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The rapid spatial recurrence of weakly nonlinear, weakly dispersive, progressive shallow-water
waves is examined with numerical simulations using a discretized and truncated (i.e., finite number of
allowed frequency modes) form of the Boussinesq equations. Laboratory observations of sandbar
formation under recurring, mechanically generated monochromatic waves with small Ursell number
have motivated others to suggest that recurrence in naturally occurring random waves contributes to
the establishment of periodic longshore sandbars on beaches. The present study primarily examines
recurrence in wave fields with Ursell number O(1) and characterizes the sensitivity of recurrence to
initial spectral shape and number of allowed frequency modes. It is shown that rapid spatial recurrence
is not an inherent property of discretized and truncated Boussinesq systems for evolution distances of
10-50 wavelengths. When a small number of Fourier modes are used to represent an initially
monochromatic wave field with significant nonlinearity (the Ursell number is O(1)), there is a trend
toward recurrence of initial modal amplitudes, consistent with the known periodic solutions for a
primary wave and its harmonic. However, for 32 modes or more, numerical simulations indicate only
a few cycles of a damped recurrence, followed by disordered evolution of the Fourier amplitudes. For
initial conditions similar to ocean field measurements of frequency-sorted swell with Ursell number
O(1) and many (>>300) modes in the numerical model, the Fourier coefficients of the wave field do not
recur rapidly. Thus in these cases the predictions of many rapid recurrence cycles by few-mode
models is an artifact of severe truncation. On the other hand, even with many allowed modes,
pronounced recurrence is predicted when the Ursell number is small and the initial wave field is

monochromatic. In this case, few- and many-mode solutions are similar.

1. INTRODUCTION

Variants of the Boussinesq equations [Peregrine, 1967]
have been proposed as models for unbroken surface gravity
waves in shallow water [Lau and Barcilon [1972], Mei and
Unliiata [1972], Peregrine [1972), Freilich and Guza [1984],
Liu et al. [1985], Elgar and Guza [1985, 1986], Boczar-
Karakiewicz et al. [1987], Rygg [1988], and others). Freilich
and Guza [1984] and Liu et al. [1985] have developed models
based on discretized and truncated versions of the equa-
tions. The models take the form of coupled rate equations for
a finite number of modes at fixed, equally spaced frequen-
cies. The equations cast in this form are convenient for
modeling the shoaling of naturally occurring random wave
fields. When initialized at the seaward edge of the shoaling
region with observations, the Boussinesq model with many
allowed modes accurately predicts the observed evolution of
shoaling, nonbreaking waves with a variety of spectral
shapes [Freilich and Guza, 1984; Elgar and Guza, 1985,
1986].

The long-term evolution of systems analogous to weakly
dispersive, weakly nonlinear waves has been of interest
since the pioneering work of E. Fermi, J. R. Pasta, and S.
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Ulam [Fermi et al., 1955] indicated that such systems could
exhibit rapid periodic recurrence of initial conditions. Fermi
et al. [1955] numerically simulated a set of coupled nonlinear
oscillators with energy initially concentrated in only a few
modes. They observed either a quasi-periodic return to the
initial amplitudes of the system or a slow increase in the
amplitudes of initially small modes at the expense of the
initially large primary (Figure 1). This behavior was in
contrast with the expected rapid equipartition of energy
among all the modes (i.e., thermalization). The anomalously
slow randomization of systems of coupled nonlinear oscilla-
tors and their quasi-periodic return to initial modal ampli-
tudes is now called FPU recurrence. Many theoretical
investigations of recurrence have studied the nonlinear
Schrodinger (NLS) equation, which describes narrow-band
surface gravity waves in deep water [Janssen, 1981, 1983;
Stiassnie and Kroszynski, 1982; Lake et al., 1977; Bryant,
1988]. Using a discretized version of the Zakharov equation
(which describes a field of random deepwater waves), Ca-
poni et al. [1982] found FPU recurrence for certain initial
spectral shapes and found disordered behavior of the modal
amplitudes for other initial values. Caponi et al. [1982] also
studied the effects of the number of modes (and frequency
resolution) on the evolution of the Zakharov system. A
common feature of the Fermi et al., NLS, Zakharov, and
Boussinesq nonlinear systems is that they allow O(1) energy
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Fig. 1. Energy of the first four Fourier modes of displacement of
a nonlinear vibrating string versus evolution time (arbitrary units)
from the numerical simulations of Fermi et al. [1955, Figure 9].

transfers between modes over large space and time scales.
Thus although the systems may periodically return to initial
amplitudes, the points of recurrence are separated by peri-
ods in which modal amplitudes are significantly different
from the initial conditions.

