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Relationships Involving Third Moments and Bispectra
of a Harmonic Process

STEVE ELGAR, MEMBER, IEEE

Abstract—Relationships between third moments of a harmonic ran-
dom process and its bispectrum are presented. The skewness and
asymmetry (with respect to a vertical axis) of the process and its de-
rivative ean be obtained by integrating the real, imaginary, and fre-
quency-scaled real and imaginary parts of the bispectrum, respec-
tively. Triads of Fourier coefficients containing a high-frequency
component can contribute substantially to the third moments of the
derivative of the process.

I. INTRODUCTION

ET a discretely sampled, finite length, real-valued
harmonic random process be represented as

(1)

N
7(t) = ,El A g™ + Ate ot

where ¢ is time, the 4, are complex Fourier coefficients,
w, is the radian frequency, and N is the number of sam-
ples. If the process is linear, there is a random phase re-
lationship between the Fourier components. On the other
hand, if the process is nonlinear, the Fourier components
become coupled to each other, and the phases are no
longer random, resuiting in non-Gaussian waveforms. The
waveshape can be asymmetrical about the horizontal and/
or vertical axis, quantified by nonzero third moments. The
wave slopes (i.e., the derivative of the process) can also
be skewed and asymmetrical. Examples of skewed and
asymmetrical waveshapes are shown in Fig. 1. The pur-
pose of this paper is to relate third moment quantities to
the bispectrum of the process. Although the third mo-
ments can be obtained directly from the time series or its
Hilbert transform, the bispectrum contains additional
information about the third moments that cannot be
obtained from the time domain. In particular, the bi-
spectrum indicates the contribution to third moment quan-
tities from individual triads of Fourier components.
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Fig. 1. Waveforms with nonzero third moments. (a) Waveform with non-
zero skewness and nonzero derivative asymmetry; (b) waveform with

nonzero asymmetry and nonzero derivative skewness. The other third
moment quantities for each panel equal zero.

II. THIRD MOMENT QUANTITIES IN TERMS OF THE
BISPECTRUM

The complex valued autobispectrum is formally defined
as the Fourier transform of the third-order correlation of
the process [1]. The digital autobispectrum, appropriate
for discretely sampled data, is [2]

B(w:’a wj) = E[Aw'Aung:‘+mj]

N (2)
where E[ ] is the expected value, or average, operator.
For a digital time series with Nyquist frequency wy, the
autobispectrum is completely described by its values in a
triangle in (w;, w,)-space with vertices at (v, = 0, w, =
0), (@ = wy/2, w2 = wyyzz), and (w; = wy, w, = 0) [1].

It follows from (1) and (2) that the normalized third
moments, skewness, §[»n], and asymmetry, A[y], are
given by

STn] + idfn] = [12 5 5 B(ay @)
Nj2 -
+ 62{ B(w,, wp)J/E[q2]3/2 (3)

where n and ! range from 1 to N, withn > land n + {
< N (i.e., the sum is over the triangle in (w,, w,)-space
described above). A[4)] measures asymmetry about a ver-
tical axis (fore-aft asymmetry [3], which is related to the
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Fig. 2. Third moments versus high-frequency cutoff of a low-pass filter.
Solid line, derivative skewness; longest dashes, derivative asymmetry;
medium dashes, skewness; short dashes, asymmetry. The vertical ar-
rows indicate locations of harmonics of the narrow power spectral pri-
mary peak frequency (0.065 Hz). The data are from a time series of sea
surface elevation for near-breaking {i.e., nonlinear) ocean waves mea-
sured in 2 m depth.

skewness of the derivative, as described below), while
S [n] measures asymmetry about a horizontal axis. For
example, the bispectrum of the waveform in Fig. 1(a) is
purely real, and thus the process has nonzero skewness,
but zero asymmetry. On the other hand, the bispectrum
of the sawtooth shape in Fig. 1(b} is purely imaginary,
and the waveform has zero skewness, but nonzero asym-
metry. From (3), the Re (B) is proportional to the con-
tribution to the mean cube of the process from each triad
of Fourier components [1], and the Im (B} is proportional
to the contribution of each triad to the asymmetry.

For positive frequencies, the Hilbert transform H[ 5] is
given by H[n] = iy, and thus, it follows from (2) that
bispectrum {H[9]} = -—i bispectum {%}. Conse-
quently, A[9] = —S[H[5]], and the asymmetry can be
calculated in the time domain directly from the Hilbert
transform of the process.

Similar relations can be derived for the derivatives of
the process (i.e., the slopes of the waveform), leading to
expressions for the skewness and asymmetry of these de-
rivatives in terms of bispectral quantities,

S[n] + id[n] = i[lz ? Z;: W, W Wy 4}

N/2
- B(wy, w) + 6 20 w,w,w

p=1

- Blap o) | [ET? (4
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where the ranges of # and [ are given above, and the sub-
script ¢ indicates differentiation with respect to time. The
derivative of the waveform in Fig. 1(a) is not skewed
(S[n]1 = 0), while the asymmetrical sawtooth shape in
Fig. 1{b) has a skewed derivative (5 [4,] # 0). Equation
(4) indicates that triads containing a high-frequency com-
ponent can contribute substantially to the third moments
of the derivative, while the contribution from triads with
low frequencies is small. An important consequence of
the frequency scaling of the bispectral terms in (4) is that
low-pass filtering may substantially bias the estimation of
5 [%,] and A[7,] even though the estimation of S [n] and
Ain] may not be strongly influenced by the filter, as
shown in Fig. 2.
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