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Bispectral analyses of the equations producing a chaotic Rossler attractor and the chaotic
trajectories of a one-mode Galerkin approximation of the magnetically buckied beam are
presented, yielding interesting consequences concerning chaotic system identification for
driven oscillators and autonomous systems. Bicoherence spectra isolate the phase coupling
between increasing numbers of triads of Fourier modes for a pure period doubling sequence
route to chaos for the Rossler equations. Bicoherences from a period doubling-intermit-
tency catastrophe route to chaotic motion are also observed for single frequency excitation
for the buckled beam. Although the bicoherence successfully characterizes important
aspects of the non-linearity of the Rossler attractor in the nonchaotic and chaotic regimes,
where the primary non-linearity iz quadratic, it only partially characterizes the magnetically
buckled beam system because the dominant non-linearity is cubic.

1. INTRODUCTION

Since their introduction more than 25 years ago [1], bispectral and other polyspectral
techniques have been used to study a wide variety of non-linear systems, including fluid
mechanics [2-8], mechanical systems analysis [9, 10], and quantum mechanics [11] (see
reference [12] for a recent review).

It is well known that although power spectral analysis is adequate for investigating
aspects of linear systems, power spectra do not contain phase information, and thus
cannot be used to study non-linear interactions between Fourier modes. On the other
hand, higher order spectra isolate phase coupling between non-linearly interacting Fourier
components. In the present study, bispectral analysis is used to investigate the quadratic
interactions that produce a pure period-doubling sequence to chaos in the Rossler
equations [13, 14]. Period doubling and other quadratic phenomena also play an important
role in the dynamics of the buckled beam [15, 16], and this system is studied here with
bispectral techniques.

Application of spectral techniques to non-linear systems is of vital importance to
engineers in the field. Frequency spectra are easily calculated measures of a system’s
dynamics. However, for complex non-linear systems, information about non-linear modal
coupling in the system is lost due to the phase information-destructive nature of power
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spectral calculations. This can particularly affect analysis of chaotic systems, which possess
continuous frequency spectra with coupled harmonic¢ content, but can be incorrectly
characterized as linear systems containing several strong harmonics coupled with a random
element, with the consequent ignoring of non-linear frequency coupling. This incorrect
diagnosis of the motion may lead to suggesting inappropriate design changes since the
true nature of the behavior has been misinterpreted.

Polyspectral techniques, notably bispectra, offer a method of analyzing modal inter-
actions in non-linear systems. This knowledge can be very important in non-linear
structural dynamical systems, in that certain types of damping and stiffness possess
quadratic form. Consequently, bispectral analysis can be used by an engineer in the field
to analyze a complicated non-linear system and improve its design.

Other quantitative measures of non-linear systems exist, such as the fractal dimension
[17-20 and others]. The concept of fractal dimension for non-linear dynamical systems
has allowed an infinite-order continuous system to be represented in lower-dimensional
phase spaces by a finite number of degrees of freedom. There are many different ways
of measuring dimension for lower order systems from experimental data, including the
Grassberger-Procaccia, or correlation, dimension [18-20], the averaged pointwise
dimension [21], and the Lyapunov dimension [22].

The calculation of fractal dimension of chaotic attractors offers one way of investi gating
their low-level modal structure. Typically, the phase space is reconstructed from the time
series by using the method of delays [21]. The fractal dimension gives a rough estimate
of the necessary size of the phase space for the attractor to be topologically complete,
and thus is of value to engineers because it provides an estimate of the number of degrees
of freedom that an engineering system possesses.

Although the fractal dimension estimates the number of non-linear modes, many of
the modes are not analytic or estimable by any standardized procedure. It has been shown
that the number of phase space variables derived from linear modes that are necessary
to accurately represent physical behavior of the buckled beam system appears to be the
same as the estimated Lyapunov dimension [23]. This is convenient for the buckled beam,
because the linear system modes are probably very close in structure to the non-linear
modes. However, this rule of thumb is not necessarily true for other systems. Although
the fractal dimension may indicate that the problem of vibrations in a system with a
broadband power spectrum is tractable since there actually are only a finite number of
degrees of freedom, these dimensions do not yield the specific information about mode
coupling necessary for an engineer to “fix” the problem at hand.

