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Groups of Waves in Shallow Water 

STEVE ELGAR, R. T. GUZA, AND R. J. SEYMOUR 

Scripps Institution of Oceanography 

Wave group statistics predicted by linear theories are compared to numerical simulations, thus deter- 
mining ranges of spectral shapes for which the theories are valid. It is found that these theories are not 
generally valid for ocean data because of many assumptions and simplifications beyond linearity and 
random phase or because their range of applicability does not include the vast majority of ocean 
conditions. The simulations also provide quantitative information about the variability of linear wave 
group statistics which is useful when examining ocean field data. The simulation technique is used to 
show that important ocean gravity wave group statistics are not inconsistent with an underlying wave 
field composed of linearly superposed random waves. The majority of the field data examined were 
collected in 10 m depth; significant wave heights varied from about 20 to 200 cm, and the spectral shapes 
ranged from fairly narrow to broad (1 < Q•, < 6). For the 10-m depth data, the observed mean run 
length, variance of run length, and probabilities of runs of a given number of waves were statistically 
consistent with the simulations. In contrast to the apparently linear groups observed in 10 m depth, 
waves in 2-3 m depth showed marked departures from the linear simulations. 

1. INTRODUCTION 

Groups, or sequences, of high waves are of interest to 
coastal engineers and naval architects. A run or group of 
waves is defined as a sequence of waves, the heights of which 
exceed a particular level [Goda, 1970]. There are several linear 
theorie s which predict wave group statistics, such as the mean 
group length, given only the energy spectrum. Comparisons of 
group statistics predicted by these theories with a limited set 
of numerical simulations have shown that the theories are 

restricted to a particular range of spectral shapes, some for 
narrow band spectra and others for broadband spectra [Goda, 
1976]. The first part of this paper (section 2) will review these 
theories, some of which are shown to contain internal incon- 
sistencies. Numerical simulations with a wide variety of test 
spectra show the theories generally to have a more restricted 
range of accuracy than was inferred by the unimodal spectral 
simulations of Goda [1976]. The simulations also provide 
quantitative information about the distributions, and hence 
the variability, of linear wave group statistics. The statistical 
variability of certain wave group parameters was noticed by 
Goda [1983] and is quantified in sections 3.1 and 3.•. The 
simulations are crucial when examining ocean field data be- 
cause the majority of the ocean data considered here do not 
lie within the range covered by the linear theories. There is 
also a large (and growing) literature studying amplitude mod- 
ulations (i.e., grouping) which arise as a consequence of non- 
linearity (see Yuen and Lake [1980] for a recent review). These 
theories are not considered at all. The question at hand is 
whether observed groups for the range of conditions investi- 
gated are consistent with linear dynamics. 

Previous observations of ocean group statistics have been 
limited to a narrow range of spectral conditions [Chakrabarti 
et al., 1974; Goda, 1983], have not given the relevant spectral 
parameters [Wilson and Baird, 1970; Rye, 1974], or have used 
such short time series that the statistical stability of the obser- 
vations is doubtful [Andrew and Borgman, 1981; Goda, 1983]. 
In spite of these limitations, these studies show rough, quali- 
tative agreement between linear theory and observations. No 
instances have been found of quantitative comparisons be- 
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tween observed group statistics and those predicted by linear 
theory. The present investigation makes use of longer records, 
representing widely varying wave conditions; to study wave 
group statistics. These ocean field data are compared to theo- 
retical results based on the measured spectrum (these are of 
limited utility) and to numerical simulations of linear waves 
having the same spectrum as the observed waves (section 3). It 
is seen that the fundamental assumption of linear random 
waves produces group characteristics not statistically incon- 
sistent with data in water 10 m deep, although this does not 
imply that other statistics, such as sea surface skewness, are 
consistent with linear dynamics. On the other hand, as the 
waves shoal and become more nonlinear, the linear repre- 
sentation is no longer valid, and simulated linear group statis- 
tics differ substantially from those observed in the field data. 

2. EXISTING THEORIES 

2.1. Broad Spectra 

One approach to predicting group statistics considers the 
wave field to be composed of a succession of discrete, indepen- 
dent waves, an assumption appropriate for broadband spectra. 
Results from the theory of runs are then employed to deter- 
mine certain group statistics [Goda, 1970; Nagai, 1973]. 
Denote the probability that the height of a wave is greater 
than some critical value, Hc, as p. The probability that a se- 
quence of waves higher than Hc contains j waves is [Goda, 
1970] 

p(j) = pO- • )(1 - p) (1) 

The mean length of such runs is 

1 
E[j] - (2) 

1-p 

where E is the expected value operator and the standard devi- 
ation of run length is 

pl/2 
a[j]- i (3) 

1-p 

If the wave field is a linear, Gaussian process, and the underly- 
ing spectrum is narrow, then the wave heights are distributed 

3623 



3624 ELGAR ET AL.' WAVE GROUPS IN SHALLOW WATER 

with a Rayleigh probability density [Longuet-Higgins, 1952]' 

2H 
P(H) = 2 exp {-H2/Hrms 2} (4) 

rms 

where H is the crest to trough wave height and Hrm s is the 
root mean square wave height. Thus, 

p = P(H > mc)= c Hrms 2 exp {-H2/Hrms 2) dH 
= exp {-Hc2/Hrms 2) (5) 

For the Rayleigh distribution, 

Hrms = 23/2 mo 1/2 

where m0 is the variance of the time series [Longuet-Higgins, 
1952], so 

p = exp { - H c 2/8mo ) (6) 

A cornmorn 0, selected value for the critical level is 

H c = 4mot/• = Ht/3 

where H•/3 is the average of the highest 1/3 waves. Combining 
this with (6) and (1) yields 

p = 0.1348 (7a) 

1 - p = 0.8652 (7b) 

E[jx/3] = 1.16 (7c) 

a[jx/3] = 0.42 (7d) 

The above theory has an internal inconsistency in that a wave 
field cannot have both the narrow band spectrum required for 
the Rayleigh distribution of heights and the broad spectrum 
required for independent successive waves. However, the Ray- 
leigh distribut, on provides a remarkably robust description of 
ocean wave heights [Goda, 1974, ahd many others]. Conse- 
quently, discrepancies between the mean length of runs calcu- 
lated by using the above independent wave theory and those 
observed, either in numerical simulations or field data, may be 
due to dependence of successive waves, rather than to devi- 
ations from the Rayleigh distribution. The numerical simula- 
tions of Goda [1970] show that the best agreement of the 
"independent Rayleigh" model (7) does indeed occur for a 
broad spectrum. As the spectrum narrows, discrepancies with 
(7) become greater due to increasing correlations between suc- 
cessive waves. Waves were defined with a zero-upcrossing 
methods. 

