f;:lr —fmza _f;:‘z) (12)
=B(fm21ﬂ12!fm|’ﬁ1l) (13)
= B(fml’ﬁll’ _fml —fm2’ '_fnl _.ﬁrz)
= B(—fml _fm2’ _f;:l — fuzs fst.ﬁﬂ)'

(14)
Equation (12) implies that the minimum region of computation lies
within the region S, = {f,; > 0} U { £, =0, f,, = 0}. Inter-
changing ( £, fo1) and ( f,p, £2) in (12) by virtue of the symmetry
in (13), the minimum region must also lie within §, = { £,, > 0}
U {fm2 =0, f» = 0}. If the zero frequency Fourier component
G(0, 0) is ignored, which is customary because a wave is always
in phase with itself, then these regions become §, = { £,, > 0}
Ulfu=0.fu =118 ={fa >0} U {f=0,f, = 1}.
Equation (13) implies that the minimum region of computation is

contained in §3 = { fur > fr2} U { fu = fozo fur 2 £.2 }. Equation
(14) together with the periodicity of the 2-D bispectrum in its four

K X '
% 216 26 U s ][ 5.2 6o S

Si={M/2-1) =2 fo. fu +fn = -M/2}

N {(M/2 = 1} 2 fg, fru + frz 2 —M/2}.

Thus the minimum region of computation is given by §, N 5, N
83 N §4, and after some algebraic manipulation it may be specified
as the intersection of these regions in the choice of f,,,, f,,, fuz and
2, yielding

Mi2-12f,=0 (15)
1 iffy =0
M2V 2fn = {—M/Z otherwise (16)
min (M/2 _fmhfml) meZ =0 (17)
and
fBzfozfy (18)
where
e iff2 =0
"o max (—M/2, —-M/2 — f,)  otherwise
and
P min (M/2 — 1, fu, M/2 = 1 — f3}  iffoy =Ffma
= {min (M/2 - 1, M/2 - 1 = £,) otherwise.

Figs. 1 and 2 illustrate the reduced region of computation ob-
tained by taking the symmetry properties into account. The number
of 4-tuples for which the bispectrum is computed for M = 32 is
reduced to 45 832. Every triad of Fourier components that satisfies
the conditions for a sum or difference interaction will be considered
as a unique sum interaction in the region of computation, For ex-
ample, if two waves (f = 8, f,; = 0), and (f, = 0, f,, = 8)
nndergo both sum and difference interactions, the sum interaction
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max (_-’g ,_-’g- =fn)

min (% -1-fmi, i)
min (8.1, M1 g00)
Uy Frur}

M f
> n2

Fig. 2. Region of computation: The shaded region is the range over which
( fn2» fu2) varies for the ( £, f,;) shown (indicated by x).

will be accounted for in the triad (f;; = 8,/ =0), (£ = 0, f}»
= 8), (f3 = 8, £, = 8) and the difference interaction will be
accounted as a **sum’’ interaction in the triad ( £, = 8, f,, = —8),
(f:tz = O,fﬁ = 8)! (f:r] = sif;S = 0)'

IV. TesTs USING NUMERICALLY SIMULATED WAVE DATA

To demonstrate the ability of the bispectrum to detect phase cou-
pling between waves traveling in different directions, bispectral
analysis was performed on numerically generated two-dimensional
random processes. Each simulation generated a 32 X 32 realization
of integer values between 0 and 255, The use of 8-b input data here
is merely for economy in storage; floating point data may be used
to achieve the desired numerical accuracy. Bispectra from up to
256 such images were averaged to improve the statistical confi-
dence of the bispectral estimates. Several test cases were investi-
gated.

A Test ]

Test la consisted of waves of equal amplitude in the directions
specified by the spatial frequencies (f, = 8, £, =0), (£, =0, f,
=8),(f,=8,f,=8)and (f, = 8, f, = —8), respectively. The
phase of each wave was random and uniformly distributed in the
interval {0, 2#) and, thus, the waves were independent of each
other. White Gaussian noise with power spectral density two orders
of magnitude less than the signal power spectral densities was added
to each of 256 numerically simulated realizations of the process,
as shown in Fig. 3(a).