Another quantitative measure of non-linear systems is the Lyapunov exponent [24 and
references therein]. Lyapunov exponents are good measures of system instability, and
can yield insight into system behavior [23]; they are also useful because they give an
eigenvalue equivalent that can be compared to any linear system analysis. Lyapunov
exponents are essentially the real parts of non-linear eigenvalues for a given attractor
and, as such, give qualitative information on an attractor’s dynamics. For example, chaotic
attractors existing in a three-dimensional phase space have one positive, one zero and
one negative Lyapunov exponent. Lyapunov exponents are also one of the few techniques
that give a quantitative measure of chaos. By using the conjecture of Kaplan and Yorke
[22], an estimate of fractal dimension can also be calculated from the exponents.

Although the methods of modern non-linear dynamics have been very valuable in the
understanding of non-linear systems, they do not present detailed information about
non-linear mode coupling on a frequency by frequency basis. Such frequency domain
information is necessary in order to prescribe actions to affect gross portions of the
spectrum, such as attenuating harmonics in a particular frequency range. Bispectral
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analysis offers a method for determining the non-linear coupling between Fourier modes,
and explains the origins of spectral peaks at certain values in the frequency spectrum.
With the information provided by the bispectrum, an engineer could take precautions to
damp out the root frequencies causing the unwanted oscillations, instead of the frequency
that results from the non-linear interaction.

Definitions of relevant bispectral quantities and details of the numerics are briefly
presented in section 2. Bicoherence spectra for the Rossler attractor and the magnetically
buckled beam are presented in section 3. The quadratic interactions resulting in the
period-doubling sequence to chaos of the Rossler attractor are isolated by the bispectrum.
Bispectra also provide useful information about mode coupling as the buckled beam
oscillations approach chaos. For the fully chaotic buckled beam case, bicoherence spectra
indicate that quadratic non-linear oscillations no longer dominate, consistent with the
cubic nature of the governing equation. Conclusions are presented in section 4.

2. BISPECTRAL ANALYSIS AND NUMERICAL DETAILS
For a discretely sampled time series n(t) with the Fourier representation

(=T A) €'+ A%(w,) e (1)

the power spectrum and the auto-bispectrum are defined respectively as
P(w,)=E[A(w)A%(w)], B(w,, w;) =E[A(w,)A(w:) A% (w, + w,)], (2,3)

where w, is the radian frequency, the subscript n is a frequency index, the As are the
complex Fourier coefficients of the time series, an asterisk indicates complex conjugate,
and E [ ]is the expected value, or average, operator. The normalized magnitude of the
bispectrum, known as the squared bicoherence, is given by

bz(wl, ;) = |B(m,, w:)|2/P(wl)P(¢'-’z)P(m| + w;). (4)

It is well known that b represents the fraction of power at the sum frequency (w, + w,)
of the triad owing to quadratic interactions between the other Fourier modes w, and
w>[25]. For a digital time series with Nyquist frequency wy, the auto-bicoherence is
completely described by values within a triangle with vertices at (o, =0, w,=0), (@,=
Wy, W2 = W), and (0= wn, @3 =) [1].

The time series analyzed here were numerically generated on an 1BM 3090. The Rossler
equations were numerically integrated by using a classic fourth order Runge-Kutta
subroutine, with a time step of 0-001 s for a system with a fundamental period of 12-5s.
The resulting 3276 s long time series were sampled at 10 Hz for power spectral and
bispectral analysis. Subsections of 51-2 s duration were fast Fourier transformed to yield
the complex Fourier coefficients A{w,} with a frequency resolution of 0-:0195 Hz. Power
and auto-bispectra were calculated for each 51-2 s and then were ensemble averaged over
the collection of 64 subsections, preducing estimates with 128 degrees of freedom. The
Duffing equation used to represent the magnetically buckled beam (section 3) was
numerically integrated by using the same subroutine with a time step of 0-015s. The
resulting 4096 s long time series were sampled at 1 Hz and subdivided in 32 segments of
128 s duration for processing, resulting in a frequency resolution of 0-0078 Hz and 64
degrees of freedom. Tests with different length data segments and windows indicated that
the rectangular windows of 51-2 and 128 s did not result in significant spectral or bispectral
leakage or smearing for the data considered here. Bicoherence values of b>0-22 and
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b>10-31 are statistically significant at the 95% level for 128 and 64 degrees of freedom.
respectively [26].