Kimura [1980] extended Goda's theory by allowing for cor- 
relations between successive waves, although the correlation 
of waves lagged by more than one successive wave was as- 
sumed to be zero. There is some limited observational support 
for this assumption [Wilson and Baird, 1970; Rye, 1974; 
Thompson, 1981], but the assumption must break down in the 
limit of a very narrow spectrum. Nevertheless, with the as- 
sumed one wa•te correlation, the mean length of runs of high 
waves can be evaluated for different values of the correlation 

coefficient. When the correlation is zero, the results are the 
same as Goda's (equation (7)). Like Goda, Kimura compares 
his theoretical results with wave trains numerically simulated 
from a specified spectral shape (target spectrum). Kimura ob- 
tains the correlation coefficient required in the theory from the 
numerical simulations. As the correlation increases, the mean 
length of run also increases, in both the theory and numerical 

simulations, while Goda's theory (equation (7c)) predicts a 
constant mean run length. For the fairly broad spectra used, 
Kimura's theoretical results are quite good and extend Goda's 
range of accuracy to narrower spectra. However, it is not clear 
how well this theory will do in general because Kimura's tran- 
sition matrix requires that waves lagged by more than one 
successive wave are independent, which does not necessarily 
follow from the observation that such waves are uncorrelated. 
Indeed, Goda [1983] indicates that the mean run lengths ob- 
served in ocean swell with significant correlations at lags of 
two and three waves are greater than Kimura's theory pre- 
dicts. Furthermore, Kirnura's [1980] scheme has the unde- 
sirable property that numerical simulations are necessary to 
determine the correlation coefficient which is needed in the 

theory. Given that numerical simulations for every spectrum 
are required to use Kimura's theory, it seems more direct 
simply to calculate the desired group statistics from the simu- 
lations. 

J. A. Battjes (personal communication, 1982) points out that 
Kimura's results can be extended to account directly for the 
shape of an underlying narrow band spectrum, rather than 
requiring that correlation coefficients be determined from nu- 
merical simulations. Indeed, the joint probability of wave 
heights used by Kimura is essentially the probability density 
of two successive points on the height envelope of a narrow 
band process, derived by Rice [1944, 1945], which is expressed 
in terms of integral properties of the spectrum. Unfortunately, 
Rice's theory is only appropriate for a narrow band spectrum, 
and, as mentioned above, Kimura's assumption that only suc- 
cessive waves are correlated will itself break down if the spec- 
trum is narrow. 

2.2. Narrow Spectra 

Rice's [1944, 1945] work on the envelope of a random func- 
tion forms the foundation for an alternate approach to pre- 
dicting wave group statistics. Following Rice [1944, 1945], let 
the sea surface elevation, r/(t), be represented as a sum of Fou- 
rier amplitudes and phases. 

N 

r/(t) = Z Cn cos (%t- 4•n) (8a) 
n=l 

where N >> 1 and 

c.= (2s(f3af) (8b) 

are the Fourier amplitudes, S(f) is the energy density spec- 
trum, co n = 2•fn, fn = nail and 4•n are random phase angles, 
uniformly distributed in [0,2•]. Defining a midband frequency 
fm, the sea surface can be expressed as 

N 

r/(t) = • Cn cos (%t - rOmt - qb n + rOmt ) 
n=l 

where 
= I c cos corot -- I s sin corot (9) 

N 

l c = • Cn cos (font - CO mt -- IPn ) (10a) 
n=l 

N 

Is - • Cn sin (cont- corot - (•n) (10b) 
n=l 

and the envelope R(t) is given by 

R(t) = [Ic•(t) + !s2(t)] •/• (11) 
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For narrow band spectra the envelope is slowly varying, its 
probability density is Rayleigh distributed, 

R 
P(R) = -- exp {-R2/2mo} (12) 

m0 

and the wave heights are twice the envelope height. Defining 
k _= H½/2mo •/2, the probability that the envelope exceeds He/2 
is 

P(R > He/2)= exp {-Hc2/8mo} = exp {-k2/2} (13) 
where 

;0 © mn = (2;z) n S(f)fndf (14) 

The frequency with which R(t) crosses a level Hc/2 with a 
positive (or negative) slope is [Cramer and Leadbetter, 1967] 

k 

N = (#2/2•z) •/2 •/2 exp {-k2/2} (15) 
m0 

where 

© #2n = (2;z) 2n (f-fo) 2n S(f) df (16) 

and f0 is the centroid of the energy spectrum. In a record of 
length L seconds, the total expected amount of time the en- 
velope is above H•/2 is P(R > H•/2) L, and the average 
number of runs above H•/2 is NL. Thus, the average length of 
time R(t) is greater than H½/2 is 

L P(R > H½/2) •/2 1 TE = = (2g/#2) 1/2 m0 - (17) 
LN k 

The waves' frequency is one-half the frequency of zero cross- 
ings, No, where [Rice, 1944, 1945] 

No = (1/•r) (m2/mo) •/2 (18) 

Vanmarke [1972] and Ewin•l [1973] argue the mean length of 
runs whose envelope lies above the level H½/2 is therefore 

No 
EEl] = TE •- = (m2/2•#2) '/2 (l/k) (19) 

where I is the "number of waves." Thus, the mean length of 
runs of waves greater than H•/3 is [Ewin•l, 1973] 

E[l•/3] = 1/2 (m22•#2) •/2 (20) 

To test data directly against (equations (19) and (20)) the 
envelope time series should be constructed, using the defining 
equations (8)-(11). The duration of envelope level crossings, 
normalized by the wave frequency, could then be compared to 
theory (equations (19) and (20)). Note that this envelope 
scheme defines the duration of groups differently than the 
commonly used method based on the number of discrete wave 
heights exceeding a certain level. For example, the envelope 
crossing method can define a particular section of wave record 
as a group, while the individual wave method does not detect 
any groups at all (Figure 1). Vanmarke [1972] points out, 
therefore, that (19) requires modification for the counting of 
discrete waves. A counting scheme based on continuous en- 
velope theory allows (19) to predict E[l] < 1, in obvious con- 
tradiction to the discrete counting method, which (because 
there is always at least one wave in the group) must have 
E[j] > 1, where E[j] is the mean length of runs counted dis- 

cretely. Vanmarke [1972] and Goda [1976] suggest the follow- 
ing correction. By hypothesis, a wave group will have discrete 
run length j when the envelope duration (Te) is (j- 1)T w < 
Te < jTw, where T w is the mean wave period. Therefore, the 
mean length of runs on a discrete basis is 

