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The rapid spatial recurrence of weakly nonlinear, weakly dispersive, progressive shallow-water 
waves is examined with numerical simulations using a discretized and truncated (i.e., finite number of 
allowed frequency modes) form of the Boussinesq equations. Laboratory observations of sandbar 
formation under recurring, mechanically generated monochromatic waves with small Ursell number 
have motivated others to suggest that recurrence in naturally occurring random waves contributes to 
the establishment of periodic longshore sandbars on beaches. The present study primarily examines 
recurrence in wave fields with Ursell number O(1) and characterizes the sensitivity of recurrence to 
initial spectral shape and number of allowed frequency modes. It is shown that rapid spatial recurrence 
is not an inherent property of discretized and truncated Boussinesq systems for evolution distances of 
10-50 wavelengths. When a small number of Fourier modes are used to represent an initially 
monochromatic wave field with significant nonlinearity (the Ursell number is O(1)), there is a trend 
toward recurrence of initial modal amplitudes, consistent with the known periodic solutions for a 
primary wave and its harmonic. However, for 32 modes or more, numerical simulations indicate only 
a few cycles of a damped recurrence, followed by disordered evolution of the Fourier amplitudes. For 
initial conditions similar to ocean field measurements of frequency-sorted swell with Ursell number 
O(1) and many (>300) modes in the numerical model, the Fourier coefficients of the wave field do not 
recur rapidly. Thus in these cases the predictions of many rapid recurrence cycles by few-mode 
models is an artifact of severe truncation. On the other hand, even with many allowed modes, 
pronounced recurrence is predicted when the Ursell number is small and the initial wave field is 
monochromatic. In this case, few- and many-mode solutions are similar. 

1. INTRODUCTION 

Variants of the Boussinesq equations [Peregrine, 1967] 
have been proposed as models for unbroken surface gravity 
waves in shallow water [Lau and Barcilon [1972], Mei and 
Onliiata [1972], Peregrine [1972], Freilich and Guza [1984], 
Liu et al. [1985], Elgar and Guza [1985, 1986], Boczar- 
Karakiewicz et al. [1987], Rygg [1988], and others). Freilich 
and Guza [1984] and Liu et al. [1985] have developed models 
based on discretized and truncated versions of the equa- 
tions. The models take the form of coupled rate equations for 
a finite number of modes at fixed, equally spaced frequen- 
cies. The equations cast in this form are convenient for 
modeling the shoaling of naturally occurring random wave 
fields. When initialized at the seaward edge of the shoaling 
region with observations, the Boussinesq model with many 
allowed modes accurately predicts the observed evolution of 
shoaling, nonbreaking waves with a variety of spectral 
shapes [Freilich and Guza, 1984; Elgar and Guza, 1985, 
1986]. 

The long-term evolution of systems analogous to weakly 
dispersive, weakly nonlinear waves has been of interest 
since the pioneering work of E. Fermi, J. R. Pasta, and S. 
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Ulam [Fermi et al., 1955] indicated that such systems could 
exhibit rapid periodic recurrence of initial conditions. Fermi 
et al. [1955] numerically simulated a set of coupled nonlinear 
oscillators with energy initially concentrated in only a few 
modes. They observed either a quasi-periodic return to the 
initial amplitudes of the system or a slow increase in the 
amplitudes of initially small modes at the expense of the 
initially large primary (Figure 1). This behavior was in 
contrast with the expected rapid equipartition of energy 
among all the modes (i.e., thermalization). The anomalously 
slow randomization of systems of coupled nonlinear oscilla- 
tors and their quasi-periodic return to initial modal ampli- 
tudes is now called FPU recurrence. Many theoretical 
investigations of recurrence have studied the nonlinear 
Schrodinger (NLS) equation, which describes narrow-band 
surface gravity waves in deep water [Janssen, 1981, 1983; 
Stiassnie and Kroszynski, 1982; Lake et al., 1977; Bryant, 
1988]. Using a discretized version of the Zakharov equation 
(which describes a field of random deepwater waves), Ca- 
poni et al. [1982] found FPU recurrence for certain initial 
spectral shapes and found disordered behavior of the modal 
amplitudes for other initial values. Caponi et al. [1982] also 
studied the effects of the number of modes (and frequency 
resolution) on the evolution of the Zakharov system. A 
common feature of the Fermi et al., NLS, Zakharov, and 
Boussinesq nonlinear systems is that they allow O(1) energy 
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Fig. 1. Energy of the first four Fourier modes of displacement of 
a nonlinear vibrating string versus evolution time (arbitrary units) 
from the numerical simulations of Fermi et al. [1955, Figure 9]. 

transfers between modes over large space and time scales. 
Thus although the systems may periodically return to initial 
amplitudes, the points of recurrence are separated by peri- 
ods in which modal amplitudes are significantly different 
from the initial conditions. 

