spacer
Woods Hole Oceanographic Institution

Juan Pablo Canales

spacer
Publications
»48. Axial Volcano
Geology, 2014

»47. Melt-Mush along the EPR
JGR, 2014

»46. EPR Moho in 3D
G-cubed, 2014

»45. Melt bodies off the EPR
EPSL, 2014

»44. EPR Magma segmentation
Nature Geoscience, 2013

»43. TAG 3D P-wave velocity
G-cubed, 2012

»42. Atlantis core complex
G-cubed, 2012

»41. R2K Advances in Seismic Imaging
Oceanography, 2012

»40. R2K Seismic Studies
Oceanography, 2012

»39. Melt bodies off the EPR
Nature Geoscience, 2012

»38. JdF Plate: Gravity structure
G-cubed, 2011

»37. JdF Plate: Layer 2B structure
G-cubed, 2011

»36. Kane waveform tomography
GRL, 2010

»35. Kane Oceanic Core Complex
G-cubed, 2009

»34. Geophysical signatures of oceanic core complexes
GJI, 2009

»33. Accretion of the lower crust
Nature, 2009

»32. Faulting of the Juan de Fuca plate
EPSL, 2009

»31. Axial topography os the Galapagos Spreading Center
G-cubed, 2008

»30. Juan de Fuca Ridge flanks
G-cubed, 2008

»29. Seismic structure of oceanic core complexes
G-cubed, 2008

»28. Juan de Fuca Ridge: structure and hotspots
G-cubed, 2008

»27. Structure of the TAG segment, Mid-Atlantic Ridge
G-cubed, 2007

»26. Detachment faulting at TAG, Mid-Atlantic Ridge
Geology, 2007

»25. Structure of the Endeavour segment, Juan de Fuca Ridge
JGR, 2007

»24. Magma beneath Lucky Strike Hydrothermal Field
Nature, 2006

»23. Magma chamber of the Cleft segment, Juan de Fuca Ridge
EPSL, 2006

»22. Topography and magmatism at the Juan de Fuca Ridge
Geology, 2006

»21. Structure of the southern Juan de Fuca Ridge
JGR, 2005

»20. Sub-crustal magma lenses
Nature, 2005

»19. Constructing the crust at the Galapagos Spreading Center
JGR, 2004

»18. Atlantis core complex
EPSL, 2004

»17. Morphology of the Galapagos Spreading Center
G-cubed, 2003

»16. Crustal structure of the East Pacific Rise
GJI, 2003

»15. Plume-ridge interaction along the Galapagos Spreading Center
G-cubed, 2002

»14. Compensation of the Galapagos swell
EPSL, 2002

»13. Structure of Tenerife, Canary Islands
JVGR, 2000

»12. Underplating in the Canary Islands
JVGR, 2000

»11. Structure of the Mid-Atlantic Ridge (MARK, 23?20'N)
JGR, 2000

»10. Structure of the Mid-Atlantic Ridge (35?N)
JGR, 2000

»9. Structure of Gran Canaria, Canary Islands
J. Geodyn., 1999

»8. Structure of overlapping spreading centers in the MELT area
GRL, 1998

»7. Crustal thickness in the MELT area
Science, 1998

»6. The MELT experiment
Science, 1998

»5. The Canary Islands swell
GJI, 1998

»4. Morphology of the Galapagos Spreading Center
JGR, 1997

»3. Faulting of slow-spreading oceanic crust
Geology, 1997

»2. Flexure beneath Tenerife, Canary Islands
EPSL, 1997

»1. Elastic thickness in the Canary Islands
GRL, 1994



spacer
Canales, J.P., H. Carton, S.M. Carbotte, J.C. Mutter, M.R. Nedimović, M. Xu, O. Aghaei, M. Marjanović, and K. Newman, Network of off-axis melt bodies at the East Pacific Rise, Nat. Geosci., 5(4), 279-283, 2012

Magmatic accretion of new oceanic crust at intermediate- to fast-spreading mid-ocean ridges occurs along a narrow axial zone. This zone is characterized by molten sills in the crust that are emplaced within about 3 km of the ridge axis1 and overlie a zone of elevated temperatures and partial melt2–4. There are disparate indications of off-axis magmatism5–8 and lavas erupted in the near-axis region are more compositionally variable than in the axial zone9. Here we present three-dimensional seismic reflection images from the fast-spreading East Pacific Rise that reveal a network of sills 4 to 8 km east of the ridge axis. Our crustal model, constrained using seismic velocity and attenuation data, shows that the sills are located outside of the main axial zone of crustal accretion, and above a region containing partial melt. We infer that the sills represent sites of sustained off-axis magmatism. Pockets of melt extend from the off-axis sills to the axial zone and may represent melt migration pathways. These pathways could promote mixing between enriched off-axis melts and normal on-axis melts, contributing to the compositional variability of the near-axis lavas9. We suggest that off-axis magmatism occurs preferentially, but not exclusively, where pre-existing fractures inherited from offsets of the spreading axis promote melt transport from the mantle into the crust.



FILE » PDF



© Woods Hole Oceanographic Institution
All rights reserved