E[j] = • j (P[jTw] - P[(j- 1)T,•]) (21) 
j=l 

where j is counted discretely and P(jT,•) is the probability that 
an envelope duration is less than jT,•. Note that (21) correctly 
states that even if all envelope durations were much less than 
one period (0 < T• << T,•) then E[j] = 1, as opposed to (19) 
which would predict Ell] << 1. There is difficulty in evaluating 
(21), because theory predicts only the average envelope dura- 
tion (17), not its distribution function. Goda therefore as- 
sumes, as a first approximation, that group lengths are Pois- 
son distributed [Nolte and Hsu, 1972-1, an assumption only 
true for broad spectra. Using the Poisson assumption in (21) 
yields 

1 
E[j] = (22) 

1 - exp (- l/Eli]) 

where E[l] is the expected "continuous envelope theory" run 
length (19). Note that (22) has the limits 

E[j] -• 1 as E[l] -• 0 (23a) 

E[j] • E[I] + 0.5 as E[I] • oo (23b) 

The validity of these limits can be investigated in more detail 
as follows. Refering to Figure 2, the duration of an envelope 
wave group is 

rg = TA + (j- 1)r,• + TB (24) 

where TA is the time interval between the envelope's upcross- 
ing of H•/2 and the first wave crest, TB is the interval between 
the last crest and the envelope's downcrossing of H•/2, and 
is the average wave period. Thus, 

E[I] = E[Te/T•] = E[T•/T•] + E[j- 1] + E[Tu/T•] 

with 0 < Ta/T w, TB/T w < 1. For relatively broad spectra, Cn/ 
Cm- 0(1) for all n in (10), and the envelope varies as rapidly 
as the waves. Thus in the limit of E[/] • 0 and a broad spec- 
trum, Ta, Ts---}O and E[j]--}E[l] + 1--} 1 as given by (23a). 
However, for a narrow spectrum (T• >> T w and E[l]--} oo) it is 
clear that Ta/T w, Ts/T w are uniformly distributed between 0 
and 1. Thus, E[TA/Tw] = E[Ts/Tw] = 1/2, and E[I]--} E[j], in 
contrast to (23b). As demonstrated in section 3, numerical 
simulations of narrow, analytical spectral shapes support the 
limit E[j]--} E[l] for narrow spectra. Since (22) is based on an 
assumption true for broad spectra only, it is not surprising 
that it yields incorrect results for narrow spectra. 

The only assumption leading to (19) is that the spectrum be 
narrow and the waves linear. Curiously, there are few, if any, 
comparisons of (19) (with or without discrete counting) with 
either ocean data or numerical simulations. This lack of com- 

parisons apparently stems from the fact that Ewing [1973] 
evaluated (19) for a narrow Gaussian spectrum 

S(f) = a-•(2;z)-1/2 exp {-(f - fo)/2a 2} fo >> a (25) 

where f0 is the central frequency and a is a measure of the 
bandwidth (f0 >> a is required for a narrow spectrum). For 
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Fig. 1. Schematic of differing definitions of groups. Envelope method (dotted line) defines a group of duration T E, while 
discrete wave method (solid line) does not find a group. 

this particular spectral form 

rn2 ( ø.2 + fo 2) 
]A 2 0.2 

2 Io © fS2(f) df 
mo 

Thus 

and 

(26a) 

fo 
(26b) •1/20. 

Q•, = (m2/%•2) 1/2 (26c) 

e = (1 - m22/mom4) 1/2 • (6/%)1/2Qt ,- 1 (26d) 

where Q•, is a spectral peakedness parameter [Goda, 1970] and 
e is a spectral width parameter [Cartwright and Longuet- 
Higgins, 1956]. Substitution of (26c) into (19) yields 

E[l] - 2•/2 k (27) 
Although (27) is asymptotically correct for a narrow Gaussian 
spectrum as Qp• oc, it is not necessarily accurate for other 
spectral shapes. For example, Figure 3 shows m2/la 2 as a func- 
tion of Qp for the six spectral shapes described in Table 1. The 
solid line is (26c) for a narrow Gaussian spectrum, which is 
used to derive (27). Each spectrum was normalized by S(f•,), 
where fv is the frequency of the spectral peak, and was numeri- 
cally integrated to obtain the required moments. Note that 
m2/]2 2 is indeed asymptotically related to Q•, for the Gaussian 
spectrum and some of the other spectral shapes. However, the 
asymptotic Gaussian limit is not valid in general, as is most 
clearly demonstrated by the double-peaked spectra, which 
contribute most of the points below the Gaussian asymptote 
for Q•, > 10. All the spectral shapes diverge from the asymp- 
tote when m2//a2 is small. In particular, the ocean spectra 
considered here do not indicate any relationship between 
m2/lu2 and Q•,. Thus, the practice [Ewing, 1973; Chakrabarti et 
al., 1974] of comparing group statistics (from both simulations 
and ocean data) with the Gaussian asymptotic form (27) intro- 
duces errors not inherent in (19). Furthermore, it is shown in 
section 3.2 that it is difficult to precisely define the range of 
spectral shapes for which (19) is valid. 

Ewing [1973] suggested that the narrow band theory could 
be modified to treat broad band spectra. Ewing modified the 
frequency of envelope zero crossings (N, (15)) by the factor 
q•/qo, where qo, q• are the cumulative probabilities of a given 
local maxima exceeding a given value, for narrow (qo) and 
broad (q•) spectra (qo,q• are given by Cartwright and Longuet- 
Higgins [1956]). With no other changes, Ewing derived the 
following expressions for El/I, valid for H, > 2 mo TM. 

E[I] • (1 - e2)-1/2 (m2/2%la2)l/2 2moa/2/H• 0 _< • < 1 

(28a) 

Eli] • (m2/•2) 1/2 t•---} 1 (28b) 

Here, e is the spectral width parameter defined by (26c). No 
theoretical basis for this derivation has been found. As men- 

tioned above, for broad band spectra the envelope (11) fluctu- 
ates as rapidly as the waves, and thus a smoothly varying 
modulation of an underlying carrier wave is simply not a 
relevant concept. Ewing's broadband results (28) can only be 
viewed as heuristic. Notice that m2/la 2 >_ 1 for all spectral 
shapes, hence (28) predicts E[/] > I for e • I (a broad band 
spectrum). However, as mentioned in the discussion of discrete 
counting schemes, E[l] • 0 is a possible limit for broad spec- 
tra. This inconsistency in the limit E[/] • 0, and the numerical 
simulations (section 3.2), indicate that (28) is, in general, unsat- 
isfactory. 

Nolte and Hsu [1972] combined the assumption of a Pois- 
son distribution for group durations (implying a broadband 
process [Goda, 1976]) with a narrow band theory relating the 
mean group duration (0 to spectral moments. When tested 
against a single 90-min data run, using only the measured 
spectral shape to determine ?, the model-data comparison was 
apparently poor. Much better agreement was obtained when 
the observed distribution of wave heights was used to calcu- 
late •. The method of Nolte and Hsu has therefore not pro- 
duced accurate group statistics, given only the wave spectrum. 
Analogous to Kimura's [1980] narrow band scheme discussed 
above, detailed examination of the time series itself is neces- 
sary to determine parameters needed for predictions of group 
statistics. 
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Fig. 2. Definition sketch for discrete counting scheme correction. See text for explanation of symbols. 

