IODA project publications

Articles, Conference Papers, and Reports

Print version
Text Size: Change text to small (default) Change text to medium Change text to large


Peer reviewed publication

  1. Allshouse, M. R., F. M. Lee, P. J. Morrison and H. L. Swinney, Internal wave pressure, velocity and energy flux from density perturbations, Phys. Rev. Fluids 1, 014301, 2016.

  2. Badiey, M., L. Wan and J. J.  Luo,. Shallow water modal evolution due to nonlinear internal waves, Marine. Sci. Appl., 16, 362,, 2017.

  3. Badiey, M., L. Wan and J. F. Lynch, Statistics of nonlinear internal waves during the Shallow Water 2006 experiment, J. Atmos. Oceanic Technol., 33. 839-846, doi: 10.1175/JTECH-D-15-0221.1, 2016. 

  4. Badiey, M., L. Wan and A. Song, Three-dimensional mapping of internal waves during the Shallow Water 2006 experiment, J. Acoust. Soc. Am., 134, EL7-EL13,, 2013.

  5. Cox, C. S., X. Zhang and T. F. Duda, Suppressing breakers with polar oil films: Using an epic sea rescue to model wave energy budgets, accepted, Geophys. Res. Lett., 44, 1414-1421, 10.1002/2016GL071505, 2017.

  6. Dettner, A., H. L. Swinney, and M. S. Paoletti, Internal wave and boundary current generation by tidal flow over topography, Physics of Fluids, 25, 1-15,, 2013.  

  7. Duda, T. F., Modeling and forecasting ocean acoustic conditions, for The Sea, Ideas and Observations on Progress in the Study of the Seas, The Science of Ocean Prediction. Editors N. Pinardi, P. Lermusiaux and K. Brink. Sears Foundation for Marine Research Publications, New Haven, CT., accepted for publication, 2017.  

  8. Duda, T. F., Y.-T. Lin and D. B. Reeder, Observationally constrained modeling of sound in curved ocean internal waves: Examination of deep ducting and surface ducting at short range, J. Acoust. Soc. Am., 130, 1173-1187,, 2011.  

  9. Emerson, C., J. F. Lynch, P. Abbot, Y.-T. Lin, T. F. Duda, G. G. Gawarkiewicz, and C.-F. Chen, Acoustic propagation uncertainty and probabilistic prediction of sonar system performance in the southern East China Sea continental shelf and shelfbreak environments, IEEE J. Oceanic Eng., 40, 1003-1017,, 2015  

  10. Gong, Z., T. Chen, P. Ratilal, and N. C. Makris, Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves, J. Acoust. Soc. Am., 134, 3476-3485, 2013. 

  11. Grimshaw, R., C. Guo, K. Helfrich, and V. Vlasenko, Combined effect of rotation and topography on shoaling oceanic internal solitary waves, J. Phys. Oceanogr., 44, 1116-1132, 2014.  

  12. Haley, P. J. Jr., A. Agarwal, and P. F. J. Lermusiaux, Optimizing velocities and transports for complex coastal regions and archipelago. Ocean Modeling, 89, 1-28, 2015.  

  13. Heaney, K. D., P. F. J. Lermusiaux, T. F. Duda and P. J. Haley, Validation of genetic algorithm based optimal sampling for ocean data assimilation, Ocean Dynamics, 66, 1209- 1229, 10.1007/s10236-016-0976-5, 2016.

  14. Kelly, S. M., and P. F. J. Lermusiaux, Internal-tide interactions with the Gulf Stream and Middle Atlantic Bight shelfbreak front, J. Geophys. Res. Oceans, 121, 6271–6294, 2016.  

  15. Kelly, S. M., P. F. J. Lermusiaux, T. F. Duda and P. J. Haley, A Coupled-mode Shallow Water model for tidal analysis: Internal-tide reflection and refraction by the Gulf Stream, J. Phys. Oceanogr., 46, 3661-3679,, 2016.  

  16. Kiara, A., K. Hendrickson and D. K. P. Yue, SPH for incompressible free-surface flows. Part II: Performance of a modified SPH method, Computers and Fluids, 86, 510-536,, 2013.  

  17. King, B., M. Stone, H. P. Zhang, T. Gerkema, M. Marder, R. B. Scott, and H. L. Swinney, Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans, J. Geophys. Res. (Oceans) 117, C04008,, 2012.  

  18. Lee, F. M., M. S. Paoletti, H. L. Swinney, and P. J. Morrison. Experimental determination of radiated wave power without pressure field data, Physics of Fluids, 26, 046606, doi: 10.1063/1.4871808, 2014.  

  19. Lin, Y.-T. and T. F. Duda, A higher-order split-step Fourier parabolic-equation sound propagation solution scheme, J. Acoust. Soc. Am., 132, EL61-EL67, 2012.  

  20. Lin, Y.-T., J. M. Collis, and T. F. Duda, A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximants, J. Acoust. Soc. Am., 132, EL364-370,, 2012.  

