Woods Hole Oceanographic Institution

Juan Pablo Canales

»50. EPR Multi-sill plumbing system
Nature Geoscience, 2014

»49. Galapagos Spreading Center: Tomography
AGU Monograph, 2014

»48. Axial Volcano
Geology, 2014

»47. Melt-Mush along the EPR
JGR, 2014

»46. EPR Moho in 3D
G-cubed, 2014

»45. Melt bodies off the EPR
EPSL, 2014

»44. EPR Magma segmentation
Nature Geoscience, 2013

»43. TAG 3D P-wave velocity
G-cubed, 2012

»42. Atlantis core complex
G-cubed, 2012

»41. R2K Advances in Seismic Imaging
Oceanography, 2012

»40. R2K Seismic Studies
Oceanography, 2012

»39. Melt bodies off the EPR
Nature Geoscience, 2012

»38. JdF Plate: Gravity structure
G-cubed, 2011

»37. JdF Plate: Layer 2B structure
G-cubed, 2011

»36. Kane waveform tomography
GRL, 2010

»35. Kane Oceanic Core Complex
G-cubed, 2009

»34. Geophysical signatures of oceanic core complexes
GJI, 2009

»33. Accretion of the lower crust
Nature, 2009

»32. Faulting of the Juan de Fuca plate
EPSL, 2009

»31. Axial topography os the Galapagos Spreading Center
G-cubed, 2008

»30. Juan de Fuca Ridge flanks
G-cubed, 2008

»29. Seismic structure of oceanic core complexes
G-cubed, 2008

»28. Juan de Fuca Ridge: structure and hotspots
G-cubed, 2008

»27. Structure of the TAG segment, Mid-Atlantic Ridge
G-cubed, 2007

»26. Detachment faulting at TAG, Mid-Atlantic Ridge
Geology, 2007

»25. Structure of the Endeavour segment, Juan de Fuca Ridge
JGR, 2007

»24. Magma beneath Lucky Strike Hydrothermal Field
Nature, 2006
»23. Magma chamber of the Cleft segment, Juan de Fuca Ridge
EPSL, 2006

»22. Topography and magmatism at the Juan de Fuca Ridge
Geology, 2006

»21. Structure of the southern Juan de Fuca Ridge
JGR, 2005

»20. Sub-crustal magma lenses
Nature, 2005

»19. Constructing the crust at the Galapagos Spreading Center
JGR, 2004

»18. Atlantis core complex
EPSL, 2004

»17. Morphology of the Galapagos Spreading Center
G-cubed, 2003

»16. Crustal structure of the East Pacific Rise
GJI, 2003

»15. Plume-ridge interaction along the Galapagos Spreading Center
G-cubed, 2002

»14. Compensation of the Galapagos swell
EPSL, 2002

»13. Structure of Tenerife, Canary Islands
JVGR, 2000

»12. Underplating in the Canary Islands
JVGR, 2000

»11. Structure of the Mid-Atlantic Ridge (MARK, 23?20'N)
JGR, 2000

»10. Structure of the Mid-Atlantic Ridge (35?N)
JGR, 2000

»9. Structure of Gran Canaria, Canary Islands
J. Geodyn., 1999

»8. Structure of overlapping spreading centers in the MELT area
GRL, 1998

»7. Crustal thickness in the MELT area
Science, 1998

»6. The MELT experiment
Science, 1998

»5. The Canary Islands swell
GJI, 1998

»4. Morphology of the Galapagos Spreading Center
JGR, 1997

»3. Faulting of slow-spreading oceanic crust
Geology, 1997

»2. Flexure beneath Tenerife, Canary Islands
EPSL, 1997

»1. Elastic thickness in the Canary Islands
GRL, 1994


Singh, S.C., W. C. Crawford, H. Carton, T. Seher, V. Combier, M. Cannat, J.P. Canales, D. Dusunur, J. Escartín, and M. J. Miranda

, Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field, Nature, 442, 1029-1032, 2006


Crust at slow-spreading ridges is formed by a combination ofmagmatic and tectonic processes, with magmatic accretion possiblyinvolving short-lived crustal magma chambers. The reflectionsof seismic waves from crustal magma chambers have beenobserved beneath intermediate and fast-spreading centres, butit has been difficult to image such magma chambers beneath slowspreadingcentres, owing to rough seafloor topography andassociated seafloor scattering. In the absence of any images ofmagma chambers or of subsurface near-axis faults, it has beendifficult to characterize the interplay of magmatic and tectonicprocesses in crustal accretion and hydrothermal circulation atslow-spreading ridges. Here we report the presence of a crustalmagma chamber beneath the slow-spreading Lucky Strike segmentof the Mid-Atlantic Ridge. The reflection from the top of themagma chamber, centred beneath the Lucky Strike volcano andhydrothermal field, is approximately 3 km beneath the sea floor,3–4km wide and extends up to 7 km along-axis. We suggest thatthis magma chamber provides the heat for the active hydrothermalvent field above it. We also observe axial valley boundingfaults that seem to penetrate down to the magma chamber depthas well as a set of inward-dipping faults cutting through thevolcanic edifice, suggesting continuous interactions between tectonicand magmatic processes.


© Woods Hole Oceanographic Institution
All rights reserved