The conclusions of this review of existing linear wave group 
theories are the following: 

1. There are no internally consistent models which yield 
group statistics given only the shape of a broad energy spec- 
trum. However, Goda's [1970] model, which predicts a con- 
stant mean group length (7c), independent of spectral shape, 
has been shown [Goda, 1976] to be in good agreement with 
data from "broad" spectra. 

2. Vanrnarke's [1972] and Ewing's [1973] result for 
narrow spectra (19) is on solid theoretical grounds. No correc- 
tion for discrete counting should be used for narrow spectra. 

3. There are several theories [Nolte and Hsu, 1972; 
Kimura, 1980] which may yield improved predictions of group 
statistics, but these require detailed examination of the wave 
time series itself, rather than proceeding directly from spectral 
information. 

3. RESULTS 

The preceding section has reviewed some relevant theories. 
To proceed with detailed comparisons to ocean data, it is 
necessary to be somewhat more quantitative about the param- 
eter range over which the analytic results are accurate. Fol- 
lowing Goda [1970], this is accomplished by numerically gen- 
erating time series which have arbitrary spectral shape and the 
desired linearity and random phases. Ranges of validity of the 
analytic results are then established, where possible, by com- 
parison to the simulations. The original plan was to next com- 
pare ocean field data to the analytic results for the cases in 
which the analytic accuracy is good. However, it developed 
that the analytic forms required either very broad or very 
narrow spectra for accurate results, conditions not met by 
these (or most other) ocean data. Consequently, the data were 
compared directly to numerical simulations of the observed 
spectra. Although considerably more time consuming than 
using analytic theories, the use of simulations has the added 
benefit of allowing comparisons in a statistical framework. 

Observed group statistics, such as the mean length of runs, 
can reflect nonlinearities in the wave field. Since the theories 

reviewed above are based on the fundamental assumption of a 
linear, Gaussian process, discrepancies between theory and 
data might be attributed to deviations from linearity of the 

waves. However, when faced with discrepancies between ocean 
data and approximate theories, it is difficult to determine 
whether the cause of the differences is due to inaccuracies in 

the approximate theories within a linear framework, or due to 
nonlinearities in the wave field. For instance, observed runs 
longer than Goda's theory predicts may be due to neglected 
correlations of waves (i.e., narrow spectra), rather than nonlin- 
ear effects. 

l0 3 

½, 

• + 
½, 

• + 

+ 

+ • 

+ • 

+ • 
+ 

+ ½, • 

io o 

Fig. 3. rn2/la 2 versus Qp. Solid line is the Gaussian asymptote 
(equation 26d). The six spectral shapes described in Table 1 are dis- 
played as follows: circle, Gaussian; triangle, Pierson-Moskowitz; 
plus, JONSWAP; cross, Ochi-Hubble; diamond, double peaked; 
arrow, tophat; cross with overbar, ocean field data. 



3628 ELGAR ET AL.'. WAVE GROUPS IN SHALLOW WATER 

TABLE 1. Spectral Forms Used in Simulations 

Spectral Form (Normalized by S(f•,)) Name Reference 

S(f) = exp {-(f-f•,)•'/(2o'•')); o' is a width parameter Gaussian Ewing [1973] 
S(f) = (f/f•,)-m exp {--m/n((f/f•,) -n -- 1)) n, m > 0 Pierson-Moskowitz Goda [1979] 
S(f) = (f/fp)-5 exp {-5/4((f/fp) -4- 1)}7 

7 > 1, a = 0.07 if f < fv, a = 0.09 if f > fv Jonswap Goda [1979] 
S(f) = (f/fv)-(4x+ 1) exp { - ((4it + 1)/4)((f/fv) -• - 1)}; 

it is a width parameter Ochi-Hubble 

S(f) = E[f, fl] + cE[f, f2]; 
Elf, fi] is an Ochi-Hubble spectrum with 
f•=fp, f2>fx, O<c<l 

1 flow <f<fhigh 
S(f) = 0 otherwise 
fhigh = Kflow, flow-- 2fp/(g + 1), g > 1 

Andrew and Borgman 
[1981] 

Double Peak Andrew and Borgman 
[1981] 

Tophat 

Below, first the simulation method is described (section 3.1), 
then comparisons between simulations and analytic results are 
discussed (section 3.2), and finally group statistics from simula- 
tions are compared with the observations (section 3.3). 

3.1. Simulations 

The fundamental assumption of linear waves is that the sea 
surface r/(t) can be represented as a linear combination of 
waves with random phases, as expressed in (8). An alternative 
expression is 

N 

r/(t) = • a ncos fon + b nsin fon (29) 
n=l 

where anb nare independent Gaussian distributed random 
variables with zero mean and variance S(fnAf 

Simulations using (8), which will be referred to as a random 
phase scheme, have spectra that always exactly match the 
target spectrum (S(f)), while simulations with (29), a random 
Fourier coefficient scheme, have spectra with a statistical vari- 
ation about S(f). Both methods were implemented and, as 
expected, yield nearly identical results, as detailed below. For 
comparing simulations with analytic results, the target spectra 
were a variety of standard spectral shapes, which are described 
in Table 1. For simulation-field data comparisons, S(f) was 
the measured spectrum. Integral properties of the field spectra 
were calculated from smoothed versions of the measured spec- 
tra, with 32 degrees of freedom. 

For the random phase scheme (8), Fourier coefficients (8b) 
were coupled with random phases produced by a numerical 
random number generator. The random number generator in- 
ternally maintains two independent 32-bit generators. The first 
of these is a congruential generator, while the second is a 
Tausworthe, or shift-register, generator. The output from the 
two generators is combined, producing a random number, 
uniformly distributed between 0 and 1 [Gross, 1979]. An in- 
verse Fourier transform of the unsmoothed spectrum results in 
a simulated time series with the identical spectral shape as the 
observed time series, but with random phases. 

To obtain random Fourier coefficients (29), Gaussian dis- 
tributed, zero mean, unit variance random variables were gen- 
erated, and then multiplied by (S(fn)Af) •/2 producing new 
Fourier amplitudes with the desired properties [Andrew and 
Borgman, 1981]. Again, an inverse Fourier transform yields a 
simulated time series. 

Rice [1944, 1945] invoking the central limit theorem, points 

out that both representations (8) and (29) will yield the same 
statistics in the limit as N-• oz. Nevertheless, both forms were 
used in the simulations because there is some question about 
bias in spectral moments and width parameters using the two 
different methods [Tuah and ttudspeth, 1982]. 