Historically, the nondimensional Ursell number U has 
been used as a measure of "nonlinearity" in shallow water 
waves [Peregrine, 1967]: 

U = (a/h)/(kh) 2 (1) 

where a is a typical amplitude of the sea surface elevation, k 
is a "typical" wave number, and h is the undisturbed water 
depth. For U << 1, nonlinearities are weak, only small 
energy transfers occur on moderate space or time scales, and 
O(1) nonlinear effects are possible only over very large 
scales. For U--• 1, inertial effects (characterized by a/h) are 
of the same order as dispersive effects ((kh)2), and O(1) 
energy transfers and phase modifications can occur on 
moderate space and time scales. The Boussinesq equations 
are strictly valid for U = O(1), although in practice the 
equations are quite robust. 

There are few detailed laboratory observations of nonlin- 
ear recurrence in shallow-water waves with U - O(1), as 
examined in the present study. Multiple cycles of quasi- 
periodic returns to initial conditions for initially monochro- 
matic plane waves in intermediate depth have often been 
observed (e.g., Madsen [1971], 3-4 cycles and Buhr Hansen 
and Svendsen [1974], 0(20) cycles). In these experiments, 
U = O(0.1) and the wave dispersiveness was significantly 
larger than the nonlinearity. The observed modulations in 
modal amplitudes were not a result of near resonance, and 
the magnitudes of nonlinear cross-spectral energy transfers 
were small. For the near-resonant case (U = O(1)) of initially 
monochromatic laboratory waves, Mei and Onliiata [1972] 
showed that Goda's "appearance distances" (the distance 
between successive maxima of first-harmonic amplitudes) 
were in agreement with theory for the recurrence length of a 
single near-resonant degenerate triad composed of the pri- 
mary wave and its first harmonic. However, owing to their 
short laboratory tank, Mei and Onl•ata could observe only a 
few recurrence cycles. Furthermore, it is unclear whether 
the observed recurrence was an exact return to initial 

amplitudes (i.e., FPU recurrence) or if the recurrence cycles 
were damped, as will be discussed below. Thus there do not 

appear to be any detailed experiments showing more than 
three complete recurrence cycles for Ursell numbers greater 
than 1, even for initial conditions composed of a monochro- 
matic wave. No laboratory experiments address the recur- 
rence of random shallow-water waves. 

Several authors [e.g., Boczar-Karakiewicz and Davidson- 
Arnott, 1987; Davidson-Arnott and Randall, 1984; and ref- 
erences therein] have suggested that rapid recurrence in the 
wave field may create spatially periodic longshore-oriented 
sandbars on very gently sloping beaches. Certainly, sand- 
bars with wavelengths equal to the recurrence length are 
observed to form in the laboratory when recurring mono- 
chromatic waves travel over an erodible bed [Hulsbergen, 
1974; Bijker et al., 1976; Boczar-Karakiewicz et al., 1987]. 
Convincing field evidence for recurrence in naturally occur- 
ing random long waves is lacking [Davidson-Arnott and 
Randall, 1984), although Boczar-Karakiewicz et a/.[1987] 
and Boczar-Karakiewicz and Davidson-Arnott [1987] 
present field data showing possible wave recurrence in 
association with periodic longshore bars in Lake Huron. In 
the field situations discussed by Boczar-Karakiewicz and 
Davidson-Arnott [1987], the bottom slope was such that 
evolution distances of about 20 wavelengths of the primary 
wave were possible before breaking processes dominated 
the wave field. Following Lau and Barcilon [1972] (see also 
Mei and Onliiata [1972]), Boczar-Karakiewicz and Davidson- 
Arnott constructed a coupled wave-sediment model in which 
the wave field was restricted to a single interacting triad (a 
primary and its first harmonic). It is well known that such 
highly truncated Boussinesq wave models predict recur- 
rence on spatial scales of 2-10 wavelengths. In fact, Boczar- 
Karakiewicz and Davidson-Arnott [1987] found that the 
predicted recurrence length in the wave field corresponded 
to the observed bar spacing. However, it is not clear whether 
rapid recurrence behavior is a fundamental characteristic of 
natural wave fields or whether predictions of rapid recur- 
rence are an artifact resulting from overly truncated models. 