3. RESULTS

In this section phase plane portraits, power spectra and bicoherence spectra for the
Rossler attractor and the magnetically buckled beam are presented.

3.1. THE ROSSLER ATTRACTOR

The equations for the Rossler attractor are models of the Lorenz attractor [14], which
is a modal reduction for Rayleigh-Bernard convection:

X=-(Y+2),
Y=X+Y/5, Z=i+Z(X-p) (5)

The Rossler attractor provides the simplest non-linear vector field capable of producing
the folding nature necessary for chaotic dynamics [14]. These equations, taken from
reference [13], are autonomous and possess only a single quadratic non-linearity.

The parameters that generate a period-doubling sequence and chaos are well docu-
mented (see reference [13]) and are listed in Figure 1. Although the period doubling
route to chaos of the Rossler attractor has been studied [14], the bispectral analysis
isolating the non-linearly coupled triads of Fourier modes has not been previously
reported. As discussed above, ordinary power spectral analysis cannot provide information
on phase coupling between modes, nor on the cross-spectral transfer of energy between
motions at the primary spectral peak frequency and its motions at sub- and super-
harmonics. On the other hand, since the equations describing the Rossler artractor are
quadratically non-linear, bispectral analysis is an appropriate tool with which to study
the coupling of and energy exchange between the various modes of the system.

Phase plane portraits for period one, period two and chaotic attractors of the Rossler
system are shown in Figure 1. Corresponding power spectra are shown in Figure 2 and
are characterized by narrow spectral peaks. The harmonic structure of the Rossler attractor
is clearly displayed in the power spectra (Figure 2}. For one-period motion, the spectrum
is dominated by a primary spectral peak located at f =0-17 Hz, and its higher harmonics.
As u is increased, the subharmonic (f = 0-085 Hz) is excited and, owing to the quadratic
non-linearities, the spectrum contains peaks at frequencies corresponding to sum inter-
actions of the subharmonic, the primary and their harmonics. As u is increased further,
the motion becomes chaotic, as demonstrated by the phase portrait (Figure 1{c)} and the
broadening of the power spectrum (Figure 2(c)).

The quadratic interactions between triads of Fourier modes for the Rossler attractor
are shown in Figure 3. For the period one case, bicoherence spectra (Figure 3(a)) clearly
show the coupling between motions at the primary spectral peak frequency and its
harmonics, as well as between the first and second harmonic, the first and third, the
second and itself, and further on out into the higher frequencies. The strong band of
bicoherence associated with f=0-17 Hz indicates non-linear energy transfer from the
primary to the higher frequency modes.

Power spectra of the period doubling case {Figure 2(b)) show narrow peaks between,
and somewhat higher in level than, the harmonics of the primary peak. The corresponding
bicoherence spectrum (Figure 3(b)) shows the coupling between motions at the primary
peak frequency, its harmonics, the period doubled frequency and its harmonics. The
dominant frequencies causing the quadratic interactions now appear to be the primary
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Figure 1. Phase portraits for the Rossler attractor, Y(t} vs. X(1): (a) period 1 motion, u =2-6; (b) period-
doubled motion, p = 3-5; {c) chaotic motion, u =4.6.

spectral peak frequency and the period doubled harmonic. Interactions between these
modes are again transferring energy into the higher harmonics, giving a greater number
of peaks in the frequency spectrum with a much richer structure than the period one
case. The strong interactions of the primary with itself, the period doubled subharmonic,
and the higher harmonics are clearly shown in the bicoherence spectrum.

Bicoherences for chaotic motion for the Rossler attractor (Figure 3(c)) are very similar
to the period-doubled attractor, with many of the same harmonic relationships. In addition,
there is much greater bicoherence between the period-doubled subharmonic and the
higher harmonics. The main energy source for the motion is the primary frequency, and
a band of high bicoherence is starting to appear, originating from the fundamental
frequency. The fact that the Rossler attractor in the chaotic range has strong bicoherence
strongly supports the possibility of using higher order spectra for chaotic system iden-
tification in the field.