The wave field for test 1b was similar to that of test la, with
cqual amplitude waves at the same spatial frequencies as those de-
fined for test 1a, within a background of Gaussian noise. However,
for this test, the waves at (f, = 8,f, =0)and (f, =0, f, = 8)
(the component waves) had random phases while those at { f, = 8,
Sy =8)and (f, = 8, f, = —8) had phases equal to the sum of the
phases of the component waves (sum interaction) and the difference
of the phases of the component waves (difference interaction), re-
spectively. The corresponding power spectral density is shown in
Fig. 3(b) and it is identical to that for test la (Fig. 3(a)). Note that
it is not possible to detect differences between the two processes
(la and 1b) from the power spectral densities.

The bicoherence values for a Gaussian process are x? distributed
[2] and for 256 realizations the 95% significance level for zero
bicoherence is 0.108. For test 1a, 93.9% of the bicoherence values
were below the theoretical 95% significance level. It is expected
that approximately 5% of the values will be above 0,108, but the
probability of a very high value, say greater than 0.95, occurring
by random chance is extremely small [12] and values that high
would have suggested phase coupling. There were no such high
bicoherences for test la.

For the phase coupled case, the two bicoherence values corre-
sponding to the phase-coupled triads (Table I) were greater than
0.95. Note (Table I) that the biphase values are close to zero for
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POWER (d8)
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Fig. 3. Power spectra for the numerical simulations of test 1. Each spec-
trum is the ensemble average of 256 realizations (512 degrees of free-
dom). The units of power are arbitrary and the frequencies are normal-
ized by the sampling frequency. Multiplication by N( = 32) yields the
frequencies referred to in the text and entered in the tables. (a) Test la.
(b) Test 1b.

TABLE 1
HIGHEST BICOHERENCE VALUES FCR TEST Ib

for | fy | fz2 | fya | fs3 | Jys | BICOHERENCE | BIPHASE

8 0 0 8 8 8 0.99 -0.18"

8 -8 0 8 8 1] 0.991 -0.33

these triads. In this case, 94.2% of the bicoherences were below
the theoretical 95% significance level for zero bicoherence. It must
be pointed out here that the difference in the percentage of bico-
herence values that are less than the 95% significance level for a
Gaussian process between test 1b (94.2%) and test 1a (93.9%) is
indeed too small to conclude that the wavefield for test 1b was non-
Gaussian. In fact, although 5% of the triads may be expected to
have bicoherence values greater than the 95% significance level
{0.108), the probability that they have a value several standard
deviations in excess of this level is very low [12] and it is this large
difference between the observed bicoherence (0.991) and 95 % sig-
nificance level (0.108) that indicates phase coupling at that partic-
ular triad.

Test 1b demonstrates that bispectral analysis of two-dimensional
realizations can be used to detect quadratic nonlinear coupling of
waves traveling in different directions.

B, Test 2

The purpose of this test was to demonstrate the effect of the
presence of random components in addition to phase coupled ones
on the bicoherence values. The three parts of this test {2a-2¢) each
consisted of four waves defined in the y direction having frequen-
cies (f, =0,f,=2),(f,=0,f,=8), (£, =0,f, = 6)and (£,
= 0, f, = 10). In addition, for 2a ali the waves had random phases
and equal amplitudes. For 2b the first two waves had equal mag-
nitude, while the other two (the difference and the sum interaction
products) had a 25% random phase component and a 75% coupled
phase component. Thus, 75% of the power at these frequencies
was owing to nonlinear coupling with the first two waves, and
therefore the bicoherence at the quadruples corresponding to these
interactions is expected to be v0.75 (0.866). Test 2¢ was similar
to 2b except that 50% of the power at the sum and difference fre-
quencies was independent (i.e., random phase) and therefore the
bicoherence at the quadruples corresponding to these interactions
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POWER (dB}

Fig. 4. Power spectrum for the numerical simulations of test 2. It is the
ensemble average of 256 realizations (512 degrees of freedom). The
units of power are arbitrary and the frequencies are normalized by the
sampling frequency. Multiplication by N( = 32) yields the frequencies
referred to in the text and entered in the tables.

is expected to be v0.5 (0.707). White Gaussian noise, with power
two orders of magnitude less than that of the waves, was added to
the realizations. The power spectrum for the three cases is shown
in Fig. 4.

The results of bispectral analysis for tests 2b and 2¢ are listed in
Tables iI and III, respectively. For 2a there were no high bico-
herence values. For 2b and 2c there were high bicoherence values
at the quadruples that satisfy the vector conditions for the sum and
difference interactions, and these values are close to those ex-
pected. The small amount of background noise acts to reduce the
bicoherence slightly, on average.