In the present study, numerical simulations are used to 
investigate recurrence in truncated Boussinesq wave mod- 
els. Specifically, through numerical simulations the sensitiv- 
ity of recurrence and near-recurrence behavior to the level 
of truncation and the initial conditions for waves with 

significant nonlinearity (the Ursell number is O(1)) is deter- 
mined. Evolution distances of tens of wavelengths are ex- 
amined, characteristic of very gently sloping natural shoaling 
regions and within the valid length scales of the underlying 
Boussinesq equations. The numerical results reported below 
are for constant depth. The nonlinear evolution of shallow- 
water waves governed by the discretized Boussinesq equa- 
tions is not strongly dependent on the bottom slope, and 
numerical solutions of the nonlinear Boussinesq model for 
waves traveling over a flat bottom are similar to field 
observations on a gently sloping beach [Freilich and Guza, 
1984; Elgar and Guza, 1986]. Some initial conditions in this 
study were derived from actual field measurements. 
Throughout, the parameter ranges used in the numerical 
simulations are both representative of nearshore conditions 
and consistent with the assumptions inherent in the deriva- 
tion of the Boussinesq equations (section 2). 

A description of the numerical solution technique, includ- 
ing verification of the numerics, is given in section 3. The 
numerical simulations are described in section 4. The pri- 
mary result is that the evolution of waves with U = O(1) is 
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not dominated by FPU recurrence for distances of 0(50) 
wavelengths. The magnitudes and periodicities of "damped 
recurrence cycles" observed in the numerical simulations is 
a function of the number of modes used to represent the 
wave system in severely truncated models (those with less 
than 32 modes). As the number of modes used to represent 
the wave field is increased, the damping of the recurrence 
cycles also increases. With more than 32 modes the wave 
evolution becomes insensitive to the number of modes, and 
an initially sharply peaked power spectrum undergoes only 
one or two cycles of a damped recurrence. Over large 
distances (O(100) wavelengths), an initially sharply peaked 
spectrum becomes featureless. Thus severely truncated 
Boussinesq models do not accurately represent the evolution 
of naturally occurring shallow water waves with U = O(1). A 
discussion and conclusions are given in sections 5 and 6, 
respectively. 

2. BOUSSINESQ EQUATIONS 

The Boussinesq equations for weakly dispersive, weakly 
nonlinear, unidirectional shallow-water waves are [Pere- 
grine, 1967; Grimshaw, 1970] 

g•lx + llxt q- «(llx2)x = «h(utxh)xx --}h2uxxxt 
(2) 

7qt q- (hux)x + (rlUx)x = 0 

where g is gravitational acceleration, r/is the water surface 
elevation, u is the depth-averaged velocity potential, h is the 
water depth, and the subscripts x and t indicate differentia- 
tion with respect to space and time, respectively. For waves 
in a constant depth fluid with no reflection or dissipation, r/ 
has the Fourier representation 

N 

n = E an(X) COS ((I)n(X) -- ton t) (3) 
n=l 

where the radian frequency to n is equal to nAto, with Ato the 
frequency resolution. The small-amplitude (linear) wave 
number k n of (2) is given by 

((I)n)x = kn = (ton/ (gh)l/2)(1 - hton2/3g) - 1 

In shallow water, three-wave interactions are resonant, and 
the slow spatial evolution of the wave field' s Fourier ampli- 
tudes a n and phases qb n is given by 

n--1 

hn = • ajan-jR(j,n-j) sin (•j + (I) n _j- (I)n) 
j=l 

N 

j=n+l 
ajaj_ nR(j,n _j) sin (•j- %-n -- (I)n) 

q- E ajan + jR(n + j, -j) sin ((I) n + j -- (I)j -- (I)n) 
j=l 

an an 
R(j,n _j) cos ((I)j q- (I) n _j - (I)n) 

(4a) 

N 

j=n+l ajaj_ n)g(J, n -J) cos (%- %-n - (I)n) an 

•n (ajan +J! R(n +j,j) cos ((I)n +j (I) j (I)n) j= 1 an 
(4b) 

where N is the number of modes, the overdot indicates 
differentiation with respect to the propagation direction (in 
the present case, the offshore coordinate x), and the coupling 
coefficients R n are functions of to and h (given explicitly by 
Freilich and Guza [1984], equations (21)-(24)]). These equa- 
tions are the many-mode generalization of the evolution 
equations first presented by Armstrong et al. [1962]. Solu- 
tions of (4) for a single primary and its harmonic have also 
been discussed by Mei and Onliiata [1972], Lau and Bar- 
cilon, [1972], and Boczar-Karakiewicz and Davidson-Arnott 
[1987]. 