Each set of random phases or coefficients, via the simula- 
tions described above, produce a time series whose properties 
are statistics which fluctuate about mean values. Clearly, one 
realization of such a simulation is not sufficient to determine 

representative values of the parameters of interest for a partic- 
ular target spectrum. Previous studies [Tuah and Hudspeth, 
1982, Andrew and Borgman, 1981] have reported results ap- 
parently based on a single realization of similar simulation 
schemes. Of course, these results suffer from a lack of statis- 
tical stability. In this study, for any particular target spectrum, 
100 simulated time series were produced, each with its own set 
of random phases or Fourier coefficients. 

Individual wave heights were determined by using the zero- 
upcrossing definition and were considered to belong to a 
group of high waves if the crest to trough distance exceeded a 
critical level. For the purposes of this study, the critical excee- 
dence level was set equal to 4mo •/2. For a Rayleigh distri- 
bution, this critical level is theoretically equal to the average 
of the highest one third of the waves, and from the Rayleigh 
distribution (6), about 13.5% of the waves belong to a group. 
Some investigators [e.g., Rye, 1973; Thompson, 1981] have 
pointed out that ocean wave records contain many high fre- 
quency "bumps," some of which may result in a small wave 
apparently interrupting a run of high waves. For apparently 
aesthetic reasons, these authors remove the small waves or 
"bumps," using various smoothing schemes in the time 
domain. This ad hoc smoothing of the time series vastly com- 
plicates comparisons with other studies. Furthermore, these 
changes in the time domain are not accompanied by respec- 
tive changes in the frequency domain, unlike standard filtering 
operations. Consequently, established relationships between 
spectral and time domain parameters are no longer valid. 

Each time series was 8192 s long. The mean period of the 
ocean data was about 10 s, a value also used in the analytical 
spectral forms. There were about 800 waves per simulated 
time series, and about 80,000 waves per target spectrum. The 
mean length of runs of waves greater than the significant 
height in the ocean data varies from 1 to almost 2.5. Thus, the 
number of groups in each ocean time series is between 30 and 
100, and there are between 3,000 and 10,000 simulated groups 
per target spectrum. 
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Results for the same target spectrum were compared, using 
both random phase and random Fourier coefficient schemes. 
Of course, statistics such as spectral moments, El'j], a[j], and 
Q•, produced by each scheme cannot be compared on a single 
realization basis. However, when averaged over 100 realiza- 
tions, most statistics from each scheme are nearly identical. 
For example, the ensemble average of the first five spectral 
moments about the origin and about the centroid (mn,#m,n = 
1, 2, "' 5) differ from the corresponding target spectral values 
by less than 1%. Similarly, the ensemble averaged values of 
E[j] and a[j] obtained from each scheme are in close agree- 
ment. On the other hand, as is demonstrated theoretically in 
the appendix, Q•, was found to be biased when obtained from 
unsmoothed spectra produced with the random coefficient 
scheme. 

Probability density functions (pfd's) of the number of waves 
per group were calculated from the ensembles of simulated 
time series. The pdf's for the time series resulting from the 
spectra in Figure 4 are displayed in Figure 5. The spectra 
shown in Figure 4 represent a (visually) narrow band ocean 
spectra (February 2, Q•, = 5.6, m2/#2 = 4.7) and a quite broad- 
band ocean spectra (February 15, Q•, = 1.3, m2/#2 = 5.7). 

Valid comparisons of theory and ocean data to the simula- 
tions require that the simulations are statistically stable. Since 
the wave groups produced by the 100 simulated realizations 
are only a sample of the population of groups associated with 
each target spectrum, it is therefore necessary to obtain confi- 
dence limits for the simulated statistics. 

Kendall and Stewart [1967, chap. 30, section 56] present 
expressions for the confidence limits which relate the probabil- 
ity of the true probability distribution function falling within a 
specified bandwidth (BW) around the sample probability dis- 
tribution to the size of the total sample. Following Kendall 
and Stewart [1967, chap. 30, section 55] it is readily shown 
that the bandwidth for the probability density function of the 
number of waves per group is given by 

BW = (2.72/n TM) (30) 

104 
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Fig. 4. Power spectral density of sea surface elevation in water 10 
m deep. Circle, narrow band, February 2; asterisk, broadband, Febru- 
ary 15. The spectra have 128 degrees of freedom, and the 90% confi- 
dence interval is indicated by the bars. 
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Fig. 5. Probability density function of the number of waves per 
group corresponding to the spectra in Figure 4' circle, simulations' 
asterisk, ocean field data. (a) narrow band, February 2 (42 groups 
were observed in the field data); (b) broadband, February 15 (74 
groups were observed in the field data). Bars indicate _ 1 standard 
deviation of simulated values. 

ß 

with probability = 0.95, where n is the total number of groups. 
For example, on February 2, there were 4000 groups in the 

simulated time series. The corresponding 95% probability 
level bandwidth for the P(j) is 0.04. Using the P(j) from the 
simulations it is seen that the true P(1) = 0.5 _+ 0.04, or within 
8% of the sample value. Similarly, the true P(2) is within 26% 
of the sample value, and so on. Since the data for February 2 
contained the fewest number of groups (i.e., largest value of 
E[j]) of the ocean data, a bandwidth = 0.04 is a maximum 
value for the field data. Moreover, as discussed in Kendall and 
Stewart [1967] the value for BW given by (30) is always an 
overestimate. 

To lend further confidence to the statistical stability of the 
estimates, 1000 realizations were run for both February 2 and 
February 15, and the resulting P(j) compared to those from 
100 realization ensembles. Taking the ensemble of 1000 reali- 
zations as "true," the 100 realization ensembles were well 
within the expected 95% confidence limits. Indeed, the differ- 
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Fig. 6. Mean length of runs (E[j]) greater than H-l/3 versus Qp. 
The solid line is for a narrow Gaussian spectral shape (27). Inset 
shows behavior of El-j] for small values of Qp. Solid line in inset is 
(7c). Symbols are described in Figure 3. 

ence between the "true" and "sample" P(j) was less than 10% 
forj < 4. 

Clearly, as P(j) becomes small, the relative bandwidth 
beomes large. However, in those cases where the distribution 
is not well estimated (j > 4), the values of P(j) are very small, 
as can be seen in Figure 5. Consequently, those P(j) for large j 
have negligible effect on integral properties of the pdf's such as 
E[j]. For example, for the February 2 simulations, 1000 reali- 
zations yielded E[j] = 2.19, while 100 realizations yielded 
E[j] = 2.17, while for February 15 both values of E[j] were 
equal to 1.15. The conclusion is that simulations with 100 
realizations are extensive enough to estimate the true value of 
E[j] within a few percent. 

