Please note: You are viewing the unstyled version of this website. Either your browser does not support CSS (cascading style sheets) or it has been disabled. Skip navigation.

Welcome to the Edgcomb Lab, Marine Microbial Ecology

   Print  PDF  Change text to small (default) Change text to medium Change text to large

Enlarge Image

Shark Bay, Australia

Marine micro-oxic (severely depleted but still detectable oxygen) to sulfidic environments are sites of intensive biogeochemical cycling and elemental sequestration, where marine microbes are major driving forces mediating carbon, nitrogen, sulfur, phosphorus, and metal cycles. Thus, micro-oxic and sulfide-enriched habitats are important from both biogeochemical and evolutionary perspectives. Microbial eukaryotes are pivotal members of aquatic microbial communities. Through grazing on bacterial, archaeal, and other eukaryotic prey, they regenerate nutrients and modify or re-mineralize organic matter. In addition, they are known to affect the population dynamics, activity and physiological state of their prey. The magnitude of the under-sampled ‘protistan gap’ in the eukaryotic tree of life has been highlighted by molecular studies of diversity based primarily on amplification of small subunit ribosomal RNA genes. Next generation sequencing methods are opening exciting windows into this under-described diversity.

In the Edgcomb laboratory, we study the diversity and evolution of protists, and their distribution and community structure, particularly in marine micro-oxic and anoxic/sulfidic environments. We also investigate the relationships between these populations and the biochemical transformations they mediate in the environment using a variety of methods, including DNA- and RNA-based molecular approaches, functional genomics, culturing, and microscopy.

Our study sites include hypersaline anoxic basins in the Eastern Mediterranean Sea, anoxic water columns and sediments in the Cariaco Basin, Venezuela, Santa Barbara Basin, CA, the Eastern North Tropical Pacific oxygen minimum zone, Delaware Bay and other points along the Atlantic coast of the USA. In addition, we are investigating eukaryotic life in marine subsurface core samples from around the world, and the role that microbial eukaryotes play in biodegradation of hydrocarbons in marine sediments.  Current research includes investigations of microbial life in lower oceanic crust samples. In many marine environments we observe intriguing symbioses between protists and bacteria and archaea. These symbioses may have significant implications for marine biogeochemical cycles. We are involved in studies of protist-prokaryote symbioses as well as development of new approaches for querying these symbioses at the single-cell level using Raman-AFM. Expanding our knowledge of the roles protists play in the ocean hinges on development of new genetic tools for model marine protists. We are engaged in efforts to develop new transformation and gene editing tools for two marine protist groups.

Last updated: July 5, 2017

whoi logo

Copyright ©2007 Woods Hole Oceanographic Institution, All Rights Reserved, Privacy Policy.
Problems or questions about the site, please contact