3.2. THE MAGNETICALLY BUCKLED BEAM

For the magnetically buckled beam (Figure 4), it is useful to think in physical terms,
The magnetically buckled beam is often referred to as a two-well potential problem. At
rest, the physical system has two stable equilibria, one buckled about the left magnet,
and the other about the right magnet. It also has one unstable equilibrium, located about
the center of the two magnets. If the beam is excited with a small sinusoidal force, it will
oscillate about one of the two stable equilibria in a roughly sinusoidal fashion. However,
as the force amplitude is increased, the beam will jump back and forth between the two
static equilibria, in effect “snapping through” the centerline of the system. If the motion
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Figure 2. Power spectra for the Rossler attractor. (a} Period 1 motion; (b) period-doubling motion; (¢}
chaotic motion. The units of power are arbitrary.

is chaotic, as it often is if the beam is flexible and lightly damped, the beam snaps through
at apparently random times, wandering back and forth between the two equilibria.

The procedure used here to analyze the magnetically buckled beam consists of examin-
ing trajectories generated by a Rayleigh-Ritz approximation to the system, given by [15]

X+yX-YX-X*=Fcoswl, (6)

where ¥ =0-168 and o = 1. This equation is commonly referred to as a Duffing equation
with a negative linear stiffness, and is a linear second order equation with non-linear
cubic terms attached. This equation yields a rich set of highly non-linear behavior,
including strongly and weakly chaotic motions [27, 28].

Since the beam’s behavior is non-linear, there exists a strong set of modal couplings
that previously have not been studied by using bispectral techniques. As discussed above,
ordinary power spectra do not preserve the information about energy exchange and phase
coupling between sub- and superharmonics of the non-linear beam motion. Blspectral
analysis adds the necessary “missing link™ to previous analysis techniques because it can
show how the dominant oscillating frequencies present in the non-linear beam are coupled.

Phase plane portraits of the limit cycles of the Duffing equation as it undergoes a
period-doubling sequence to chaos for the single frequency excitation case are shown in
Figure 5. This cascade ends with a well documented saddle node bifurcation catastrophe
with intermittency [14] Ieading to the chaotic attractor shown in Figure 5(d). A Poincaré
map of the chaotic attractor is shown in Figure 6 and power spectra corresponding to
the phase portraits are shown in Figure 7. The Poincaré sampling occurs every period of
the forcing function oscillation. The period one spectrum (Figure 7(a)) consists of one
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Figure 3. Contours of bicoherence for the Rossler attractor. f, and f, are shown, while the sum frequency,
Jit £z, is implied. The minimum value of bicoherence plotted is b =03, with contours every 0-1.

broad primary peak located at f = 0-16 Hz and its superharmonic; the period two spectrum
(Figure 7(b}) shows a subharmonic peak at 0-08 Hz, half the driving frequency, as well
as some new superharmonics, and the period four spectrum (Figure 7(c)) develops an
additional peak at approximately 0-04 Hz, as well as a new range of superharmonics.
When the system becomes chaotic, the power spectrum becomes quite broadband, with
large amounts of very low frequency energy (Figure 7(d)).

Bicoherence spectra for the four cases are shown in Figure 8. As shown in Figure 8,
the coupling between Fourier modes starts out centered about the dominant frequencies
composing the limit cycles. As the force amplitude is increased, resulting in period
doubling, motions at additional frequencies are excited (e.g., Figure 7(b)) by quadratic
interactions between the dominant frequency and itself, as well as smaller interactions
between the superharmonics. The bicoherences of the period-quadrupled limit cycle
(Figure 8(c)) show the increased number of quadratic interactions for this case. Once
again, there is strong bicoherence where the dominant frequency interacts with itself, as
well as a spreading in the bicoherence pattern where motions at many of the superharmonic
and subharmonic frequencies are interacting with each other (Figure 8(c)). The bi-
coherences in Figures 8(a)-(c) are spread in large clusters, owing to the width of the
peaks in the power spectra (Figures 7(a)-(c)). Frequencies on either side of a respective
peak interact with each other, creating this spreading.
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Once the motion enters the chaotic regime (Figures 5(d), 6, 7(d) and 8(d)), the
bicoherence diffuses and diminishes. This is because the dominant chaotic mechanism
in the buckled beam is not a quadratic phenomenon. The beam undergoes an intermittency
crisis and begins oscillating back and forth between both static equilibria. Since the
motion is global in nature, the cubic term will now dominate the motion, thus leaving
only an insignificant amount of quadratic phase coupling and energy transfer in the
beam’s motion. Similar behavior has been observed in bispectra of the driven Sine-Gordon
chain {11]. Trispectral techniques (in progress) are required to analyze the higher order
non-linear interactions that dominate the chaotic behavior of cubic systems such as the
Duffing and Sine-Gordon attractors.
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Lyapunov exponents for the transition into chaotic behavior are shown for the magneti-
cally buckled beam in Figure 9. Lyapunov exponents are determined by examining the
long-term evolution of an infinitesimal n-sphere of initial conditions, with n being the
order of the non-linear system. As the system evolves, the initial n-sphere will expand
or contract along its n principal axes, creating a deformed n-ellipsoid. The Lyapunoyv
exponents for a given ellipsoidal principal axis p,(1) are defined as [24]