Test 2 demonstrates the ability of 2-D bispectral analysis to es-
timate the fraction of power in a wave traveling in a particular di-
rection owing to nonlinear interactions between waves in other di-
rections. In general, several different modes may interact to
contribute to the coupled power in a particular direction. The square
of the bicoherence provides an estimate of the percent of power in
a particular direction owing to quadratic nonlinear coupling with
the other two waves of the triad under consideration.

C. Test3

This test was conducted to briefly demonstrate the effect of leak-
age on the bicoherence values. If any of the interacting waves has
a frequency that corresponds to a nonintegral number of wave-
lengths in the record lengths along the x or y directions, there will
be leakage of power into other frequencies (resulting in sidelobes).
Since the leakage power decays (tolls off) as the frequencies be-
come farther from the true peaks, so do the bicoherence values.
Data windows reduce the bispectral leakage, analogous to the re-
duction of leakage in the power spectrum, as demonstrated in tests
3a and 3b. The two-dimensional random process realizations in
both cases consisted of waves of equal amplitude in the directions
specified by the spatial frequencies ( f, = 8.5, f, = 0), (£, = 0,5
=8.5)and (f, = 8.5, f, = 8.5). The phases of the first two waves
were random and unifermly distributed in the interval [0, 27) while
the phase of the third wave was equal to the sum of the phases of
the other two for each realization. For 3a no window was applied
to the simulated records, while for 3b a Hamming window in two
dimensions was used. Tables IV and V show the four highest bi-
coherences for 3a and 3b, respectively. Note that these correspond
to the true frequencies within the limits of resolution set by the
record length. In both cases, the power at the sidelobe frequencies
is also phase coupled, resulting in high bicoherences, as shown in
Fig. 5. For 3b, the Hamming window causes a sharper roll off in
the bicoherence values, similar to its effect on the power spectrum
(compare Fig. 5(b) and 5(a)). Note that the window itself may be
considered as a superposition of waves or Fourier components and
owing to the time-domain multiplication, these components will
form phase-coupled triads with Fourier components present in the
input. Therefore, the mean value must be removed from the input
before windowing. This test demonstrates the use of a data window
in reducing bicoherence leakage in two-dimensional bispectral
analysis.

TABLE I1
HiGHEST BICOHERENCE VALUES FOR TEST 2b

fz1 fy, fra fyz fz3 fys BICOHERENCE | BIPHASE

1 8 0 2 0 10 0.819 +3.25¢

] 6 [ 2 0 8 0.853 +2.78"
TABLE III

HIGHEST BICORERENCE VALUES FOR TEST 2¢

fz1 fyl fan Jy2 fa3 Iy BICOHERENCE | BIPHASE

[ B 0 2 0 10 0.581 -5.49¢

0 6 0 2 0 ] 0.634 -0.76”
TABLE IV

HIGHEST BICOHERENCE VALUES FOR TEST 3a

Jat | Syt | faz | B | Jaz | fy3 | BICOHERENCE | BiPHASE

9 0 0 9 9 9 0975 077

9 ] 0 8 9 8 0.974 -0.46"

8 ] 0 9 8 9 0.973 +0.33¢

8 ] 0 3 8 8 0.974 +0.46"
TABLE V

HIGHEST BICOHERENCE VALUES FOR TEST 3b

Far | fy1 | Jaz | fy2 | f23 | fys | DicOMERENCE | BiPHASE
9 ] 0 9 9 9 0.979 0.62
9 o 0 8 9 8 0.979 -0.307
8 o 0 9 8 9 0.977 -0.16°
8 o 0 3 8 8 0.980 -0.100

W
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o

m

b)

Fig. 5. A subset of all possible bicoherence values consisting of the fre-
quency quadruples ( £, 0, 0, f,,) for the numerical simulations of test
3. Forf;; =0, f,; = 0, the region of computation is 1 < fosfiz = (MJ2
— 1} as discussed in the text. The interacting waves had frequency vec-
tors (fo = 8.5, £, = 0) and (f,; = 0, f,, = 8.5). (a) No window, (b)
Hamming window. Note the faster roll off of bicoherence in (b).



2186 IEEE TRANSACTIONS ON ACQUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 38, NO. 12, DECEMEBER 1990

V. CONCLUSIONS

This correspondence presents the extension of bispectral analy-
sis from one-dimensional random processes (e.g., time series) to
two-dimensional random processes. Use of the symmetry proper-
ties of the bispectrum reduces the number of computations consid-
¢rably. Numerical simulations demonstrate the ability of 2-D bi-
spectral estimation to detect quadratic phase coupling between
waves traveling in different directions. By windowing the data, bi-
coherence leakage can be reduced.
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