The order of the underlying Boussinesq equations (2) and 
the two-scaling technique (equation (3)) restrict the region of 
spatial validity of the solutions (4). With k as a typical wave 
number and e - a/h << 1 a nonlinear parameter, the linear 
solutions are valid for distances less than O(1/(ke)), the scale 
over which triads of Fourier modes exchange significant 
energy. Higher-order terms and processes (e.g., resonant 
quartets) neglected in (4) restrict the range of the present 
nonlinear solutions to distances less the O(1/(ke 2)). For typi- 
cal values of e used here (e --• 0.05), nonlinear energy 
exchanges are important after evolution distances of a few 
wavelengths, while higher-order effects may be significant 
after 0(60) wavelengths. Thus the Boussinesq equations are 
not formally valid for large evolution distances [Peregrine, 
1967; Grimshaw, 1970; Freilich and Guza, 1984], and more- 
over, dissipation and interactions between the waves and the 
bottom are not included in the model but may be important 
for long evolution distances in the field [Miles, 1983, and 
references therein]. The present work focuses on evolution 
distances of 10-50 wavelengths. 

Given a set of initial amplitudes and phases, the model (4) 
can be integrated numerically, yielding Fourier coefficients 
of sea surface elevation at arbitrary distances from the initial 
conditions. Initial conditions used here consisted of various 

power spectral shapes, including idealized narrow-band and 
broadband spectra as well as spectra based on direct ocean 
measurements (section 4). The evolution of the sea surface is 
not strongly dependent on the initial phases if, as occurs at 
the seaward edge of the shoaling region, the initial system is 
nearly linear [Freilich and Guza, 1984; Elgar and Guza, 
1986]. In all the cases discussed in section 4 the initial 
amplitudes were coupled with random Fourier phases. 

3. VERIFICATION OF THE NUMERICAL 

INTEGRATION TECHNIQUE 

Equations (4) were integrated at the San Diego Supercom- 
puter Center on a Cray XMP/48 supercomputer with 64-bit 
word length and approximately 14 decimal places of accu- 
racy. Three standard numerical integration techniques were 
used: Bulirsch-Stoer, Runge-Kutta-Merson, and Adams- 
Bashforth-Moulton [cf. Press et al., 1986]. Differences be- 
tween the results from different integration schemes were 
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measured (on a mode-by-mode basis) as the magnitude of the 
difference between the complex Fourier coefficients pre- 
dicted by each scheme at an evolution distance of 75 
wavelengths. The convergence tolerances finally accepted 
produced no more than 0.8% difference (and for most 
frequency bands, less than 0.2%) in the Fourier coefficients. 
Since it was the fastest, the Runge-Kutta-Merson scheme 
was used for the results presented here. The total linear 
energy flux varied less than 1% for evolution distances of 
more than 75 wavelengths. 

The evolution equations (4) support nonlinear waves of 
permanent form. Numerical integrations with initial condi- 
tions corresponding to such waves were also used to validate 
the accuracy of the numerical integration technique. Waves 
of permanent form have no amplitude evolution and have 

constant phase speed Cp. Setting//n -- 0 and t• n = (ton/Cp) 
- k n, the system (4) becomes a set of simultaneous nonlinear 
algebraic equations with one free parameter. This parameter 
was selected to be the amplitude of the primary (the lowest- 
frequency mode in this example) allowing variation in the 
Ursell number. In this case k in (1) is taken to be the wave 
number of the primary, and the amplitude a is defined here 
as one-half the significant wave height of a Gaussian wave 
field 

a=2 E an 2/2 
n=l 

1/2 

(5) 

The set of algebraic rate equations was solved iteratively 
using cnoidal wave amplitudes and phases as an initial guess 
(cnoidal waves are exact solutions to (2), while (3) and (4) are 
approximate solutions). This solution technique can in prin- 
ciple obtain the Fourier coefficients for any number of modes 
(see also Bryant [1974]), but the present solutions were 
truncated after 31 modes (the power in mode 31 was at least 
5 orders of magnitude less than that in mode 1). The power 
spectrum and wave profile for a discretized Boussinesq 
equation wave of permanent form (DBWPF) with U = 14 are 
very similar to those of a cnoidal wave with the same 
wavelength and wave height (Figure 2). In the limit as U -• 
0, the DBWPF wave approaches a cnoidal wave. The two 
wave profiles are virtually indistinguishable for U = 1. 

