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Statistics of Bicoherence and Biphase 

STEVE ELGAR AND GLORIA $EBERT 

Electrical and Computer Engineering Department, Washington State University, Pullman 

Statistics of estimates of bicoherence and biphase were obtained from numerical simulations of 
nonlinear random (harmonic) processes with known true bicoherence and biphase. Expressions for the 
bias, variance, and probability distributions of estimates of bicoherence and biphase as functions of the 
true bicoherence and number of degrees of freedom (dof) used in the estimates are presented. The 
probability distributions are consistent with theoretical distributions derived for the limit of infinite dof 
and are used to construct confidence limits on estimates of bicoherence and biphase. Maximum 
likelihood estimates of true values of bicoherence and biphase given observed values are also 
presented. 

1. INTRODUCTION 

Bispectral analysis has been used to study nonlinear 
interactions in a variety of ocean processes, including sur- 
face gravity waves in intermediate water depths [Hasselman 
et al., 1963], perturbations from the mean profiles of tem- 
perature, salinity and sound velocity [Roden and Bendiner, 
1973], internal waves [Neshyba and Sobey, 1975; McComas 
and Briscoe, 1980], shoaling surface gravity waves [Elgar 
and Guza, 1985, 1986; Doering and Bowen, 1987], and 
temperature fluctuations [MMler, 1987]. A wide range of 
phenomena in other physical systems has also been investi- 
gated with the bispectrum (see Nikias and Raghuveer [1987] 
for a recent review). In most of these studies the bispectrum 
was used to determine whether or not the process under 
investigation was consistent with linear dynamics. Specifi- 
cally, nonlinear interactions are associated with nonzero 
values of the bicoherence, defined here as [Haubrich, 1965; 
Kim and Powers, 1979] 

IB(wl, O92)12 
b2(wl, 092)= (1) 

E[IA(rol)A(ro2)12]E[IA(rOl + ro2)l 2] 

where B is the bispectrum, 

B(wi, w2)= E[A(o•i)A(o•2)A*(wj + w2)] (2) 

A(w) is the complex Fourier coefficient of the time series at 
radian frequency w and E[ ] is the expected, or average, 
value. Alternately, the bispectrum can be calculated as the 
Fourier transform of the third-order correlation function of 

the time series [Hasselman et al., 1963]. For a finite length 
time series, even a truly linear (e.g., Gaussian) process will 
have nonzero bicoherence. Haubrich [1965] shows that for a 
Gaussian process the bicoherence (whose true value equals 
zero) is approximately chi-square (X 2) distributed in the limit 
of large degrees of freedom (dof), and thus significance 
levels for zero bicoherence as a function of dof can be 

calculated. Elgar and Guza [1988] demonstrated that esti- 
mates of bicoherence from a Gaussian process are also 
approximately X 2 distributed for low values of dof (dof = 32) 
and are not sensitive to smoothing procedures used to 
increase dof. 

Although the significance levels for zero bicoherence can 
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be used to statistically detect the presence or absence of 
nonlinear interactions, the statistics of estimates of bicoher- 
ence and biphase,/3(wj, w2), the phase of B(w•, w2), for the 
case of nonzero true bicoherence have not previously been 
reported. The purpose of this study is to present such 
statistics. Brillinger [1965], Rosenblatt and Van Ness [1965], 
Brillinger and Rosenblatt [1967a, b], and others [see Nikias 
and Raghuveer, 1987] give some of the statistical properties 
of higher-order spectra, including asymptotic distributions of 
the real and imaginary parts of the bispectrum. Haubrich 
[1965], Hinich and Clay [1968], Kim and Powers [1979], 
Hinich [1982], and Ashley et al. [1986] discuss the estimation 
of bicoherence. 