Historically, the nondimensional Ursell number U has
been used as a measure of ‘‘nonlinearity’’ in shallow water
waves [Peregrine, 1967]:

U = (a/h)! (kh)* 8}

where a is a typical amplitude of the sea surface elevation, k
is a “‘typical’’ wave number, and 4 is the undisturbed water
depth. For U << 1, nonlinearities are weak, only small
energy transfers occur on moderate space or time scales, and
O(1) nonlinear effects are possible only over very large
scales. For U ~ 1, inertial effects (characterized by a/h) are
of the same order as dispersive effects ((km)?), and O(1)
energy transfers and phase modifications can occur on
moderate space and time scales. The Boussinesq equations
are strictly valid for U = O(1), although in practice the
equations are quite robust.

There are few detailed laboratory observations of nonlin-
ear recurrence in shallow-water waves with U = O(1), as
examined in the present study. Multiple cycles of quasi-
periodic returns to initial conditions for initially monochro-
matic plane waves in intermediate depth have often been
observed (e.g., Madsen [1971], 3-4 cycles and Buhr Hansen
and Svendsen [1974], O(20) cycles). In these experiments,
U = 0(0.1) and the wave dispersiveness was significantly
larger than the nonlinearity. The observed modulations in
modal amplitudes were not a result of near resonance, and
the magnitudes of nonlinear cross-spectral energy transfers
were small. For the near-resonant case (U = O(1)) of initially
monochromatic laboratory waves, Mei and Unliiata [1972]
showed that Goda’s ‘‘appearance distances’ (the distance
between successive maxima of first-harmonic amplitudes)
were in agreement with theory for the recurrence length of a
single near-resonant degenerate triad composed of the pri-
mary wave and its first harmonic. However, owing to their
short laboratory tank, Mei and Unliiata could observe only a
few recurrence cycles. Furthermore, it is unclear whether
the observed recurrence was an exact return to initial
amplitudes (i.e., FPU recurrence) or if the recurrence cycles
were damped, as will be discussed below. Thus there do not
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appear to be any detailed experiments showing more than
three complete recurrence cycles for Ursell numbers greater
than 1, even for initial conditions composed of a monochro-
matic wave. No laboratory experiments address the recur-
rence of random shallow-water waves.

Several authors [e.g., Boczar-Karakiewicz and Davidson-
Arnott, 1987; Davidson-Arnott and Randall, 1984; and ref-
erences therein] have suggested that rapid recurrence in the
wave field may create spatially periodic longshore-oriented
sandbars on very gently sloping beaches. Certainly, sand-
bars with wavelengths equal to the recurrence length are
observed to form in the laboratory when recurring mono-
chromatic waves travel over an erodible bed [Hulsbergen,
1974; Bijker et al., 1976; Boczar-Karakiewicz et al., 1987].
Convincing field evidence for recurrence in naturally occur-
ing random long waves is lacking [Davidson-Arnott and
Randall, 1984), although Boczar-Karakiewicz et al.[1987]
and Boczar-Karakiewicz and Davidson-Arnott [1987]
present field data showing possible wave recurrence in
association with periodic longshore bars in Lake Huron. In
the field situations discussed by Boczar-Karakiewicz and
Davidson-Arnott [1987], the bottom slope was such that
evolution distances of about 20 wavelengths of the primary
wave were possible before breaking processes dominated
the wave field. Following Lau and Barcilon [1972] (see also
Mei and Unliiata [1972]), Boczar-Karakiewicz and Davidson-
Arnott constructed a coupled wave-sediment model in which
the wave field was restricted to a single interacting triad (a
primary and its first harmonic). It is well known that such
highly truncated Boussinesq wave models predict recur-
rence on spatial scales of 2-10 wavelengths. In fact, Boczar-
Karakiewicz and Davidson-Arnott [1987] found that the
predicted recurrence length in the wave field corresponded
to the observed bar spacing. However, it is not clear whether
rapid recurrence behavior is a fundamental characteristic of
natural wave fields or whether predictions of rapid recur-
rence are an artifact resulting from overly truncated models.