  21. Lin, Y.-T., T. F. Duda, and A. E. Newhall, Three-dimensional sound propagation models using the parabolic-equation approximation and the split-step Fourier method, J. Comput. Acoust., 21, 1250018,, 2013.  

  22. Lin, Y.-T., T. F. Duda, C. Emerson, G. Gawarkiewicz, A. E. Newhall, B. Calder, J. F. Lynch, P. Abbot, Y.-J. Yang and S. Jan, Experimental and numerical studies of sound propagation over a submarine canyon northeast of Taiwan, IEEE J. Oceanic Eng., 40, 237-249, 2014,

  23. Lin, Y.-T, K. G. McMahon, J. F. Lynch, and W. L. Siegmann, Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas, J. Acoust. Soc. Am., 133, 37-49,, 2013.  

  24. Nash, J. D., S. M. Kelly, E. L. Shroyer, J. N. Moum, and T. F. Duda, The unpredictable nature of internal tides and nonlinear waves on the continental shelf, J. Phys. Oceangr., 42, 1981-2000,, 2012.

  25. Nash, J. D., E. L. Shroyer, S. M. Kelly, M. E. Inall, T. F. Duda, M. D. Levine, N. L. Jones, and R. C. Musgrave, Are any coastal internal tides predictable? Oceanography, 25, 80-95,, 2012.

  26. Pan, Y. and D. Yue, Direct numerical investigation of turbulence of capillary waves, Phys. Rev. Lett., 113, 094501, 2014.  

  27. Pan, Y. & Yue, D. 2015 Decaying capillary wave turbulence under broad-scale dissipation. J. Fluid Mech., 780.  

  28. Paoletti, M. S., and H. L. Swinney, Propagating and evanescent internal waves in a deep ocean model, J. Fluid Mech., 108, 148101,, 2012.  

  29. Paoletti, M. S., M. Drake, and H. L. Swinney, Internal tide generation in nonuniformly stratified deep oceans, J. Geophys. Res. Oceans, 119, 1953-1956,, 2014.  

  30. Raghukumar, K., and J. A. Colosi, High frequency normal mode statistics in a shallow water waveguide: The effect of random linear internal waves, J. Acoust. Soc. Am. 136 , 66-79,, 2014.

  31. Raghukumar, K., and J. A. Colosi, High frequency normal mode statistics in shallow water: The combined effect of random surface and internal waves, J. Acoust. Soc. Am. 137, 2950-2961,, 2014.

  32. Shmelev, A, A., J. F. Lynch, Y.-T. Lin,  and H. Schmidt: Three-dimensional coupled mode analysis of internal-wave acoustic ducts, J. Acoust. Soc. Am., 135, 2497-2512, 2014.  

  33. Subramani, D. N., P. J. Haley Jr., and P. F. J. Lermusiaux, Energy-optimal path planning in the coastal ocean, J. Geophys. Res. Oceans, 122, 3981–4003, doi:10.1002/2016JC012231., 2017.

  34. Subramani, D. N. and P. F. J. Lermusiaux, 2015. Energy-based path planning by stochastic dynamically orthogonal level-set optimization. Ocean Modeling, 100, 57-77, 2016.

  35. Subramani D.N., Lolla T., Haley P.J., Lermusiaux P.F.J.,A Stochastic Optimization Method for Energy-Based Path Planning. In: Ravela S., Sandu A. (eds) Dynamic Data-Driven Environmental Systems Science. Lecture Notes in Computer Science, vol 8964. Springer, Cham., 2015

  36. Tran, D. D., M. Andrews, and P. Ratilal, Probability distribution for energy of saturated broadband ocean acoustic transmission: Results from Gulf of Maine 2006 Experiment, J. Acoust. Soc. Am., 132, 3659-3672, 2012.  

  37. Ueckermann, M. P. and P. F. J. Lermusiaux, Hybridizable discontinuous Galerkin projection methods for Navier-Stokes and Boussinesq equations. J. Comput. Phys., 306, 390-421,, 2016.

  38. Xiao, W., Y. Liu, G. Wu and D. K. P. Yue, Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution, J. Fluid Mech., 720, 357-392, 2013.  

  39. Zhang, L. and H. L. Swinney, Virtual seafloor reduces internal wave generation by tidal flow, Phys. Rev. Lett., 112, 104502 doi: 10.1103/PhysRevLett.112.104502, 2014.

  40. Zhang, L., M. C. Buijsman, E. Comino, and H. L. Swinney, Internal wave generation by tidal flow over periodically and randomly distributed seamounts, J. Geophys. Res. Oceans, 122, 5063–5074, doi:10.1002/2017JC012884, 2017.

  41. Zhang, W. G. and T. F. Duda, Intrinsic nonlinearity and spectral structure of internal tides at an idealized Mid-Atlantic Bight shelfbreak, J. Phys. Oceanogr., 43, 2641-2660, 2013.  