For the present study, harmonic random processes with 
true values of bicoherence (b 2) between 0.1 and 1.0 were 
numerically simulated (section 2), and the statistics of esti- 
mates of bicoherence (/•2) and biphase (•) obtained from the 
simulated time series were calculated (section 3). The prob- 
ability distributions of/•2 and/3, including the bias of/• 2 and 
the variances and confidence limits of /•2 and /3, were 
determined as functions of b 2 and dof (sections 3.1 and 3.2). 
These values are useful for experimental design. On the 
other hand, once an experiment has been conducted, maxi- 
mum likelihood techniques may be used to estimate true 
values of b 2 and/3 based on the observed values. Maximum 
likelihood estimates of bicoherence are presented in section 
3.3. These results are then briefly applied to estimates of the 
bicoherence and biphase of narrow-band surface gravity 
waves observed in 9 m water depth (section 3.4). Conclu- 
sions follow in section 4. 

2. SIMULATION PROCEDURE 

Time series consisting of triads of sinusoids (with frequen- 
cies Wi, tOj, and Wi+j) were numerically simulated on the 
CRAY XMP at the San Diego Supercomputer Center. By 
adjusting the amplitudes of the component sinsuoids, some 
of whose phases were chosen from a uniform random 
distribution (0 - 2rr), the true bicoherence value of the triad 
could be varied. For example, consider the case of a single 
triad: 

x(t) = COS (wit + qbl) + cos (w2t + 4>2) + a cos (w3t + qb3) 

+ COS (ro3t + qb I + qb2) (3) 

where w3 = wl + w2, &•, &2, and &3 are random phases, and 
a is an adjustable parameter. As a increases from 0 to o•, 
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b2(wl, w2) decreases from 1.0 to 0.0. For the example given 
in (3), if a = 0, then/3(w•, w2) = 0. Time series consisting of 
the following triads were simulated: a single triad, (Wl, w2, 
w3); two triads with the same sum frequency, (w•, ws, w6) 
and (w3, w3, w6); and two triads with a common frequency 
other than the sum frequency, (w•, w 3, w4) and (w3, ws, ws). 
True values of/3 = 0 and/3 = rr/4 were used. For each case 
the true bicoherence of each triad could be adjusted. The 
statistics of estimates of bicoherence and biphase reported 
here were found to depend only on true values of b 2 and dof; 
they did not depend on the number of triads, nor on how the 
triads were interrelated, nor on /3. Additional time series 
were simulated with Gaussian-distributed Fourier coeffi- 

cients rather than uniformly distributed random phases 
[Elgar et al., 1985, and references therein]. The resulting 
statistics of/• 2 and/3 were essentially identical to those of the 
random phase simulations. 

Each simulation consisted of generating many realizations 
of 65,536-point time series, each of which was subdivided 
into short sections of 256 points. The short sections were not 
tapered. By ensemble averaging the bispectrum over all 256 
of the short records, estimates of bicoherence and biphase 
with 512 dof were produced from each 65,536-point time 
series. Each 65,536-point record was also subdivided into 16 
groups of 16 short records, each group producing estimates 
with 32 dof. Estimates with dof between 32 and 512 were 

obtained in a similar manner. One thousand of the 65,536- 
point time series were generated, and thus 1000 (dof = 512) 
to 16,000 (dof = 32) bicoherence and biphase estimates were 
produced for each true value of bicoherence. Results from 
simulations using 100 realizations were indistinguishable 
from those where averages of 1000 realizations were used. 

3. SIMULATION RESULTS 

3.1. Bicoherence 

As shown below, /•2 is approximately chi-square distrib- 
uted and thus will have a positive bias, similar to the 
ordinary coherence between two time series [Jenkins and 
Watts, 1968; Beningus, 1969]. Following Beningus [1969], 
the bias was empirically found to be approximately given by 

Bias [/•2] = (2/dof)(1 - b2) 2 (4) 

Equation (4) is similar to the corresponding expression for 
coherence [Beningus, 1969] and is compared to the observed 
bias in Figure 1. Guided by expressions based on somewhat 
heuristic theoretical arguments [Hinich and Clay, 1968; Kim 
and Powers, 1979], the variance of/• 2 was empirically found 
to be approximately 

Var [/32] = (4b 2/dof)(1 - b 2) 3 (5) 

Equation (5) is similar to the analogous approximate theo- 
retical equation for coherence [Jenkins and Watts, 1968], 
and the agreement between (5) and the simulated data is 
excellent, as shown in Figure 2. 