A= !Lfg (1/1) log: {p:(+)/ po(1}}.

Although the Lyapunov exponents do document the chaotic transition, and show the
period-doubling points clearly by the existence of a zero Lyapunov exponent, they do
not offer any frequency information. In a sense, a combination of Lyapunov exponents
and higher order spectra offer a complete description of a non-linear system; the Lyapunov
exponents serving as the real part of the non-linear eigenvalue, the higher order spectra
showing the groups of frequencies and their interrelationships.
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4. CONCLUSIONS

Bicoherence calculations were performed on a period-doubling cascade for the Rossler
equations and the Duffing oscillator. The non-linear interactions of the Rossler equations,
possessing only a quadratic non-linearity, are completely characterized by bicoherence
both outside the chaotic regime and into it. The calculated period one, two and chaotic
trajectories all possessed strong bicoherence originating primarily about the fundamental
frequency of oscillation. This shows that systems possessing chaotic motions originating
from quadratic interactions can successfully be characterized by bispectral techniques.

The bicoherence of the period-doubled limit cycles for the Duffing oscillator also proved
to be useful in explaining the mechanics of the period-doubling process by showing which
frequencies were interacting quadratically and the degree of that interaction. However,
upon transition to the chaotic regime, the bicoherence present in the Duffing oscillator
vanished, owing to cubic rather than quadratic interactions that caused an intermittency
crisis in the oscillator.

The analysis presented here is important because polyspectral methods, like power
spectra, operate solely on time series information. Thus, experimental data can be as
easily analyzed as trajectories generated by computer simulation. Because of the results
with both oscillators, it appears that chaotic oscillations can successfully be distinguished
from random oscillations by examining the appropriate higher order coherence,

ACKNOWLEDGMENTS

The ideas of and conversations with P. G. Vaidya and M. L. Anderson are gratefully
acknowledged. Charles Pezeshki acknowledges the encouragement of E. H. Dowell.
Charles Pezeshki’s research is supported by a grant from Washington State University's
OGRD program. Steve Elgar’s research is supported by the Office of Naval Research
(N00014-86-K-087) and the National Science Foundation (OCE-8612008). Signal pro-
cessing computations were performed at the San Diego Supercomputer Center (supported
by NSF).

REFERENCES

L. K. HASSLEMAN, W. MunK and G. MACDONALD 1963 in Time Series Analysis (M. Rosenblatt,
editor), 125-139, Bispectra of ocean waves. New York: John Wiiey.

2. T.T. YEH and C. W. VAN ATTA 1973 Journal of Fluid Mechanics 58, 233-261. Spectral transfer
of scalar and velocity fields in heated-grid turbulence.

3. K. 8. L1, M. ROSENBLATT and C. VAN ATTA 1976 Journal of Fluid Mechanics 77, 45-62.
Bispectral measurements in turbulence.

4. K. N. HELLAND, C. W. VAN ATTA and G. N. STEGUN 1977 Journal of Fluid Mechanics 79,
337-359. Spectral energy transfer in high Reynolds number turbulence.