In the present study, numerical simulations are used to
investigate recurrence in truncated Boussinesq wave mod-
els. Specifically, through numerical simulations the sensitiv-
ity of recurrence and near-recurrence behavior to the level
of truncation and the initial conditions for waves with
significant nonlinearity (the Ursell number is O(1)) is deter-
mined. Evolution distances of tens of wavelengths are ex-
amined, characteristic of very gently sloping natural shoaling
regions and within the valid length scales of the underlying
Boussinesq equations. The numerical results reported below
are for constant depth. The nonlinear evolution of shallow-
water waves governed by the discretized Boussinesq equa-
tions is not strongly dependent on the bottom slope, and
numerical solutions of the nonlinear Boussinesq model for
waves traveling over a flat bottom are similar to field
observations on a gently sloping beach [Freilich and Guza,
1984; Elgar and Guza, 1986]. Some initial conditions in this
study were derived from actual field measurements.
Throughout, the parameter ranges used in the numerical
simulations are both representative of nearshore conditions
and consistent with the assumptions inherent in the deriva-
tion of the Boussinesq equations (section 2).

A description of the numerical solution technique, includ-
ing verification of the numerics, is given in section 3. The
numerical simulations are described in section 4. The pri-
mary result is that the evolution of waves with U = O(1) is
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not dominated by FPU recurrence for distances of O(50)
wavelengths. The magnitudes and periodicities of ‘‘damped
recurrence cycles’’ observed in the numerical simulations is
a function of the number of modes used to represent the
wave system in severely truncated models (those with less
than 32 modes). As the number of modes used to represent
the wave field is increased, the damping of the recurrence
cycles also increases. With more than 32 modes the wave
evolution becomes insensitive to the number of modes, and
an initially sharply peaked power spectrum undergoes only
one or two cycles of a damped recurrence. Over large
distances (O(100) wavelengths), an initially sharply peaked
spectrum becomes featureless. Thus severely truncated
Boussinesq models do not accurately represent the evolution
of naturally occurring shallow water waves with U = O(1). A
discussion and conclusions are given in sections 5 and 6,
respectively.

2. BOUSSINESQ EQUATIONS

The Boussinesq equations for weakly dispersive, weakly
nonlinear, unidirectional shallow-water waves are [Pere-
grine, 1967; Grimshaw, 1970]

2
gyt Uyt %(ux)x = %h(utxh)xx - %hzuxxxt

2

Ny + (hug); + (N, = 0
where g is gravitational acceleration, n is the water surface
elevation, u is the depth-averaged velocity potential, & is the
water depth, and the subscripts x and ¢ indicate differentia-
tion with respect to space and time, respectively. For waves

in a constant depth fluid with no reflection or dissipation, n
has the Fourier representation

N
n= 2 an(x) cos (Dn(x) — wpl) 3

n=1

where the radian frequency w,, is equal to nAw, with Aw the
frequency resolution. The small-amplitude (linear) wave
number k, of (2) is given by

(@), = kn=(0,/(gh) D)1 — ho3g) ~!

In shallow water, three-wave interactions are resonant, and
the slow spatial evolution of the wave field’s Fourier ampli-
tudes a, and phases ¢, is given by

n—1
an= 2 @ajan_,;R(jn_j sin (®j+®,_;— D,
j=1

N
+ 2 ajaj_,,RU,,,_j) sin ((I)J— cpj—n - CI),‘)
j=n+1
N-n
+ 2 jan+ jRi+j,—j) sin @By 4 — B~ D)
ji=1

(4a)

n—1
. a;anp—;
D, = (J - J)R(j,n—j) cos (®j+ @, -~ @)
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where N is the number of modes, the overdot indicates
differentiation with respect to the propagation direction (in
the present case, the offshore coordinate x), and the coupling
coefficients R, are functions of w and 4 (given explicitly by
Freilich and Guza [1984], equations (21)-(24)]). These equa-
tions are the many-mode generalization of the evolution
equations first presented by Armstrong et al. [1962]. Solu-
tions of (4) for a single primary and its harmonic have also
been discussed by Mei and Unliiata [1972], Lau and Bar-
cilon, [1972], and Boczar-Karakiewicz and Davidson-Arnott
[19871].