Haubrich [1965] suggests that for a process with b 2 = 0.0, 
/32 will asymptotically (large dof) approach a chi-square 
distribution with parameter v = 2. Hinich [1982] shows that 
bicoherence is approximately asymptotically distributed as a 
noncentral chi-square random variable. The noncentral chi- 
square distribution can be approximated by an aX 2 distribu- 
tion [Abramowitz and Stegun, 1972], given by 

0.05 

0.04 

0.03 

0.02 

0.01 

0.00 

0.00 0.01 0.02 0.05 0.04 0.05 

THEORETICAL BIAS 

Fig. 1. Bias of bicoherence observed in simulated data versus 
the theoretical bias (equation (4)). Squares, dof = 32' triangles, dof 
= 64; diamonds, dof = 128' circles, dof = 256; and asterisks, dof = 
512. The bicoherence, b 2 = 0.1, 0.2, ..., 0.9 for each dof. 

(!•) (b2)(v/2)-le-b2/2 (6) 

where F( ) is the gamma function. The mean and variance 
of an aX 2 distributed random variable are av and 2a2v, 
respectively. Thus the parameters a and v can be determined 
from the bicoherence as 

E[b 2] 2E2[b 2] 
. = v = (7) 

v Var [b 2] 

Combining (5) and (7), and using the biased value of bico- 
herence, 

(dof)b 2 

•' = 2(1 - b 2) 3 (8) 
As b 2 --• 1 and/or dof increases, the parameter •, increases, 
andfx•(b2/a) approaches a Gaussian distribution. Probability 
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Fig. 2. Variance of bicoherence observed in simulated data 
versus the theoretical variance (equation (5)). Each symbol repre- 
sents different dof, as described in the caption to Figure 1. 
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Fig. 3. Probability distribution of/;2 observed in the simulated 
data for dof = 32 (dashed curve•) and theoretical aX 2 distribution 
(solid curve). From left to right, b • = 0.1,0.2, and 0.4. The bin width 
is A(b 2) = 0.0067. 

distributions of the simulated data are compared to aX 2 
distributions in Figure 3, with a and v obtained from (7) and 
(8), respectively. According to a X 2 goodness of fit test, the 
theoretical and observed distributions with 32 dof and b 2 --< 
0.4 do not differ significantly at the 95% confidence level. 
For 32 dof the probability distributions of the simulated data 
are slightly offset toward lower values of b 2 relative to the 
aX 2 distributions, with the amount of offset decreasing with 
increasing b 2 (Figure 3). For higher values of dof the offset 
is virtually zero, and, consequently, no attempt was made to 
account for it in the probability distributions with 32 dof 
shown in Figure 3. The scatter in the probability distribu- 
tions of the simulated data shown in Figure 3 is due to finite 
record lengths and finite bin width. There is even better 
agreement between simulated data and aX 2 distributions as 
b 2 --) 1 and/or dof--) 

Assuming/;2 is aX 2 distributed with a and v given by (7) 
and (8), respectively, confidence limits for/•2 can be con- 
structed as functions of b 2 and dof. The 90% confidence 
limits are compared to the corresponding values observed in 
the simulations in Figure 4. 

3.2. Biphase 

Similar to the phase of the cross spectrum [Jenkins and 
Watts, 1968], the biphase is approximately Gaussian distrib- 
uted, unbiased, and has variance (in units of radians) 

The theoretical variance and confidence limits (calculated 
from a Gaussian distribution with variance given by (9)) for 
/3 are compared to simulated values in Figures 5 and 6, 
respectively. 

3.3. Maximum Likelihood Estimation 

The results of the previous sections describe the statistics 
of bicoherence given the true value, b 2, thus enabling the 
design of experiments to measure bicoherence. On the other 
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Fig. 4. The 90% confidence limits for bicoherence. The values 
shown have been normalized by the corresponding true value of 
bicoherence. Thus 90% of the time,/;2 will be in the range given by 
the appropriate ordinate values times b 2. Solid curves are theoret- 
ical values, and symbols are values observed in the simulated data. 
Squares, b 2 = 0.1; triangles, b 2 = 0.2; diamonds, b 2 = 0.4; and 
circles, b 2 = 0.8. 

