spacer
Woods Hole Oceanographic Institution

Kelton McMahon

spacer
Publications
»Ocean Ecogeochemistry
»Estimating movement of marine animals
»Functional connectivity in a coral reef seascape
»Carbon isotopes identify snapper nursery habitat
»Otolith amino acid carbon isotope method
»Amino acid fractionation in fish tissues
»Stable isotope fractionation in fish muscle and otoliths
»Transequatorial Migrations by Basking Sharks
»Tracking top predator migration with isoscapes
»Bivalves as bioproxies for climate change
»Serries groenlandicus
»Digestibility of Ice algae and Phytoplankton
»Salt marsh fish movement and trophic dynamics


spacer
Kelton W. McMahon, Michael L. Berumen, Ivan Mateo, Travis S. Elsdon, Simon R. Thorrold, Carbon isotopes in otolith amino acids identify residency of juvenile snapper (Family: Lutjanidae) in coastal nurseries., Coral Reefs, 30:1135-1145, 2011

This study explored the potential for otolith geochemistry in snapper (Family: Lutjanidae) to identify residency in juvenile nursery habitats with distinctive carbon isotope values. Conventional bulk otolith and muscle stable isotope analyses (SIA) and essential amino acid (AA) SIA were conducted on snapper collected from seagrass beds, mangroves, and coral reefs in the Red Sea, Caribbean Sea, and Pacific coast of Panama. While bulk stable isotope values in otoliths showed regional differences, they failed to distinguish nursery residence on local scales. Essential AA d13C values in otoliths, on the other hand, varied as a function of habitat type and provided a better tracer of residence in different juvenile nursery habitats than conventional bulk otolith SIA alone. A strong linear relationship was found between paired otolith and muscle essential AA δ13C values regardless of species, geographic region, or habitat type, indicating that otolith AAs recorded the same dietary information as muscle AAs. Juvenile snapper in the Red Sea sheltered in mangroves but fed in seagrass beds, while snapper from the Caribbean Sea and Pacific coast of Panama showed greater reliance on mangrove-derived carbon. Furthermore, compound-specific SIA revealed that microbially recycled detrital carbon, not water-column-based new phytoplankton carbon, was the primary carbon source supporting snapper production on coastal reefs of the Red Sea. This study presented robust tracers of juvenile nursery residence that will be crucial for reconstructing ontogenetic migration patterns of fishes among coastal wetlands and coral reefs. This information is key to determining the importance of nursery habitats to coral reef fish populations and will provide valuable scientific support for the design of networked marine-protected areas.

© Woods Hole Oceanographic Institution
All rights reserved