Woods Hole Oceanographic Institution

Juan Pablo Canales

»55. Sonar imaging of the Rainbow area
G3, 2016

»54. Structure of the Juan de Fuca Plate
JGR, 2016

»53. Bending faults offshore Cascadia
JGR, 2016

»52. Tectonics of the Rainbow area
G3, 2015

»51. Melt distribution along the EPR
GJI, 2015

»50. EPR Multi-sill plumbing system
Nature Geoscience, 2014

»49. Galapagos Spreading Center: Tomography
AGU Monograph, 2014

»48. Axial Volcano
Geology, 2014

»47. Melt-Mush along the EPR
JGR, 2014

»46. EPR Moho in 3D
G-cubed, 2014

»45. Melt bodies off the EPR
EPSL, 2014

»44. EPR Magma segmentation
Nature Geoscience, 2013

»43. TAG 3D P-wave velocity
G-cubed, 2012

»42. Atlantis core complex
G-cubed, 2012

»41. R2K Advances in Seismic Imaging
Oceanography, 2012

»40. R2K Seismic Studies
Oceanography, 2012

»39. Melt bodies off the EPR
Nature Geoscience, 2012

»38. JdF Plate: Gravity structure
G-cubed, 2011

»37. JdF Plate: Layer 2B structure
G-cubed, 2011

»36. Kane waveform tomography
GRL, 2010

»35. Kane Oceanic Core Complex
G-cubed, 2009

»34. Geophysical signatures of oceanic core complexes
GJI, 2009

»33. Accretion of the lower crust
Nature, 2009

»32. Faulting of the Juan de Fuca plate
EPSL, 2009

»31. Axial topography os the Galapagos Spreading Center
G-cubed, 2008

»30. Juan de Fuca Ridge flanks
G-cubed, 2008

»29. Seismic structure of oceanic core complexes
G-cubed, 2008

»28. Juan de Fuca Ridge: structure and hotspots
G-cubed, 2008

»27. Structure of the TAG segment, Mid-Atlantic Ridge
G-cubed, 2007

»26. Detachment faulting at TAG, Mid-Atlantic Ridge
Geology, 2007

»25. Structure of the Endeavour segment, Juan de Fuca Ridge
JGR, 2007

»24. Magma beneath Lucky Strike Hydrothermal Field
Nature, 2006

»23. Magma chamber of the Cleft segment, Juan de Fuca Ridge
EPSL, 2006

»22. Topography and magmatism at the Juan de Fuca Ridge
Geology, 2006

»21. Structure of the southern Juan de Fuca Ridge
JGR, 2005

»20. Sub-crustal magma lenses
Nature, 2005

»19. Constructing the crust at the Galapagos Spreading Center
JGR, 2004

»18. Atlantis core complex
EPSL, 2004

»17. Morphology of the Galapagos Spreading Center
G-cubed, 2003

»16. Crustal structure of the East Pacific Rise
GJI, 2003

»15. Plume-ridge interaction along the Galapagos Spreading Center
G-cubed, 2002

»14. Compensation of the Galapagos swell
EPSL, 2002

»13. Structure of Tenerife, Canary Islands
JVGR, 2000

»12. Underplating in the Canary Islands
JVGR, 2000

»11. Structure of the Mid-Atlantic Ridge (MARK, 23?20'N)
JGR, 2000

»10. Structure of the Mid-Atlantic Ridge (35?N)
JGR, 2000

»9. Structure of Gran Canaria, Canary Islands
J. Geodyn., 1999

»8. Structure of overlapping spreading centers in the MELT area
GRL, 1998

»7. Crustal thickness in the MELT area
Science, 1998

»6. The MELT experiment
Science, 1998

»5. The Canary Islands swell
GJI, 1998

»4. Morphology of the Galapagos Spreading Center
JGR, 1997

»3. Faulting of slow-spreading oceanic crust
Geology, 1997

»2. Flexure beneath Tenerife, Canary Islands
EPSL, 1997

»1. Elastic thickness in the Canary Islands
GRL, 1994

Aghaei, O., M.R. Nedimović, H. Carton, S.M. Carbotte, J.P. Canales, and J. Mutter, Crustal thickness and Moho character of the fast-spreading East Pacific Rise from 9˚42’N to 9˚57’N from poststack-migrated 3D MCS data, Geochem., Geophys., Geosyst., 15, doi: 10.1002/2013GC005069

We computed crustal thickness (5740+-270 m) and mapped Moho reflection character using 3-D seismic data covering 658 km2 of the fast-spreading East Pacific Rise (EPR) from 9o42'N to 9o57'N. Moho reflections are imaged within 87% of the study area. Average crustal thickness varies little between large sections of the study area suggesting regionally uniform crustal production in the last ~180 Ka. However, individual crustal thickness measurements differ by as much as 1.75 km indicating that the mantle melt delivery has not been uniform. Third-order, but not fourth-order ridge discontinuities are associated with changes in the Moho reflection character and/or near-axis crustal thickness. This suggests that the third order segmentation is governed by melt distribution processes within the uppermost mantle while the fourth-order ridge segmentation arises from midcrustal to upper-crustal processes. In this light, we assign fourth-order ridge discontinuity status to the debated ridge segment boundary at ~9o45'N and third-order status at ~9o51.5'N to the ridge segment boundary previously interpreted as a fourth-order discontinuity. Our seismic results also suggest that the mechanism of lower-crustal accretion varies along the investigated section of the EPR but that the volume of melt delivered to the crust is mostly uniform. More efficient mantle melt extraction is inferred within the southern half of our survey area with greater proportion of the lower crust accreted from the axial magma lens than that for the northern half. This south-to-north variation in the crustal accretion style may be caused by interaction between the melt sources for the ridge and the Lamont seamounts.


© Woods Hole Oceanographic Institution
All rights reserved