With initial conditions corresponding to DBWPF and U = 
14 the modal amplitudes varied by less than 0.1% over an 
evolution distance of approximately 100 wavelengths (Figure 
3a). (Even this slight monotonic variation in amplitude can 
be removed by increasing the convergence criterion of the 
numerical integration routines beyond that used for the 
results presented here.) On the other hand, initial conditions 
consisting of a true cnoidal wave (Figure 3b) or a DBWPF 
power spectrum coupled with random Fourier phases (Fig- 
ure 3c) do not satisfy the conditions for a wave of permanent 
form, and the power spectra evolve. For both these cases the 
power in each of the first three Fourier modes varied by an 
order of magnitude as the wave field evolved. The stability of 
the DBWPF suggests that the results reported here are 
numerically accurate. 

4. RESULTS 

In this section the long-term evolution of the wave field is 
examined. The results of numerical simulations illustrating 
the sensitivity of damped recurrence behavior on the number 
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Fig. 2. Comparison of waves of permanent form for U = 14. (a) 
Modal amplitudes versus frequency (fp is the frequency of the 
primary spectral peak). Solid circles are for the discretized Bouss- 
inesq equation; open circles are for the cnoidal wave of the same 
wavelength and height. (b) One period of sea surface elevation. The 
solid curve is for the discretized Boussinesq equation; the dashed 
curve is for the cnoidal wave. 

of modes and on the spectral shape of the initial conditions 
are presented in sections 4.1 and 4.2, respectively. Results 
for an initial spectrum derived from ocean field measure- 
ments follow in section 4.3. In all cases the initial conditions 

satisfied the restrictions required for the Boussinesq equa- 
tions to be formally valid (i.e., U = O(1)). 

4.1. Effect of the Number of Modes 

A series of simulations was performed in which the wave 
field was modeled using between 4 and 256 Fourier modes. 
Each initial spectrum (x = 0) consisted of a single large 
primary peak at f= 0.0625 Hz (wheref = oo/2•r) and between 
3 and 255 background modes with amplitudes 2 orders of 
magnitude lower than that of the primary peak. The highest 
(cutoff) frequency in all cases was œ = 0.25 Hz, and thus the 
frequency resolution increased with increasing number of 
modes. Random initial phases were assigned to each mode, 
and the depth was chosen arbitrarily to be h = 2.0 m. The 
initial amplitudes (•-9 cm) of the primary peak and the 
background modes corresponded to U = 1.33, where the 
wave number was determined by the linear Boussinesq 
dispersion relation at the frequency corresponding to the 
centroid of the power spectrum. 

The evolution of the amplitude of the initial primary peak 
(œ = 0.0625 Hz) is shown in Figure 4a as a function of the 
number of modes, N. For a single triad (not shown) the 
evolution equations have strictly periodic solutions [Arm- 
strong et al., 1962]. For N = 4 the amplitude evolution is 
nearly periodic, with the amplitude of the initial peak return- 
ing to within 15% of its initial value approximately every 14 
wavelengths. However, the trend toward recurrence de- 
creases as the number of modes increases. For 32 modes or 
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Fig. 3. Power spectra versus evolution distance (units of wave- 
lengths, L, of the initial power spectral primary peak frequency) for 
U = 14. (a) Discretized Boussinesq equation waves of permanent 
forms, (b) cnoidal wave initial conditions, and (c) waves with the 
same Fourier amplitudes as waves of permanent form, but with 
random Fourier phases at the initial condition. 
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Fig. 4. (a) Amplitude of the initial spectral primary peak fre- 
quency and (b) the root-sum-squared difference (equation (6)) versus 
evolution distance for the initial condition of a single primary peak 
within a low-level background (section 4.1). The solid curve is for 
the case of four Fourier modes, and the dashes decrease in size as 
the number of modes increases from 4 to 256 by factors of 2. The 
various curve types are best distinguished from each other near x = 
30 wavelengths where, from top to bottom, the amplitudes decrease 
(Figure 4a) and p increases (Figure 4b) in the order 4, 16, 8, 32, 128, 
64, and 256 modes, respectively. 

more, the primary amplitude undergoes two damped recur- 
rence cycles, each about 14 wavelengths long, and then the 
evolution becomes quite disordered (Figure 4a). 