The order of the underlying Boussinesq equations (2) and
the two-scaling technique (equation (3)) restrict the region of
spatial validity of the solutions (4). With k as a typical wave
number and ¢ = a/h << 1 a nonlinear parameter, the linear
solutions are valid for distances less than O(1/ (k¢)), the scale
over which triads of Fourier modes exchange significant
energy. Higher-order terms and processes (e.g., resonant
quartets) neglected in (4) restrict the range of the present
nonlinear solutions to distances less the O(1/ (ke 2)). For typi-
cal values of ¢ used here (¢ ~ 0.05), nonlinear energy
exchanges are important after evolution distances of a few
wavelengths, while higher-order effects may be significant
after O(60) wavelengths. Thus the Boussinesq equations are
not formally valid for large evolution distances [Peregrine,
1967; Grimshaw, 1970; Freilich and Guza, 1984], and more-
over, dissipation and interactions between the waves and the
bottom are not included in the model but may be important
for long evolution distances in the field [Miles, 1983, and
references therein]. The present work focuses on evolution
distances of 10-50 wavelengths.

Given a set of initial amplitudes and phases, the model (4)
can be integrated numerically, yielding Fourier coefficients
of sea surface elevation at arbitrary distances from the initial
conditions. Initial conditions used here consisted of various
power spectral shapes, including idealized narrow-band and
broadband spectra as well as spectra based on direct ocean
measurements (section 4). The evolution of the sea surface is
not strongly dependent on the initial phases if, as occurs at
the seaward edge of the shoaling region, the initial system is
nearly linear [Freilich and Guza, 1984; Elgar and Guza,
1986]. In all the cases discussed in section 4 the initial
amplitudes were coupled with random Fourier phases.

3. VERIFICATION OF THE NUMERICAL
INTEGRATION TECHNIQUE

Equations (4) were integrated at the San Diego Supercom-
puter Center on a Cray XMP/48 supercomputer with 64-bit
word length and approximately 14 decimal places of accu-
racy. Three standard numerical integration techniques were
used: Bulirsch-Stoer, Runge-Kutta-Merson, and Adams-
Bashforth-Moulton [cf. Press et al., 1986]. Differences be-
tween the results from different integration schemes were
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measured (on a mode-by-mode basis) as the magnitude of the
difference between the complex Fourier coefficients pre-
dicted by each scheme at an evolution distance of 75
wavelengths. The convergence tolerances finally accepted
produced no more than 0.8% difference (and for most
frequency bands, less than 0.2%) in the Fourier coefficients.
Since it was the fastest, the Runge-Kutta-Merson scheme
was used for the results presented here. The total linear
energy flux varied less than 1% for evolution distances of
more than 75 wavelengths.

The evolution equations (4) support nonlinear waves of
permanent form. Numerical integrations with initial condi-
tions corresponding to such waves were also used to validate
the accuracy of the numerical integration technique. Waves
of permanent form have no amplitude evolution and have
constant phase speed C,,. Setting 4, = 0 and fi>,, = (w,/C,)
— k,, the system (4) becomes a set of simultaneous nonlinear
algebraic equations with one free parameter. This parameter
was selected to be the amplitude of the primary (the lowest-
frequency mode in this example) allowing variation in the
Ursell number. In this case k£ in (1) is taken to be the wave
number of the primary, and the amplitude a is defined here
as one-half the significant wave height of a Gaussian wave
field

N 12

2 a2 ®)

n=1

a=2

The set of algebraic rate equations was solved iteratively
using cnoidal wave amplitudes and phases as an initial guess
(cnoidal waves are exact solutions to (2), while (3) and (4) are
approximate solutions). This solution technique can in prin-
ciple obtain the Fourier coefficients for any number of modes
(see also Bryant [1974]), but the present solutions were
truncated after 31 modes (the power in mode 31 was at least
5 orders of magnitude less than that in mode 1). The power
spectrum and wave profile for a discretized Boussinesq
equation wave of permanent form (DBWPF) with U = 14 are
very similar to those of a cnoidal wave with the same
wavelength and wave height (Figure 2). In the limit as U —
0, the DBWPF wave approaches a cnoidal wave. The two
wave profiles are virtually indistinguishable for U = 1.

With initial conditions corresponding to DBWPF and U =
14 the modal amplitudes varied by less than 0.1% over an
evolution distance of approximately 100 wavelengths (Figure
3a). (Even this slight monotonic variation in amplitude can
be removed by increasing the convergence criterion of the
numerical integration routines beyond that used for the
results presented here.) On the other hand, initial conditions
consisting of a true cnoidal wave (Figure 36) or a DBWPF
power spectrum coupled with random Fourier phases (Fig-
ure 3¢) do not satisfy the conditions for a wave of permanent
form, and the power spectra evolve. For both these cases the
power in each of the first three Fourier modes varied by an
order of magnitude as the wave field evolved. The stability of
the DBWPF suggests that the results reported here are
numerically accurate.