For each ensemble of 100 simulations, the distribution of 
each P(j),j = 1, 2, 3 was compared with a Gaussian distri- 
bution. According to a Z 2 test, the P(j) distributions did not 
deviate from a Gaussian distribution any more than could be 
expected 10% of the time for a truly Gaussian process. The 
distribution of P(j), j > 4 is also Gaussian if the number of 
realizations which contain runs of length >4 is sufficiently 
large (about two thirds of the 100 simulations). For example, 
February 2, a narrow band day, has many realizations (almost 
100) with runs of four waves, and P(4) is Gaussian distributed 
according to a Z 2 test. On the other hand, February 15, a 
broadband day, has very few realizations with a run as large 
as four waves, and P(4) is not Gaussian. The Gaussian 
character of P(j), for small j, is useful in ocean data compari- 
sons considered in section 3.3. 

3.2. Simulation-Analytic Theory Comparisons 

As discussed above, previous simulation work [Goda, 1970, 
1976] has shown (7) to be accurate for broad spectra (al- 
though broad was only loosely defined), while (19) [Vanmarke, 
1972; Ewing, 1973] must be valid for very narrow spectra (also 
loosely defined) since it is derived exactly. To compare ocean 
data to linear analytic theory (to test if ocean wave group 
statistics are consistent with linear theory, for example), the 

data must lie within the range of applicability of the theory. In 
an attempt to quantify these ranges of applicability (i.e., to 
determine the parameter ranges for which (7) and (19) are 
valid), test spectra were generated for the spectral shapes in 
Table 1. Double peaked spectra were generated as the linear 
superposition of two Ochi-Hubble spectra, each with variable 
width, energy, and peak frequency. 

Figure 6 shows the average run length E[j] as a function of 
Qp, with the Gaussian asymptote ((27) With k- 2) shown. 
Figure 7 plots E[j] against m:•/#2. Since (20) and (27) are valid 
for narrow spectra, and E[j] - E[l] in this limit, neither equa- 
tion is altered for discrete counting. As Figure 7 demonstrates, 
for spectra without high frequency structure (e.g., Gaussian, 
Pierson-Moskowitz, Ochi-Hubble, tophat spectral forms), (20) 
models the simulations quite well for large values of 
Applying the correction for discrete counting (22) to (20) off- 
sets the theoretical curve for small m2/#2 by imposing a mini- 
mum value of 1 on the corrected equation. A large value of 
m2/#2 is associated with high E[/] (Figure 7); however, the 
converse is not true (i.e., large values of El/] also occur for 
small m2/#2). This is especially true for spectra with high fre- 
quency structure, such as the double-peaked and JONSWAP 
spectra. Indeed, the addition of a small, high frequency bump 
in an otherwise narrow spectrum will cause #2 to increase, and 
in turn m2/#2 to decrease, often dramatically, even though 
E[l] is hardly effected. Thus, although a large value of 
is necessary for a spectrum to be narrow, it does not appear to 
be sufficient for (20) to be valid. Unfortunately, no simple 
shape parameter has been found which identifies a spectrum 
for which (20) is valid (higher order moments are clearly in- 
volved). 

Figure 3 indicates that for the JONSWAP, Pierson- 
Moskowitz, and many double-peaked spectra, as well as the 
ocean data considered here, m2/IA 2 < 10 and Q•, < 5. For such 
low values of m2/#2 and Q•, (20) and (27) are not valid (Figures 
6 and 7). Similarly, although values of m2/#2 are not common- 
ly reported, Q•, from other ocean data (Q•, < 2.5, [Chakrabarti 
et al., 1974]; Q• < 4 [Goda, 1976]; Q•, < 4.5 [Suet al., 1982]; 
Q•, < 6 [Goda, 1983]) indicate that (20) and (27) are not appli- 
cable for most ocean spectra. That is, both analytic forms (20) 

30- 
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Fig. 7. Mean length of runs greater than H-l/3 versus m•/g•. Solid 
line is narrow band theory (20). Symbols are described in Figure 3. 
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and (27) are unsuitable for testing linearity of typical ocean 
groups. On the other hand, for broad spectra the simulations 
indicate agreement (+ 10%) with Goda's prediction of mean 
run length (7) for Q•, < 2. However, it is important to note that 
E[j] does not asymptotically approach (7) as Q•, approaches 0. 
Instead, E[j] continues to decrease below the value predicted 
by (7) as Q•, decreases below 1.25. For these very low values of 
Q•,, the assumption of Rayleigh distributed wave heights prob- 
ably starts to break down. This behavior of E[j] for low 
values of Q•, is shown in the inset of Figure 6, where the solid 
line is (7). Similarly, the variance of run lengths was calculated 
from the ensemble of simulations for each target spectrum. 
For Q•, < 2, the simulations are in agreement (+ 10%) with 
Goda's prediction (7d). Thus, on the basis of the present simu- 
lations, spectra with Q•, < 2 are identified as very broad spec- 
tra. 

The simulations indicate considerable variation of œ[j] for 
constant m2/#: or Q•, in the range of m2/#: < 100 and Q•, > 2. 
Much of the field data falls within this range. Thus, it is inap- 
propriate to compare field observations with numerical simu- 
lations based on an analytic spectral form with coincidentally 
the same Qr There is substantial scatter in Figure 6, even 
though each point represents the mean from 100 realizations. 
That is, identical values of Q•, do not imply identical group 
statistics, even in the limit of many realizations. 

The scatter in plots of mean run length versus Q•, increases 
considerably for ocean data, which are essentially statistics 
produced by only one realization. For example, as discussed 
in section 3.3, œ[1] is approximately Gaussian distributed, and 
each observation of œ[1] is subject to variation consistent with 
the appropriate Gaussian distribution. Therefore, although the 
mean length of runs may be correlated with Q•, (Figure 6), the 
current practice of correlating wave group statistics with Q•, is 
essentially nonproductive. There is little to be learned from 
outlying points; that is, points not close to the linear regres- 
sion between wave group statistics and Q•, are not necessarily 
due to nonlinearities in the field data. Consequently, in order 
to test the field data against a linear hypothesis, simulations of 
each observed spectrum must be performed, and the field ob- 
servations examined for statistical consistancy with the simu- 
lations. 

3.3. Simulation-Field Data Comparisons 

The field data were obtained at Santa Barbara, California, 
during the Nearshore Sediment Transport Study experiment 
conducted in January and February 1980 [Gable, 1981]. The 
time series used here were obtained from bottom-mounted 

pressure sensors, located along a line perpendicular to the 
beach, extending from approximately 1 m depth to 10 m 
depth. 