The degree of "recurrence" of the entire spectrum as a 
function of propagation distance is quantified as the root- 
sum-squared deviation between the initial and evolved am- 
plitudes, p(x), given by 

{N } p(X) = Z Jan(X) -- an(0)] 2 
n=l 

1/2 

(6) 

where p(s) = 0 corresponds to perfect amplitude recurrence, 
and increasing values of p(x) indicate increasingly larger 
deviations from the initial conditions. For wave fields with 

energy concentrated in a narrow band of frequencies (e.g., 
Figure 4a), the evolution of p(x) (Figure 4b) closely parallels 
the evolution of the amplitudes near the spectral peak. There 
is little trend toward recurrence (decrease in p(x) values) for 
propagation distances beyond approximately 30 wavelengths 
for N > 32 (Figure 4b). 

The evolution of the harmonics of the spectral peak is 
similar to that of the primary, as is shown in Figure 5 for 
N = 256. Harmonic amplitudes undergo quasi-periodic re- 
currence for N = 4, and as the number of modes increases, 

the recurrence is damped. For 32 modes or more the 
evolution of harmonic amplitudes is quite disordered after 
about 30 wavelengths of the initial primary spectral peak. 

Although the simulations indicate that recurrence proper 

• Io • 
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Fig. 5. Power spectral density of the initial primary peak fre- 
quency (P) and its first three harmonics (1-3) versus evolution 
distance for the initial condition of a single primary peak within a 
low-level background (256 modes, section 4.1). 
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ties of the initially very narrow spectra studied here are 
somewhat sensitive to the number of modes (N) for small N, 
there is no strong dependence on N for N > 32. 

The spatial evolution of sea surface elevation spectra for 
the 256-mode case is illustrated in Figure 6. After initial 
cross-spectral energy exchanges confined primarily to the 
harmonics of the initial primary peak, energy spreads to all 
modes, and the spectrum flattens substantially, becoming 
relatively featureless. 

4.2. Effect of Spectral Bandwidth 

The effect of spectral bandwidth on recurrence is illus- 
trated by simulations with initial conditions consisting of flat 
spectra with various bandwidths. The spectral amplitudes 
for this set of simulations were 

an = (1/Np)l/2a 64 Np + 1 < n < 64 -• Np 
2 2 

an = ab otherwise 

where Np is the number of modes within the initial spectral 
peak, centered at f- 0.0625 Hz (n - 64) as in section 4.1. 
For each simulation ab = 0.01a, where ao is the background 
spectral amplitude h - 2 m, and U = 2 (based on the wave 
number corresponding to the power spectral centroidal 
frequency), thus fixing the value of a. In each of these 
comparisons, N is equal to 256, and the frequency resolution 
was Af = 10 -3 Hz. Ten realizations of random initial phases 
were simulated for each choice of peak bandwidth, with the 
resulting spectra averaged. 

The case of Np = 1 here corresponds to the monochro- 
matic initial condition with N - 256 discussed in section 4.1. 

Equations (4) having initial spectra with 1 -< Np -< 64 were 
integrated, and in each case the solution eventually evolved 
to a nearly featureless, flat spectrum, However, as is shown 
in Figure 7, the persistence of initial damped recurrence 

cycles is a function of the initial bandwidth. Initially narrow- 
banded spectra undergo more recurrence cycles, and the 
damping is reduced (i.e., p(x)) values return more closely to 
0) relative to the evolution of initially broader-banded spec- 
tra. The locations of the first few extrema in the individual 

p(x) curves occur at approximately the same evolution 
distance, essentially independent of initial bandwidth. 

Several cases of white (a n = const, 1 -< n -< 256) initial 
spectra were simulated, with 2 -< U -< 20. In each instance 
there was no major change in spectral shape over evolution 
distances similar to those discussed above. Power spectral 
peaks varied during evolution by as much as a factor of 4 
from their initial levels, but with no obvious pattern. At no 
evolution stage did the power spectrum closely resemble the 
initial spectral shape. 

4.3. Narrow-Band Ocean Data 

Ocean measurements in 4-m water depth provided the 
mean initial spectral shape (x = 0 in Figure 8) for another set 
of numerical simulations. This narrow-band power spectrum 
(primary spectral peak at f = 0.06 Hz) is typical of frequen- 
cy-sorted swell from a distant storm. Five cases with this 
initial spectral shape were investigated (Table 1). The first 
three cases correspond to different depths (h - 1.0, 1.5, and 
2.0 m). Although the initial relative amplitudes of Fourier 

TABLE 1. Parameters for the Five Initial Conditions of Section 
4.3. 