hand, it is often the case that b 2 must be estimated from a 
limited set of data. In this section maximum likelihood 

estimates [Jenkins and Watts, 1968] of the true value of 
bicoherence given an observed value,/;2, with finite dof are 
presented. Freilich and Pawka [1987] present a similar 
analysis for estimates of the cross spectrum, with results 
analogous to those reported here. Maximum likelihood esti- 
mation consists of determining parameters of the underlying 
probability distribution function (pdf) from samples of the 
distribution. The pdf is recast as a function of the parameters 
to be determined, and those values of the parameters that 
maximize this likelihood function are considered the maxi- 

mum likely estimates (mle) of the true parameters of the 
underlying distribution given the particular samples at hand. 
For the case of bicoherence the likelihood function, L(b2), is 
given by the aX 2 distribution (equation (6)) and is shown as 
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Fig. 5. Variance of biphase observed in simulated data versus 
the theoretical variance (equation (9)). The units are radians 
squared. Each symbol represents different dof, as described in the 
caption to Figure 1. 
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Fig. 6. The 90% confidence limits for biphase. Solid curves are 
theoretical values, and symbols are values observed in the simulated 
data. Each symbol represents different b e as described in the 
caption to Figure 4. 

TABLE 1. Parameters for the Likelihood Functions 

•2 dof b2mle 2 bmele s.d. (7.5:1) 

0.1 32 0.129 0.146 0.047 (0.018, 0.237) 
0.1 64 0.116 0.125 0.041 (0.026, 0.201) 
0.1 128 0.108 0.113 0.032 (0.039, 0.172) 
0.1 256 0.104 0.107 0.024 (0.054, 0.151) 
0.2 32 0.217 0.223 0.054 (0.078, 0.314) 
0.2 64 0.209 0.212 0.042 (0.109, 0.284) 
0.2 128 0.204 0.206 0.031 (0.135, 0.261) 
0.3 32 0.309 0.310 0.047 (0.191, 0.387) 
0.3 64 0.304 0.305 0.037 (0.224, 0.364) 
0.4 32 0.403 0.404 0.045 (0.323, 0.462) 

The parameter/; 2 is the unbiased observed bicoherence, dof is the 
degrees of freedom associated with the measurement, b2mle is the 
maximum of the likelihood function (L), 2 bmele is the mean of L, s.d. 
is the standard deviation of L, and (7.5:1) indicates values of b 2 
corresponding to likelihood values down by a factor of 7.5 from the 
maximum of L (if L is Gaussian, these values correspond to 95% 
confidence limits). 

a function of dof and/;2 in Figure 7. For large values of/;2 
and/or dof, L(b 2) is symmetrical about its maximum. How- 
ever, for small/;2 and/or dof, L(b 2) has long tails extending 
toward high values of /;2 (Figure 7). In order to better 
account for the asymmetrical shape of the likelihood func- 
tion, Jenkins and Watts [ 1968] suggest using the mean of the 
likelihood function (mele) as an estimate of the true param- 
eter. Both mle and mele estimates of bicoherence are listed 

in Table 1. As L(b 2) becomes more symmetrical, 2 bmele --> 
b2mle __> /;2 (Table 1 and Figure 8), although the likelihood 
estimates of b 2 are always greater than the corresponding 
measured values (Figure 8). This can be understood by 
considering the X 2 pdfs shown in Figure 9. It is more likely 
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Fig. 7. Likelihood functions L(b 2) for various measured bico- 
herence and dof values. Solid curves, unbiased/;2 = 0.1; longest 
dashes, /;2 = 0.2; medium length dashes, /;2 = 0.3; and shortest 
dashes,/;2 = 0.4. For each/;2 the outermost curve has 32 dof, and 
the dof increase by factors of 2 for each succeeding inner curve. •The 
number of such curves decreases for increasing/; 2. Unbiased values 
are obtained by subtracting the bias (equation (4)) from the observed 
value, where the observed value of bicoherence is used on the 
right-hand side of (4). Replacing /;2 with /;2 mele in (4) results in 
negligible differences in the bias. 

that an observed value comes from the center of the distri- 

bution with high •, (i.e., high b2) than from the upper tail of 
a distribution with lower •,. Table 1 and Figure 8 both show 
that except for small /;2 and/or dof, 2 bmele does not differ 
substantially from/; 2. 