To obtain reasonable confidence limits on the statistics of 

lengths of runs greater than the significant wave height, tt•/3, 
it is clear that data runs containing many groups are neces- 
sary. Record lengths of 8192 s (2.27 hours) were used here, 
typically containing •800 waves. The pressure gages were 
continuously sampled at 2 Hz, for up to 5 hours daily during a 
4-week period. Those data selected for processing were 
checked for stationarity by using a "run" test [Bendat and 
Piersol, 1971] after breaking the record into 32 sections of 256 
s. If any one of the parameters checked (m0, mean length of 
runs, Q•,, frequency of spectral peak) showed a trend inconsist- 
ent with random fluctuations, indicating possible non- 
stationarity, those data were rejected. Thirty time series were 
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Fig. 8. Mean length of runs greater than H-l/3 from the numeri- 
cal simulations versus mean length of runs greater than H-l/3 from 
the ocean field data. The 45 ø solid line indicates agreement between 
simulations and ocean field data. 

finally chosen for analysis. The spectra of bottom pressures 
were converted to sea surface elevation by using linear theory, 
tidal trends were removed, and the data were band-pass fil- 
tered. Data from the deepest pressure sensors, in approxi- 
mately 10 m depth, were band-pass filtered between 0.04 and 
0.3 Hz, while the time series obtained from the other pressure 
gauges, located in 4 m or less, were filtered by passing those 
frequencies between 0.04 and 0.5 Hz. 

The data cover a wide range of conditions, including very 
narrow (by ocean standards) and quite broadband spectral 
shapes (Figure 4), and significant wave heights between 20 and 
200 cm. With typical peak periods from 8 to 20 s, the wave 
steepness (product of significant amplitude and wave number 
of the spectral peak) is in the range 0.006-0.1. Some days were 
characterized by swell from distant storms, others by local 
seas, and a few had multi-peaked spectra, representing differ- 
ent combinations of sea and swell. 

Since the question at hand is whether or not ocean observa- 
tions are consistent with the linear simulations, several differ- 
ent comparisons of ocean and simulated ocean data were 
made. One such comparison is of the mean length of runs. 
Figure 8 shows that the mean run length from the ocean data 
and the simulations are visually well correlated. A Z 2 test for 
the 100 realizations of each target spectrum showed E[j-I to be 
Gaussian distributed, thus about 68% of the simulated E[j] 
fell within 1 standard deviation of the mean. Consequently, 
each ocean value of E[j] can be examined to see if it comes 
from the same (Gaussian) population as the simulations, using 
a standard normal deviate test, where the simulations provide 
the variance of E[j] for each spectrum. Individual ocean E[j] 
deviated from the mean E[j] of the simulations as would be 
expected for a Gaussian distribution, with 77% of the ocean 
E[j] falling within 1 standard deviation of the simulation 
mean. 

To test if the collection of ocean E[j] were statistically 
consistent with the simulated E[j], Student's t statistic for 
paired data was calculated. This test essentially examines 
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Fig. 9. Mean length of runs greater than H-l/3 versus depth of 
water. Asterisk, ocean field data' circle, simulations, bars indicate i 1 
standard deviation of simulated values. Data were obtained February 
3. 

whether or not the two treatments (ocean observation and 
numerical simulation) of the same data (the target spectrum) 
produce the same result (œ[j]). The t statistic obtained was 
t - 0.67, which will be exceeded about 50% of the time due to 
random fluctuations. Hence, the hypothesis that the ocean 
mean group lengths are statistically consistent with linear 
wave theory cannot be rejected. 

Similarly, the variances of run length obtained from the 
ocean data were compared with the corresponding variances 
produced by the simulations. The ratios of the square of run 
length coefficients of variation (standard deviation normalized 
by the mean, ocean and simulated) for each target spectrum 
were compared to tabulated values of Fisher's F distribution 
with the appropriate number of degrees of freedom. The ratios 
exceeded the tabulated values no more often than would be 

expected due to random fluctuations if the two populations 
(ocean and simulated) were the same. For example, one of the 
30 ratios exceeded a value expected to occur 2% of the time 
due to random fluctuations, and two ratios exceeded a value 
expected 10% of the time. Hence, the hypothesis that the 
variances of run length come from the same statistical popu- 
lation cannot be rejected. 

A comparison of the pdf's of number of waves per group 
was made, as shown in Figure 5. The statistical reliability of 
the simulation based pdf's was discussed in Section 3.2. For 
the P(j) that are Gaussian distributed, 68% of the simulated 
P(j) are expected to fall within 1 standard deviation of the 
mean. Similarly, if the ocean data are consistent with the 
linear simulations, 68% of the ocean P(j) should also fall 
within 1 standard deviation of the mean. About 70% of the 

ocean data do so for those cases where the simulated P(j) was 
considered to be Gaussian distributed. 

A Z 2 test was used to test if the entire collection of 30 pdf's 
from ocean data belonged to the same statistical population as 
the corresponding collection of simulated pdf's. Th6 Z2 value 
obtained (with 79 degrees of freedom) has about a 12% chance 
of occurring by random chance if the two collections come 
from the same population. In light of the results discussed 
above, this is not considered strong enough evidence'to reject 
the hypothesis of linearity. There are certainly no gross dis- 
crepancies between the observed and simulated pdf's (Figure 

5, for example). All the above statistical tests were applied to 
both the random phase simulations and the random Fourier 
coefficient simulations, with negligible differences. The values 
presented are from the random phase simulations. 

4. EFFECTS OF SHOALING 

The results presented so far indicate that the assumption of 
a linear, Gaussian process, as expressed by (8) or (29), pro- 
duces statistics consistent with observations of ocean wave 

groups in 10 m depth. However, as waves shoal they are ex- 
pected to become more nonlinear. Consequently, a linear rep- 
resentation, such as (8) or (29), should not necessarily produce 
wave group statistics consistent with observations of shoaled 
waves.' That this is the case is shown in Figur e 9, based upon 
data collected on February 3. Values of E[j], both observed 
and simulated (from the measured spectra at the appropriate 
depth), are shown as a function of depth, from 10 m depth 
through the breaking point (about 2 m) and into 1 m of water. 
The simulated mean run length varies during shoaling because 
of substantial changes in the observed spectrum. Simulations 
and observations are similar in 10 m depth, but as the waves 
shoal, the observed E[j] becomes much greater than linear 
theory predicts. The ocean Erj] remains higher than the cor- 
responding values from the simulations until the waves break, 
when field data are once again consistent with the simulations 
(Figure 9). This trend occurs in most of the data sets, under 
varying wave conditions, and is the subject of ongoing re- 
search. 

The pdf for the February 3 data observed in about 2 m 
depth is presented in Figure 10 (compare to 10 m data in 
Figure 5). The field data have a small value of P(1) relative to 
the linear simulations. As j increases, P(j) of the field data 
becomes greater than the corresponding P(j) of the simulated 
time series. For the particular pdf shown in Figure 10, a Z 2 
test to determine if the field data come from the same popu- 
lation as the simulations produces Z2= 32 with 3 degrees of 
freedom. (Individual class intervals were used for j < 3, and 
the remaining values were pooled.) A value this large can 
occur due to random fluctuations less than 0.1% of the time. 