Case U a/h kh h, rn 

1 1.33 0.033 0.16 1.0 
2 1.33 0.050 0.19 1.5 
3 1.33 0.067 0.22 2.0 

4 1.78 0.067 0.19 1.5 
5 2.68 0.067 0.16 1.0 
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pu•oses of display, spectral levels from ten neighboring frequency 
bands were merged. 

were 
,,lie to litue initial Ursell number of 1.33. Two additional cases of a/h = 0.067 
were investigated, with U = 1.78 and U = 2.68 In each case . 
five separate consecutive 17-min time series of measured 

sea surface elevation were used to generate the initial spectral shapes, and the results of the numerical integrations 
were ensemble averaged. There were 30? Fourier modes in 
these cases, with frequency resolution Af = 10 -3 Hz and a 
high-frequency cutoff of f = 0.3 Hz. Increasing the high- 
frequency cutoff to f = 0.48 Hz (491 modes) did not alter the 
results presented here. 

Evolution of the spectra (Figure 8), the power of the initial 
primary spectral peak (f = 0.06 Hz) and its first three 
harmonics, the root-sum-squared difference p(x), and third 
moments of the sea surface (possibly related to the direction 
of net sediment transport (Bailard [1981] and many others) 
(Figure 9) are shown for case 3 (Table 1). These results for 
the ocean-derived initial conditions are very similar to those 
for the idealized case of an initially very narrow spectrum 
with many background modes (section 4.1 and Figures 5 and 
6). The power in the primary decreases during the first eight 
wavelengths (0 -< x -< 8 L), then increases to a level one-third 
that of the initial value (at x = 12 L) and subsequently 
decreases again (Figure 9). There is a slight increase at x = 
24L, but for greater propagation distances the power in the 
primary spectral peak does not vary by more than a factor of 
2 from a value of about one-tenth the initial (x - 0) value. All 
three harmonic amplitudes initially increase concomitantly 
with the decrease in the primary (Figure 9), and all three 
subsequently decrease as the primary increases near x - 
8-12L. Although the power in each of the three harmonics 
continues to vary with distance, there is no obvious pattern 
to the variations and certainly no evidence of recurrence of 
the initial values. At x = 0 the power of the primary is more 
than 100 times greater than the power of the third harmonic. 
However, after 30 wavelengths the difference is less than a 

20 40 60 

Wovelengths 

Fig. 9. (a) Power spectral density of the initial primary peak 
frequency (P) and its first three harmonics (1-3), (b) root- 
sum-squared difference, and (c) skewness (solid curve) and asym- 
metry (dashed curve) versus evolution distance for case 3 (U = 1.33, 
kh = 0.22 (Table 1)). 

factor of 10 and remains relatively constant for the duration 
of the simulation. 

During the initial stages of evolution the harmonics of the 
primary grow (e.g., x = 7L in Figure 8). As the wave field 
evolves further, spectral valleys are filled in at the expense 
of spectral peaks. After 30 wavelengths the power spectra 
are essentially featureless, and almost all traces of the sharp 
primary spectral peak and its harmonics are gone. The 
normalized p(x) values for this case (shown in Figure 7) are 
similar to those for an idealized flat spectrum with bandwidth 
between 0.03 and 0.06 Hz (the Np = 32 and Np = 64 mode 
cases of section 4.2 and Figure 7), although the initial spectra 
differ in detail. 

The pattern of spatial evolution of the amplitudes of the 
initial power spectral primary peak (Figure 10a) and p(x) 
(Figure 10b) is similar to that shown in Figures 7-9 for all five 
cases. There is no evidence of recurrence of the initial 

conditions over the evolution distances considered here. 
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Fig. 10. (a) Power spectral density of the initial spectral primary 
peak frequency and (b) root-sum-squared difference versus evolu- 
tion distance for cases 1-5 (Table 1). 

5. DISCUSSION 

Previously reported laboratory studies (section 1) showing 
more than three nearly periodic cycles in harmonic ampli- 
tudes were all for small Ursell number. These multiple 
cycles are predicted by the Boussinesq model with small U, 
many allowed modes, and an initially monochromatic plane 
wave. For example, with U = 0.10 and 256 allowed modes, 
five nearly identical cycles are predicted in an evolution 
distance of 50 wavelengths, in contrast to the damped cycles 
predicted for an initial plane wave with U = 1.0 and the 
absence of recurrence cycles for U = 3.1, as shown in Figure 
11. The distinction between U = O(0.1) and U = O(1) is 
critical. For small Ursell number the harmonics never reach 

amplitudes comparable to the initial primary (compare Fig- 
ure 1 l a with Figures 1 lb and 1 l c) because the relatively 
weak nonlinearities cannot produce significant energy ex- 
changes during the recurrence length scale. 