4. RESULTS

In this section the long-term evolution of the wave field is
examined. The results of numerical simulations illustrating
the sensitivity of damped recurrence behavior on the number
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Fig. 2. Comparison of waves of permanent form for U = 14. (a)

Modal amplitudes versus frequency (f, is the frequency of the
primary spectral peak). Solid circles are for the discretized Bouss-
inesq equation; open circles are for the cnoidal wave of the same
wavelength and height. (b) One period of sea surface elevation. The
solid curve is for the discretized Boussinesq equation; the dashed
curve is for the cnoidal wave.

of modes and on the spectral shape of the initial conditions
are presented in sections 4.1 and 4.2, respectively. Results
for an initial spectrum derived from ocean field measure-
ments follow in section 4.3. In all cases the initial conditions
satisfied the restrictions required for the Boussinesq equa-
tions to be formally valid (i.e., U = O(1)).

4.1. Effect of the Number of Modes

A series of simulations was performed in which the wave
field was modeled using between 4 and 256 Fourier modes.
Each initial spectrum (x = 0) consisted of a single large
primary peak at f = 0.0625 Hz (where f = w/27) and between
3 and 255 background modes with amplitudes 2 orders of
magnitude lower than that of the primary peak. The highest
(cutoff) frequency in all cases was f = 0.25 Hz, and thus the
frequency resolution increased with increasing number of
modes. Random initial phases were assigned to each mode,
and the depth was chosen arbitrarily to be # = 2.0 m. The
initial amplitudes (~9 cm) of the primary peak and the
background modes corresponded to U = 1.33, where the
wave number was determined by the linear Boussinesq
dispersion relation at the frequency corresponding to the
centroid of the power spectrum.

The evolution of the amplitude of the initial primary peak
(f = 0.0625 Hz) is shown in Figure 4a as a function of the
number of modes, N. For a single triad (not shown) the
evolution equations have strictly periodic solutions [Arm-
strong et al., 1962]. For N = 4 the amplitude evolution is
nearly periodic, with the amplitude of the initial peak return-
ing to within 15% of its initial value approximately every 14
wavelengths. However, the trend toward recurrence de-
creases as the number of modes increases. For 32 modes or
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Energy Density (cm2/Hz)

Fig. 3. Power spectra versus evolution distance (units of wave-
lengths, L, of the initial power spectral primary peak frequency) for
U = 14. (a) Discretized Boussinesq equation waves of permanent
forms, (b) cnoidal wave initial conditions, and (¢) waves with the
same Fourier amplitudes as waves of permanent form, but with
random Fourier phases at the initial condition.

more, the primary amplitude undergoes two damped recur-
rence cycles, each about 14 wavelengths long, and then the
evolution becomes quite disordered (Figure 4a).

The degree of ‘‘recurrence’ of the entire spectrum as a
function of propagation distance is quantified as the root-
sum-squared deviation between the initial and evolved am-
plitudes, p(x), given by

12

N
> [an(x) — a,(0)] (6)

n=1

p(x) =

where p(s) = 0 corresponds to perfect amplitude recurrence,
and increasing values of p(x) indicate increasingly larger
deviations from the initial conditions. For wave fields with
energy concentrated in a narrow band of frequencies (e.g.,
Figure 4a), the evolution of p(x) (Figure 4b) closely parallels
the evolution of the amplitudes near the spectral peak. There
is little trend toward recurrence (decrease in p(x) values) for
propagation distances beyond approximately 30 wavelengths
for N = 32 (Figure 4b).

The evolution of the harmonics of the spectral peak is
similar to that of the primary, as is shown in Figure 5§ for
N = 256. Harmonic amplitudes undergo quasi-periodic re-
currence for N = 4, and as the number of modes increases,
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Fig. 4. (a) Amplitude of the initial spectral primary peak fre-
quency and (b) the root-sum-squared difference (equation (6)) versus
evolution distance for the initial condition of a single primary peak
within a low-level background (section 4.1). The solid curve is for
the case of four Fourier modes, and the dashes decrease in size as
the number of modes increases from 4 to 256 by factors of 2. The
various curve types are best distinguished from each other near x =
30 wavelengths where, from top to bottom, the amplitudes decrease
(Figure 4a) and p increases (Figure 4b) in the order 4, 16, 8, 32, 128,
64, and 256 modes, respectively.