  42. Zhang, W. G., T. F. Duda, and I. A. Udovydchenkov, Modeling and analysis of internal-tide generation and beam-like onshore propagation in the vicinity of shelfbreak canyons, J. Phys. Oceanogr., 44, 834-849, 2014.


Other publications

  1. Badiey, M., , L. Wan, and A. Song, Time-varying three-dimensional mapping of internal waves during the Shallow Water 2006 experiment, Proc. Mtgs. Acoust. 19, 070021,, 2013.

  2. Colin, M. E. G. D., T. F. Duda, L. A. te Raa, T. van Zon, P. J. Haley Jr., P. F. J. Lermusiaux, W. G. Leslie, C. Mirabito, F. P. A. Lam, A. E. Newhall, Y.-T. Lin , and J. F. Lynch, Time-evolving acoustic propagation modeling in a complex ocean environment, in Proceedings of Oceans ’13 (Bergen) Conference, IEEE/MTS, 2013.

  3.  DeCourcy, B. J., Parameter Sensitivity of Acoustic Propagation in Models of Curved Fronts Over Uniform Slopes,Rensselaer Polytechnic Institute, PhD Dissertation, 2017.

  4. Duda, T. F., Theory and observation of anisotropic and episodic internal wave effects on 100-400 Hz sound, in Proceedings of the International Conference and Exhibition on Underwater Acoustic Measurements: Technologies and Results, Kos, Greece, pp. 999-1006, 2011.

  5. Duda, T. F., Plenary presentation: Identifying and meeting new challenges in shallow-water acoustics, in Proceedings of Acoustics 2013 (AAS2013), Science, Technology and Amenity, Australian Acoustical Society, 2013.

  6. Duda, T. F., B. D. Cornuelle and Y.-T. Lin, Quantifying acoustic field horizontal variability and acoustic system performance in a canyon with internal tides, in Acoustic & Environmental Variability, Fluctuations and Coherence Conference Proceedings, Cambridge, UK, Institute of Acoustics, 2016.

  7. Duda, T., Y.-T. Lin and B. D. Cornuelle, Scales of time and space variability of sound fields reflected obliquely from underwater slopes, Proc. Meet. Acoust., 19, 070025, 2013.

  8. Duda, T. F., Y.-T. Lin, A, E, Newhall, K. R. Helfrich, W. G. Zhang, M. Badiey, P. F. J. Lermusiaux, J. A, Colosi and J. F. Lynch, The “Integrated Ocean Dynamics and Acoustics” (IODA) hybrid modeling effort, in Proceedings of the 2nd International Underwater Acoustics Conference, Rhodes, Greece, 2014.

  9. Duda, T. F., W. G. Zhang, and Y.-T.-Lin, Studies of internal tide generation at a slope with nonlinear and linearized simulations: Dynamics and implications for ocean acoustics, in Proceedings of Oceans ’12 (Hampton Roads) conference, MTS/IEEE, 2012

  10. Duda, T. F., W. G. Zhang, K. R. Helfrich, A. E. Newhall, Y.-T. Lin, and J. F. Lynch, Issues and progress in the prediction of ocean submesoscale features and internal waves, in Proceedings of Oceans ‘14 (St. John’s) conference, IEEE/MTS, 2014. (9 pp.)

  11. Duda, T. F., W. G. Zhang, K. R. Helfrich, Y.-T. Lin and A. E. Newhall, Modeling internal solitary wave development at the head of a submarine canyon, for 8th International Symposium on Stratified Flows (ISSF), San Diego, CA, USA, 2016.

  12. Lynch, J. F., T. F. Duda and J. A. Colosi, Acoustical horizontal array coherence lengths and the “Carey Number”, Acoustics Today, 10, 10-19,, 2014.

  13. Lynch, J. F., T. F. Duda, W. L. Siegmann, J. Holmes and A. E. Newhall, The Carey Number in shallow water acoustics, in Proceedings of the 1st International Underwater Acoustics Conference, Corfu, Greece, 2013.

  14. Lynch, J. F., Y.-T. Lin, T. F. Duda and A. E. Newhall , Characteristics of acoustic propagation and scattering in marine canyons, in Proceedings of the 1st International Underwater Acoustics Conference, Corfu, Greece, 2013.

  15. Nash, J., S. Kelly, E. Shroyer, J. Moum and T. Duda, The unpredictability of internal tides in coastal seas, In Proc. 7th International Symposium on Stratified Flows, Rome, Italy, 2011.

  16. Phadnis, A., Uncertainty Quantification and Prediction for Non-autonomous Linear and Nonlinear Systems. SM Thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering, July 2013.

  17. Raghukumar, K., and J. A. Colosi, The effect of surface and linear internal waves on higher order acoustic moments in shallow water, Proc. Meet. Acoust., 19, 070022, 2013.

  18. Sroka, S. G., Internal Tides Near Steep Topographies, MS Thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering, Sept. 2016.




WHOI logo

Last updated December 21, 2017
© Woods Hole Oceanographic Institution. All rights reserved