5. C. W. VAN ATTA 1979 Physics of Fluids 22, 1440-1443. Inertial range bispectra in turbulence.

6. Y. C. KiM, J. M. BEALL, E. J. POWERS and R. W, MIKSAD 1980 Physics of Fluids 21(8),
258-263. Bispectrum and nonlinear wave coupling.

7. R. MIKSAD, F. JONES and E. POWERS 1983 Physics of Fluids 26, 1402-1409. Measurements
of nonlinear interactions during natural transition of a symmetric wake.

8. C.RITZ, E. POWERS, R. M1KSAD and R. SOLIS 1988 Physics of Fluids 31, 3577-3588. Nonlinear
spectral dynamics of a transitioning Aow.

9. D.CHO1,J. H.CHANG, R. STEARMAN and E. POWERS 1984 Proceedings of the 2nd International
Modal Analysis Conference I, 3-12. Bispectral identification of nonlinear mode interactions.

10. T. SATO, K. Sasakl and Y. NAKAMURA 1977 Journal of the Acoustical Society of America
62(2), 382-387. Real-time bispectral analysis of gear noise and its application to contactless
diagnosis.

1. M. MILLER 1986 Physical Review B34, 6326-6333. Bispectral analysis of the driven Sine-Gordon
chain.



368 C. PEZESHKIT ET AL

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,
25.

26.

27.

28.

. C. L. NiK1AS and M. R. RAGHUVEER 1987 Institute of Electrical and Electronic Engineers
Proceedings 75(7), 869-891. Bispectrum estimation: A digital signal processing framework.
A.J. LICHTENBERG and M. A. LIEBERMAN 1983 Regular and Stochastic Motion New York:
Springer-Veriag. see pp. 386-389.

J. B. THOMPSON and H. B. STEWART 1986 Nonlinear Dynamics and Chaos. New York: John
Wiley see pp. 235-238.

E. H. DOWELL and C. PEZESHKI 1986 American Society of Mechanical Engineers Journal of
Applied Mechanics, 53(1), 5-9. On the understanding of chaos in Duffings equation inciuding
a comparison with experiment.

F.C. MoOON and P.J. HOLMES 1979 Journal of Sound and Vibration 38, 275-296. A magnetoelas-
tic strange attractor.

N. H. PACKARD, 1. P. CRUTCHFIELD, J. D. FARMER and R. S. SHAW 1980 Physical Review
Letters, 45(9), 712-715. Geometry from a time series.

P. GRASSRERGER and I. PROCACCIA 1983 Physical Review Letters 50, 346-349. Characteriz-
ation of strange attractors,

J. C. Roux, R. H. SimMOv1 and H. L. SWINNEY 1983 Physics 8D, 257-266. Observation of a
strange attractor,

P. GRASSBERGER and 1. PROCACCIA 1983 Physics 9D, 189-208. Measuring the Strangeness
of strange attractors.

J. FARMER, E. OTT and J. YORKE 1983 Physica 7D, 153-179. The dimension of chaotic
attractors.

P. FREDERICKSON, J. KAPLAN, E. YORKE and J. YORKE 1983 Journal of Differential Equations
49, 185-207. The Lyapunov dimension of strange attractors.

C. PEZESHKI and E. H. DOWELL 1989 International Journal of Non-Linear Mechanics 24(2),
79-97. Generation and analysis of Lyapunov exponents for the buckled beam.

A. WoLF, J. B. SWIFT, H. L. SWINNEY and J. A. VASTANO 1985 Physica 16D, 285-317.
Determining Lyapunov exponents from a time series.

Y. C. KiMm and E. J. POWERS 1979 Institute of Electrical and Electronic Engineers Transactions
on Plasma Science PS-7(2), 120-131. Digital bispectral analysis and its applications to nonlinear
wave interactions.

R. A. HAUBRICH 1965 Journal of Geophysical Research 70, 1415-1427. Earth noises, 5 to 500
millicycles per second.

D. M. TANG and E. H. DOWELL 1988 American Society of Mechanical Engineers Journal of
Applied Mechanics 55(1), 190-196. On the threshold force for chaotic motions.

E. H. DowELL and C. PEZESHKI 1988 Journal of Sound and Vibration 121, 195-200. On
necessary and sufficient conditions for chaos to occur in Duffing’s equation: a heuristic approach.

-