the recurrence is damped. For 32 modes or more the

evolution of harmonic amplitudes is quite disordered after

about 30 wavelengths of the initial primary spectral peak.
Although the simulations indicate that recurrence proper

Energy Density (cm2/Hz)
n
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Fig. 5. Power spectral density of the initial primary peak fre-
quency (P) and its first three harmonics (1-3) versus evolution
distance for the initial condition of a single primary peak within a
low-level background (256 modes, section 4.1).
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Fig. 6. Power spectra for the initial condition of a single primary
peak within a low-level background (256 modes, section 4.1) for (a)
x=0,(B)x=7L, (c) x =30L, and (d) x = 70L.

ties of the initially very narrow spectra studied here are
somewhat sensitive to the number of modes (N) for small N,
there is no strong dependence on N for N = 32.

The spatial evolution of sea surface elevation spectra for
the 256-mode case is illustrated in Figure 6. After initial
cross-spectral energy exchanges confined primarily to the
harmonics of the initial primary peak, energy spreads to all
modes, and the spectrum flattens substantially, becoming
relatively featureless.

4.2. Effect of Spectral Bandwidth

The effect of spectral bandwidth on recurrence is illus-
trated by simulations with initial conditions consisting of flat
spectra with various bandwidths. The spectral amplitudes
for this set of simulations were

N, N
a, = (1/N,)"a 64—7p+1<n<64+7p

a,=a, otherwise

where N, is the number of modes within the initial spectral
peak, centered at f = 0.0625 Hz (n = 64) as in section 4.1.
For each simulation a, = 0.01a, where a, is the background
spectral amplitude # = 2 m, and U = 2 (based on the wave
number corresponding to the power spectral centroidal
frequency), thus fixing the value of a. In each of these
comparisons, N is equal to 256, and the frequency resolution
was Af = 10~3 Hz. Ten realizations of random initial phases
were simulated for each choice of peak bandwidth, with the
resulting spectra averaged.

The case of N, = 1 here corresponds to the monochro-
matic initial condition with N = 256 discussed in section 4.1.
Equations (4) having initial spectra with 1 = N, = 64 were
integrated, and in each case the solution eventually evolved
to a nearly featureless, flat spectrum. However, as is shown
in Figure 7, the persistence of initial damped recurrence
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Fig. 7. Root-sum-squared (rss) difference (normalized by the rss
difference between the initial spectrum and a fully white spectrum
with the same total variance) versus evolution distance for the initial
conditions of section 4.2 The solid curve is for N, = 1, and the
dashes decrease in length as Np increases from 1 to 64 by factors of
2. The thick cross-hatched curve is for the ocean field data initial
spectrum, case 3 in Table 1 (section 4.3).

cycles is a function of the initial bandwidth. Initially narrow-
banded spectra undergo more recurrence cycles, and the
damping is reduced (i.e., p(x)) values return more closely to
0) relative to the evolution of initially broader-banded spec-
tra. The locations of the first few extrema in the individual
p(x) curves occur at approximately the same evolution
distance, essentially independent of initial bandwidth.

Several cases of white (g, = const, 1 = n =< 256) initial
spectra were simulated, with 2 < U =< 20. In each instance
there was no major change in spectral shape over evolution
distances similar to those discussed above. Power spectral
peaks varied during evolution by as much as a factor of 4
from their initial levels, but with no obvious pattern. At no
evolution stage did the power spectrum closely resemble the
initial spectral shape.

4.3.

Ocean measurements in 4-m water depth provided the
mean initial spectral shape (x = 0 in Figure 8) for another set
of numerical simulations. This narrow-band power spectrum
(primary spectral peak at f = 0.06 Hz) is typical of frequen-
cy-sorted swell from a distant storm. Five cases with this
initial spectral shape were investigated (Table 1). The first
three cases correspond to different depths (2 = 1.0, 1.5, and
2.0 m). Although the initial relative amplitudes of Fourier