For waves in deep water the modulation length scale of 
harmonic amplitudes is comparable to the wavelength of the 
primary. Thus "recurrence" cycles occur relatively rapidly, 
and many cycles can be observed in short laboratory basins 
(0(20) primary wavelengths long), although the harmonics 
are always small in amplitude relative to the primary wave. 
When U = O(1) and (kh) • << 1, the recurrence length of an 
isolated triad becomes longer relative to a primary wave- 
length [Mei and Onliiata, 1972], and thus longer basins are 
required to observe many recurrence cycles. The numerical 
results presented here indicate that when U = O(1) the 
recurrence cycles of even an initially monochromatic plane 
wave are damped (Figure 11). It would be of interest to test 
these predictions in a very long (30 wavelengths) laboratory 
flume using waves not strongly influenced by viscosity. 

Figure 12 illustrates the effect of decreasing U on the 
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Fig. 11. Power spectral density of the initial primary peak 

frequency P and its first three harmonics (1-3) versus evolution 
distance for the initial condition of a single primary peak within a 
low-level background (256 modes, section 4.1). (a) U = 0.1, (b) U = 
1.0, and (c) U = 3.1. For all cases, kh = 0.34. 

evolution of the broader-banded, naturally occurring initial 
spectral shape shown in Figure 8. In contrast to the case of 
an initially monochromatic wave train, decreasing U for this 
finite-bandwidth initial spectrum does not significantly alter 
the overall levels of spatial recurrence, as can be seen by 
comparing p(x) for U = 1.33 (Figure 9) with p(x) for U = 
0.14 (Figure 12). However, for this initial spectral shape, 
smaller U does result in smaller maximum amplitudes of 
harmonics and third moments (Figure 12) relative to larger U 
(Figure 9). 

The implications of these results with respect to bar 
formation on natural beaches are not clear. Further modeling 
is necessary to determine whether the highly damped cycles 
predicted by the many-mode model are strong enough to 
form bars in the underlying sediment. It is apparent that 
observations (and truncated models) of bar formation in the 
laboratory with recurring monochromatic plane waves and 
relatively small U cannot be extrapolated to random waves, 
particularly if U = O(1). 
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Fig. 12. (a) Power spectral density of the initial primary peak 

frequency (P) and its first three harmonics (1-3), (b) root- 
sum-squared difference, and (c) skewness (solid curve) and asym- 
roetry (dashed curve) versus evolution distance for the initial 
condition with the same spectral shape as shown in Figure 8 (field 
data), but with U = 0.12, kh = 0.22. 

6. CONCLUSIONS 

The primary result of this study is that highly truncated 
Boussinesq models of resonant (U - O(1)) shallow-water 
ocean surface gravity waves predict rapid, multiple recur- 
rence cycles, but that this is an artifact dependent on the 
number of allowed modes. For initial conditions consisting 
of essentially all energy concentrated in a single mode, 
damping of the recurrence cycles increases as the number of 
low-power background modes increases. When more than 32 
modes are allowed in the model, the recurrence behavior is 
relatively insensitive to the number of allowed modes. The 
predicted evolution of the wave model with many allowed 
modes is similar to that found in some of the numerical 

examples of Fermi et al. [1955] (compare Figure 1 with 
Figure 5) for systems of nonlinear strings. 

Damping is even more rapid when the initial energy- 
containing portion of the spectrum has realistic (with respect 
to ocean data) bandwidth. Very narrow band spectra un- 
dergo more recurrencelike cycles before the spectra flatten 

than do broad spectra (Figure 7). Initially broad-banded 
spectra remain so. For the case of an initially narrow 
spectrum derived from ocean field measurements and U = 
O(1), there is some tendency for one damped recurrence 
cycle before the spectrum becomes broad banded, with 
spectral valleys filled in at the expense of spectral peaks 
(Figures 8-10). Third moments of the sea surface also do not 
recur strongly for the U = O(1) initial conditions studied 
here (Figure 9), although there is somewhat less damping in 
third moments when U = O(0.1) (Figure 12). 

Models allowing many modes can accommodate finite 
bandwidth and do not exhibit significant sensitivity to the 
exact number of modes used. On the basis of the numerical 

simulations it appears that natural fields with U = O(1) 
would not exhibit rapid, multiple recurrence cycles. 
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