Furthermore, a normal random deviate test of the mean 
length of runs also yields a value much larger than would be 
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Fig. 10. Probability density function of number of waves per 
group corresponding to data observed in 2 m depth that are dis- 
played in Figure 9. Symbols are described in Figure 5. (87 groups 
were observed in the field data). 
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expected 0.1% of the time. Thus, the hypothesis that the 2 m 
depth ocean observation comes from the same linear, random 
wave population as the simulations must be rejected. 

5. CONCLUSIONS 

There are two theoretical models which predict the mean 
length of runs of ocean waves greater than some critical 
height, given only the power spectral density. The differences 
between the models stem from initial assumptions about the 
wave field and result in different regions (with respect to spec- 
tral shape) of applicability. Goda's prediction (7) which as- 
sumes the individual waves are independent, Rayleigh distrib- 
uted random variables, is most accurate for broadband spec- 
tra. However, it has an internal inconsistency, so there is no a 
priori range of validity. On the other hand, Vanmarke's and 
Ewing's result (equations (19) and (20)), based on Rice's en- 
velope theory, appears to require a narrow band spectrum 
with no high frequency structure. 

Extensive numerical simulation of time series from various 

spectral forms indicates agreement (+ 10%) with Goda's pre- 
diction of a constant mean run length for spectra with Q•, < 2 
(Figure 6). Unfortunately, no simple spectral shape parameter 
(such as rn2/#2 or Qp) was found which indicates quantitatively 
the region of validity of (20)). Furthermore, Qp and rn2/!a2 are 
not, in general, unique functions of each other. Therefore, it is 
not valid to transform one of these spectral parameters into 
the other. 

For spectral shapes similar to those found in the ocean, 
none of the theories adequately predicts mean run length. 
Consequently, theories given by (7) and (19) could not be used 
to test if observed values of mean run length (E[j]) are consis- 
tent with linear dynamics (i.e., (8) or (29)). Owing to both the 
inherent statistical variability of wave group parameters and 
the inadequacy of Qp as a definitive group parameter, it is not 
instructive to correlate wave group statistics with spectral pa- 
rameters such as Qp. Instead, ocean E[j] was compared with 
those produced from linear simulations of time series with the 
same power spectral density. The results from 30 ocean time 
series, each of 8192 s length, show no compelling statistical 
difference between observations of E[j] and linear simulations 
in 10 m depth. Similar results were found for the variances of 
run length and the probability density functions of the number 
of waves per group. On the other hand, disagreement with 
linear dynamics was found for shoaled waves in 2 m depth. 

APPENDIX 

It was noted above that the value of Qp obtained from the 
random Fourier coefficient scheme is biased, while spectral 
moments m n are not. This can be demonstrated as follows. 
Recall the Fourier representation of the sea surface 

N 

•l(t) -- • an COS COnt + b n sin COnt (A1) 
n=l 

where an,b n are independent Gaussian distributed random 
variables with zero mean and variance S(fn)Af Here, S(fn) is 
the true spectral density at frequency fn = nAf From a finite 
length time series only the estimates tin, bn of the true values of 
an,b n can be obtained. The random variable 

Zn 2 • (an 2 "JF bn2)/S(fn)Af (A2) 

is chi square distributed, with 2 degrees of freedom. The prob- 
ability density function of a chi square distributed random 

variable, with v degrees of freedom is 

1 •) f(x) = 2•/2r(v/2• x ("/2- exp {-x/2} dx x > 0 (A3) 
0 x<0 

where F is the gamma function. Thus it is easily verified that 

E[x] = v (A4) 
E[x 2] = v 2 + 2v 

Since the estimated value of S(fn) is (tin 2 + •n2)/2Af the ex- 
pected value of the rth spectral moment is 

E[m•] = E[(2•r)"n••(nAf)" (•n2-'1'-bn2)l [2 X'f• '_l 
N $(fn)A f 

= (2/0 r Z (rtAf)rE[Zn 2] 
n=l (2Af) 

N 

(2re)' Z (nAf)rS(fn) 2 n=l 

= 5 m, = m, (AS) 
because v -- 2. If several realizations of the process, j, say, are 
available, or if neighboring frequency components are merged 
together, v will increase, but the above result (A5) remains the 
same. In this case the average 

•n 2 --! •(ank 2 .q_ bnk2)/(S(L)Af) (A6) 
Jk=l 

may be used in place of •'n2, yielding 

[' (an•2+bn• 2] EEmr] = (2•Yn=•,(nAf)r J •, , 
N 

= (2re)' • (nAf)'S(fn) • (A7) n=l 

using (A4) it equals mr because v = 2j. Next consider the ex- 
pected value of Qp, 

E[Qr] = EI2n••(nAf)[•n2+ fin2]21 
2 N 

mo 2 • (nAf)EE(Zn2) 2] S2(f•) n=l 4 

= [m--• n=•l(nAf)S2(fn)][(v2 ; 2v!] = 2Q•, (A8) 
because v--2. Similarly, ensemble averaging over j realiza- 
tions yields 

E[ 2 N 1 •.• •'• 2 _{._ • 2•2'-[ E[Qp] = 
_l-( 
- L' i4?i '1 = (2> + (A9) 

using (A4) because v = 2j. 
Thus, the value of Qp estimated from a finite time series is 

biased. If the random Fourier coefficient scheme is employed 
to simulate a smoothed target spectrum, and no additional 
smoothing is performed on the individual realizations pro- 
duced by the simulations, the mean value of Q•, obtained by 
averaging the individual Qp from each realization will be twice 
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the target spectrum's Q•,. On the other hand, ensemble averag- 
ing the simulated spectra, and then calculating Q•, from the 
ensemble will produce a better estimate of the true value of 
Qp, in accordance with (A9). These theoretical conclusions 
were verified by the simulations. Similarly, the bias of Q•, in 
spectra from ocean swell was noticed by Goda [1983]. Figure 
14 of that paper displays Q•, values calculated by two different 
averaging schemes. The ratio of the average Q•, from an en- 
semble of five or six individual spectra to the value of Q•, for 
the spectrum obtained by averaging the individual spectra is 
quite close to 2Iv + 1 (A9). Goda [1983, Figure 14] also notes 
that Q•, decreases as the number of degrees of freedom in each 
spectrum increases, no matter which averaging procedure is 
used. Of course, as v is increased, individual peaks in the 
spectrum are smoothed, and hence Q•, decreases. Indeed, in the 
limit of the maximum possible number of degrees of freedom 
the spectrum is reduced to a single value, and Q•, = 1. Thus, 
spectra that are "undersmoothed" yield a Q•, which is biased 
high, while "oversmoothed" spectra give a Q•, which is biased 
low. 
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