Narrow-Band Ocean Data

TABLE 1. Parameters for the Five Initial Conditions of Section
4.3,

Case U alh kh h, m
1 1.33 0.033 0.16 1.0
2 1.33 0.050 0.19 1.5
3 1.33 0.067 0.22 2.0
4 1.78 0.067 0.19 1.5
5 2.68 0.067 0.16 1.0
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Fig. 8. Power spectral shape used for the five initial conditions
(x = 0) of Table 1 (solid curve) and for the case 3 simulations at
evolution distances of 7L (longest dashes), 30L (second longest
dashes), S0L (second shortest dashes), and 70L (shortest dashes),
where L = 70 m, the wavelength of the spectral primary peak
frequency at x = 0 for case 3 (U = 1.33, kh = 0.22 (Table 1)). For
purposes of display, spectral levels from ten neighboring frequency
bands were merged.

modes were the same for each case, a scaling factor was
applied to all amplitudes so that each case had an initial
Ursell number of 1.33. Two additional cases of a/k = 0.067
were investigated, with U = 1.78 and U = 2.68. In each case,
five separate, consecutive 17-min time series of measured
sea surface elevation were used to generate the initial
spectral shapes, and the results of the numerical integrations
were ensemble averaged. There were 307 Fourier modes in
these cases, with frequency resolution Af = 1073 Hz and a
high-frequency cutoff of f = 0.3 Hz. Increasing the high-
frequency cutoff to f = 0.48 Hz (491 modes) did not alter the
results presented here.

Evolution of the spectra (Figure 8), the power of the initial
primary spectral peak (f = 0.06 Hz) and its first three
harmonics, the root-sum-squared difference p(x), and third
moments of the sea surface (possibly related to the direction
of net sediment transport (Bailard [1981] and many others)
(Figure 9) are shown for case 3 (Table 1). These results for
the ocean-derived initial conditions are very similar to those
for the idealized case of an initially very narrow spectrum
with many background modes (section 4.1 and Figures 5 and
6). The power in the primary decreases during the first eight
wavelengths (0 =< x < 8 L), then increases to a level one-third
that of the initial value (at x = 12 L) and subsequently
decreases again (Figure 9). There is a slight increase at x =
24 L, but for greater propagation distances the power in the
primary spectral peak does not vary by more than a factor of
2 from a value of about one-tenth the initial (x = 0) value. All
three harmonic amplitudes initially increase concomitantly
with the decrease in the primary (Figure 9), and all three
subsequently decrease as the primary increases near x =
8-12 L. Although the power in each of the three harmonics
continues to vary with distance, there is no obvious pattern
to the variations and certainly no evidence of recurrence of
the initial values. At x = 0 the power of the primary is more
than 100 times greater than the power of the third harmonic.
However, after 30 wavelengths the difference is less than a
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Fig. 9. (a) Power spectral density of the initial primary peak
frequency (P) and its first three harmonics (1-3), (b) root-
sum-squared difference, and (c) skewness (solid curve) and asym-
metry (dashed curve) versus evolution distance for case 3 (U = 1.33,
kh = 0.22 (Table 1)).

factor of 10 and remains relatively constant for the duration
of the simulation.

During the initial stages of evolution the harmonics of the
primary grow (e.g., x = 7L in Figure 8). As the wave field
evolves further, spectral valleys are filled in at the expense
of spectral peaks. After 30 wavelengths the power spectra
are essentially featureless, and almost all traces of the sharp
primary spectral peak and its harmonics are gone. The
normalized p(x) values for this case (shown in Figure 7) are
similar to those for an idealized flat spectrum with bandwidth
between 0.03 and 0.06 Hz (the N, = 32 and N, = 64 mode
cases of section 4.2 and Figure 7), although the initial spectra
differ in detail.

The pattern of spatial evolution of the amplitudes of the
initial power spectral primary peak (Figure 10a) and p(x)
(Figure 10b) is similar to that shown in Figures 7-9 for all five
cases. There is no evidence of recurrence of the initial
conditions over the evolution distances considered here.
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Fig. 10. (a) Power spectral density of the initial spectral primary
peak frequency and (b) root-sum-squared difference versus evolu-
tion distance for cases 1-5 (Table 1).

5. DiscussioN

Previously reported laboratory studies (section 1) showing
more than three nearly periodic cycles in harmonic ampli-
tudes were all for small Ursell number. These multiple
cycles are predicted by the Boussinesq model with small U,
many allowed modes, and an initially monochromatic plane
wave. For example, with U = 0.10 and 256 allowed modes,
five nearly identical cycles are predicted in an evolution
distance of 50 wavelengths, in contrast to the damped cycles
predicted for an initial plane wave with U = 1.0 and the
absence of recurrence cycles for U = 3.1, as shown in Figure
11. The distinction between U = O(0.1) and U = O(l) is
critical. For small Ursell number the harmonics never reach
amplitudes comparable to the initial primary (compare Fig-
ure 11a with Figures 115 and 11¢) because the relatively
weak nonlinearities cannot produce significant energy ex-
changes during the recurrence length scale.

