T-ASSP/36/10// 22840

Statistics of Bicoherence

Steve Elgar
R. T. Guza

Reprinted from
IEEE TRANSACTIONS ON ACOQUSTICS, SPEECH, AND SIGNAL PROCESSING
Vol. 36, No. 10, October 1988



IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 36, NO. 10, OCTOBER 1938

Statistics of Bicoherence

STEVE ELGAR anp R, T. GUZA

Abstract—Numerical simulations are used to investigate statistics of
bicoherence for the special case of a linear random process. Smoothed
bicoherence statistics are independent both of the normalization used
to form the bicoherence and of whether statistical stability is obtained
by ensemble averaging short records, or frequency merging within a
leng record.

I. INTRODUCTION

The complex-valued bispectrum, B(w,, w,) [1], [2], is often
recast into its normalized magnitude (the bicoherence) and phase
(the biphase). Several forms for the normalization of bicoherence
have been used [3]-[5] and others. In particular, Kim and Powers
[3] define the bicoherence as
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where A(w) is the complex Fourier coefficient at radian frequency
w, and E [ ] is the expected value. For a 3-wave system, and this
normalization (1), 4*(w,, w,) represents the fraction of power at
frequency w, + w, owing 10 quadratic coupling of the 3 modes
(wy, wy, wy + w;). For a broad-band process, where a particular
Fourier component may be involved in many interacting triads,
there is no simple interpretation of bicoherence values {6]. An al-
ternate form for the bicoherence denominator is given by Haubrich

{4]:
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For a finite-length time series, even a process with truly inde-
pendent Fourier components {€.g., a Gaussian process) will have
a nonzero bispectrum. Significance levels of zero bicoherence must
be known to determine if data are statistically consistent with a
linear, random phase process. The present study examines the ef-
fects of different normalizing and smoothing (i.e., averaging for
statistical stability) procedures on the statistical distributions of bi-
coherence for a linear process.

II. NUMERICAL SIMULATION RESULTS

A zero-mean unit-variance, Gaussian distributed time series of
32 768 values was numerically generated. The resulting data have
a white power spectrum, but because of the normalization by the
power spectrum [(1) and (2)], the bicoherence is independent of
spectral shape so long as the true spectrum is relatively smooth
over a frequency bandwidth.
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A. Effect of Smoothing Method and Normalization on
Bicoherence Distributions

Similar to standard spectral analysis, statistical stability of bi-
spectral estimates is obtained by averaging bispectral values from
separate realizations of the process (‘‘ensemble averaging” ), by
merging neighboring bispectral values (e.g., over squares in bi-
frequency space), or by combinations of these two smoothing tech-
niques [2]-[8]. For example, an N-point record can be divided into
m records, each of length N/m, with frequency resolution Af =
m/N. Bispectra are calculated for each of the m short records, and
ensemble averaged, producing bispectral estimates with 2m de-
grees of freedom (dof). Alternatively, bispectral values from the
entire N-point record can be merged over m X m squares in bifre-
quency space, again resufting in a final frequency resolution of Af
= m /N. In the latter case, although m* values are merged together,
there are still 2m dof for each smoothed bispectral estimate. This
follows from the result that the variance of both the real and imag-
inary parts of the bispectrum is (asymptotically) proportional to the
number of data points used in estimating the bispectrum [7, and
references therein]. That is, for pure frequency smoothing m?® val-
ues of bispectra with variance proportional to N are averaged to-
gether, while for pure ensemble averaging m bispectral values with
variance proportional to N/m are averaged. The variance of the
smoothed bispectral estimates is N /m? is both cases. For the gen-
eral case of averaging over m ensembles, and merging overn X n
bifrequency squares, the record length (and hence the unsmoothed
bispectral variance) is N/m. Smoothing reduces the variance to
N/(n*m®). For a fixed record length, N, and a given final fre-
quency resolution, Af = mm /N, the variance of the bispectral es-
timate is constant, proportional to 1/{NAf?), regardless of what
combination of ensemble averaging and frequency merging is used
to obtain the final frequency resolution. Each bispectral estimate
has 2nm degrees of freedom. Thus, asymptotic theory suggests that
bispectral statistics should be relatively insensitive to smoothing
procedures. Most of the statistical fluctuations of bicoherence stem
from variations in the bispectrum, i.c., the numerator in (1) and
(2) [3]. [4], [7). Consequently, bicoherence distributions are antic-
ipated to also be insensitive to normalization.

The distribution of bicoherence values obtained by ensemble av-
eraging bispectra from 64 records of 512 data points (with no fre-
quency merging, the ensemble averaging in Fig. 1) is very similar
to the distribution of bicoherence for the same data processed as
one long 32 768-point record, with bispectral values merged over
64 % 64 squares in bifrequency space (the frequency averaging in
Fig. 1). The distributions of bicoherence for other combinations of
ensemble averaging and frequency merging (not shown} were com-
parable to those shown in Fig. 1. Similar comparisons of bicoher-
ence distributions (not shown) were made for estimates with 16,
32, 64, and 256 dof. For each dof value, the distributions of bi-
coherence were insensitive to the smoothing procedure.