L(b 2) can also be used to calculate confidence intervals for 
the estimated true values of bicoherence. The likelihood 

functions presented here (Figure 7) are approximately Gaus- 
sian, and thus the mele and the variance of L(b 2) determine 
the entire likelihood function [see Jenkins and Watts, 1968]. 
The standard deviations of L(b 2) and the b 2 values whose 
likelihoods are down by a factor of 7.5 from the mle (95% 
confidence limits on b 2 if L(b 2) is Gaussian) are presented in 
Table 1. From the table it can be seen that the standard 

deviation of L(b 2) is nearly independent of/;2 and depends 
primarily on dof. 

Since the distribution of biphase is approximately Gaus- 
sian, •mele •-' •mle • •' 
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Fig. 8. Ratio of 2 2 2 bmele to/; versus/; . Each curve is for different 
dof, increasing by factors of 2 from dof - 32 (top curve) to dof - 256 
(bottom curve). 
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Fig. 9. Chi-square probability distribution functions. From out- 
ermost to innermost curves, v = 4, 12, 20, and 28, respectively. The 
abscissa has been normalized by v so that the mean of each 
distribution is 1, and the scale of the ordinate is arbitrary. 

3.4. Application to Shallow Water 
Surface Gravity Waves 

Using bispectral analysis, Elgar and Guza [1985, p. 432] 
concluded that narrow-band swell (peak period about 16 s) 
observed in 9 m water depth was "... qualitatively consis- 
tent with Stokes-like nonlinearities." Their conclusion was 

based on observed values of biphase for triads consisting of 
the power spectral primary peak frequency (fp) and its first 
few harmonics. Based on the results presented above, bi- 
spectral estimates from these data can now be interpreted 
quantitatively. For dof - 256 the observed values of bico- 
herence and biphase for the two lowest-order triads were 

Q2(,fp, fp) = 0.161, •OCp, fp) = --7 ø and/•2OCp, f2p) = 0.067, 
13(fp, f2p) = -35ø. (Bicoherences at other triads were not 
significantly greater than zero.) Accounting for the bias, 
equation (4), , 160 and b2meleOCp, f2p) = 0.070. b2meleOCp fp2) = O. 

For dof = 256 and bmele as given above, 90% confidence 
limits for biphase can be constructed. For the self-self 
interaction (fp, fp, f2p) the 90% limits are _+ 13.5 ø. Thus the 
observed value (-7 ø ) is within the 90% limits of the Stokes 
biphase,/3 = 0 ø, and the data are consistent with Stokes-like 
nonlinearities. On the other hand, 90% confidence limits for 

the biphase of the triad (fp, f2p, f3p) are +21.6 ø and do not 
include the observed value (-35ø). Consequently, with a 
10% possibility of being incorrect, it is concluded that the 
biphase of this triad is not consistent with Stokes-like 
nonlinearities and that shallow water resonance effects 

[Freilich and Guza, 1984] are important. 

4. CONCLUSIONS 

Numerical simulations of random processes with nonzero 
bicoherence were used to investigate the statistics of esti- 
mates of bicoherence and biphase. Bicoherence is biased 
(Figure 1) and is approximately aX 2 distributed (Figure 3), 
with parameter v a function of the true bicoherence and the 
degrees of freedom associated with the estimate (equation 
(8)). Confidence limits for estimates of bicoherence can be 
constructed from the aX 2 distribution (i.e., from b 2 and dof) 
and agree with the corresponding values observed in the 

simulations (Figure 4). The statistics of biphase are similar to 
those of the phase of the cross spectrum (equation (9) and 
Figure 5), and confidence limits for biphase estimates based 
on b 2 and dof also agree with corresponding values observed 
in the simulations (Figure 6). Maximum likelihood estimates 
of the true value of bicoherence given an observed value 
were obtained from the aX 2 distribution (Table 1 and Figure 
7). The ratio of maximum likelihood estimates of bicoher- 
ence to observed values approaches 1 as /•2 and/or dof 
increases, with less than 10% differences if/•2 > 0.25 (for dof 
-> 32) and/or dof > 150 (for/•2 _> 0.1) (Figure 8). 
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