For waves in deep water the modulation length scale of
harmonic amplitudes is comparable to the wavelength of the
primary. Thus ‘‘recurrence’’ cycles occur relatively rapidly,
and many cycles can be observed in short laboratory basins
(0O(20) primary wavelengths long), although the harmonics
are always small in amplitude relative to the primary wave.
When U = O(1) and (kh)2 < 1, the recurrence length of an
isolated triad becomes longer relative to a primary wave-
length [Mei and Unliiata, 1972], and thus longer basins are
required to observe many recurrence cycles. The numerical
results presented here indicate that when U = O(1) the
recurrence cycles of even an initially monochromatic plane
wave are damped (Figure 11). It would be of interest to test
these predictions in a very long (30 wavelengths) laboratory
flume using waves not strongly influenced by viscosity.

Figure 12 illustrates the effect of decreasing U on the
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Fig. 11. Power spectral density of the initial primary peak
frequency P and its first three harmonics (1-3) versus evolution
distance for the initial condition of a single primary peak within a
low-level background (256 modes, section 4.1). (a) U = 0.1, (b) U =
1.0, and (c) U = 3.1. For all cases, kh = 0.34.

evolution of the broader-banded, naturally occurring initial
spectral shape shown in Figure 8. In contrast to the case of
an initially monochromatic wave train, decreasing U for this
finite-bandwidth initial spectrum does not significantly alter
the overall levels of spatial recurrence, as can be seen by
comparing p(x) for U = 1.33 (Figure 9) with p(x) for U =
0.14 (Figure 12). However, for this initial spectral shape,
smaller U does result in smaller maximum amplitudes of
harmonics and third moments (Figure 12) relative to larger U
(Figure 9).

The implications of these results with respect to bar
formation on natural beaches are not clear. Further modeling
is necessary to determine whether the highly damped cycles
predicted by the many-mode model are strong enough to
form bars in the underlying sediment. It is apparent that
observations (and truncated models) of bar formation in the
laboratory with recurring monochromatic plane waves and
relatively small U cannot be extrapolated to random waves,
particularly if U = O(1).
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Fig. 12. (a) Power spectral density of the initial primary peak
frequency (P) and its first three harmonics (1-3), (b) root-
sum-squared difference, and (c) skewness (solid curve) and asym-
metry (dashed curve) versus evolution distance for the initial
condition with the same spectral shape as shown in Figure 8 (field
data), but with U = 0.12, kh = 0.22.

6. CONCLUSIONS

The primary result of this study is that highly truncated
Boussinesq models of resonant (U = O(1)) shallow-water
ocean surface gravity waves predict rapid, multiple recur-
rence cycles, but that this is an artifact dependent on the
number of allowed modes. For initial conditions consisting
of essentially all energy concentrated in a single mode,
damping of the recurrence cycles increases as the number of
low-power background modes increases. When more than 32
modes are allowed in the model, the recurrence behavior is
relatively insensitive to the number of allowed modes. The
predicted evolution of the wave model with many allowed
modes is similar to that found in some of the numerical
examples of Fermi et al. [1955] (compare Figure 1 with
Figure 5) for systems of nonlinear strings.

Damping is even more rapid when the initial energy-
containing portion of the spectrum has realistic (with respect
to ocean data) bandwidth. Very narrow band spectra un-
dergo more recurrencelike cycles before the spectra flatten
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than do broad spectra (Figure 7). Inmitially broad-banded
spectra remain so. For the case of an initially narrow
spectrum derived from ocean field measurements and U =
0O(1), there is some tendency for one damped recurrence
cycle before the spectrum becomes broad banded, with
spectral valleys filled in at the expense of spectral peaks
(Figures 8—10). Third moments of the sea surface also do not
recur strongly for the U = O(1) initial conditions studied
here (Figure 9), although there is somewhat less damping in
third moments when U = 0(0.1) (Figure 12).

Models allowing many modes can accommodate finite
bandwidth and do not exhibit significant sensitivity to the
exact number of modes used. On the basis of the numerical
simulations it appears that natural fields with U = O(1)
would not exhibit rapid, multiple recurrence cycles.
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