Fig. 1 also demonstrates the insensitivity of bicoherence to the
normalization. In the case of pure frequency merging, the Haubrich
and Kim and Powers normalizations are identically equal, thus,
only the Haubrich normalization for ensemble averaging is shown
in Fig. 1. The bicoherence distributions (Fig. 1) and significance
levels (Figs. 2 and 3) represent between 4096 and 32 768 bico-
herence values (depending on the dof, with fewer bicoherence val-
ues for larger dof).

B. Significance Levels for Zero Bicoherence

Significance levels for zero bicoherence were calculated as a
function of dof for both normalizations, and for various combina-
tions of ensemble averaging and/or frequency merging. Since the
distributions of bicoherence do not depend significantly on the
smoothing method or normalization, the significance levels for zero

0096-3518/88/1000-1667$01.00 © 1988 IEEE



1668

0.07 |

0.06

0.05

0.04

0.03

PERCENT OCCURRENCE

0.02

.01

0.00F, 1 1 L 1 L
0.00 0.10 0.20
BICOHERENCE

Fig. 1. Frequency distribution of bicoherence (128 dof ) for numerically
simulated Gaussian data. The bicoherence bin width is 0.01. Statistical
stability was obtained by ensemble averaging across 64 records of 512
points each with the Kim and Powers normalization (solid line) and with
the Haubrich normalization {dotted line), or by frequency merging over
64 x 64 point squares of the bispectrum from a single 32 768-point rec-
ord (dashed line, Kim and Powers and Haubrich normalizations are
equal). Each distribution contains 8192 smoothed bispectral values.
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Fig. 2. The 95 percent significance level for zero bicoherence versus dof
for different normalizations and smoothing. Triangles, frequency merg-
ing, Kim and Powers or Haubrich normalization; asterisks, ensemble
averaging, Kim and Powers normalization; octagons, ensemble averag-
ing, Haubrich normalization. The solid line is the theoretical 95 percent
significance level.

bicoherence must be independent of smoothing technique. Fig. 2
shows this to be true for the numerically simulated data with the
exception of small differences in significance levels at very low dof
values (discussed below).

Haubrich [4] demonstrated that, for a true bicoherence of zero
and the normalization given in (3), b?* should be chi-square distrib-
uted in the limit of large dof. Thus, for example, the 95 percent
significance level for zero bicoherence is approximately
V(6 /dof}. As shown in Fig. 2, the numerical simulations agree
with Haubrich’s [4] result even with different normalizations and
low dof. The agreement of other significance levels with the chi-
square distribution is iltustrated in Fig. 3. It is clear that many dof
are required to distinguish low, but nonzero bicoherence values
from truly zero values (e.g., dof > 100 if the true bicoherence =
0.2).

From propenties of the chi-square distribution, it can be shown
that E[ 5] = V(2 /dof) [4]. Mean values of bicoherence calculated
from the numerical simulations were consistent with this predicted
bias.
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Fig. 3. Significance levels for zero bicoherence versus dof (obtained by
frequency merging). Plus, 99 percent level; diamond, 95 percent; octa-
gon, 90 percent; triangle BO percent. The solid lines are the theoretical

significance levels, v9.2 /dof, V6.0 /dof, v4.6/dof, and v3.2/dof, re-
spectively.

C. Effect of Smoothing Technique at Low dof

For the case of no frequency merging (i.e., statistical stability
is obtained solely by ensemble averaging), it can be shown that the
Kim and Powers normalization leads to bicoherence values be-
tween O and 1 [3]. On the other hand, the Haubrich normalization
is not bounded above by 1. Furthermore, it can be shown that with
frequency merging, the Kim and Powers normalized bicoherences
also become unbounded above. In the present numerical simula-
tions with low dof (less than 32}, bicoherence values greater than
1 were occasionally obtained for the Haubrich normalization, and
for the Kim and Powers normalization when frequency merging
was used. This slightly raises the upper tail of the bicoherence dis-
tributions. However, the corresponding increases of the signifi-
cance levels at very low dof is small (13 percent for 8 dof, Fig.
2), and negligible at higher dof.

IIl. ConcLusIONS

Asymptotic statistical theory [7, and references therein] and nu-
merical simulations of Gaussian data indicate that the distribution
of smoothed bicoherence estimates is essentially independent of
bicoherence normalization and whether statistical stability is ob-
tained by ensemble averaging short records of data, frequency
merging within long data records, or combinations of the smooth-
ing methods. Significance levels for zero bicoherence are therefore
also relatively unaffected by the details of the smoothing technique.
These significance levels are in agreement with an approximate
theory [4].
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