Woods Hole Oceanographic Institution

Juan Pablo Canales

»50. EPR Multi-sill plumbing system
Nature Geoscience, 2014

»49. Galapagos Spreading Center: Tomography
AGU Monograph, 2014

»48. Axial Volcano
Geology, 2014

»47. Melt-Mush along the EPR
JGR, 2014

»46. EPR Moho in 3D
G-cubed, 2014

»45. Melt bodies off the EPR
EPSL, 2014

»44. EPR Magma segmentation
Nature Geoscience, 2013

»43. TAG 3D P-wave velocity
G-cubed, 2012

»42. Atlantis core complex
G-cubed, 2012

»41. R2K Advances in Seismic Imaging
Oceanography, 2012

»40. R2K Seismic Studies
Oceanography, 2012

»39. Melt bodies off the EPR
Nature Geoscience, 2012

»38. JdF Plate: Gravity structure
G-cubed, 2011

»37. JdF Plate: Layer 2B structure
G-cubed, 2011

»36. Kane waveform tomography
GRL, 2010

»35. Kane Oceanic Core Complex
G-cubed, 2009

»34. Geophysical signatures of oceanic core complexes
GJI, 2009

»33. Accretion of the lower crust
Nature, 2009

»32. Faulting of the Juan de Fuca plate
EPSL, 2009

»31. Axial topography os the Galapagos Spreading Center
G-cubed, 2008

»30. Juan de Fuca Ridge flanks
G-cubed, 2008

»29. Seismic structure of oceanic core complexes
G-cubed, 2008

»28. Juan de Fuca Ridge: structure and hotspots
G-cubed, 2008

»27. Structure of the TAG segment, Mid-Atlantic Ridge
G-cubed, 2007

»26. Detachment faulting at TAG, Mid-Atlantic Ridge
Geology, 2007

»25. Structure of the Endeavour segment, Juan de Fuca Ridge
JGR, 2007

»24. Magma beneath Lucky Strike Hydrothermal Field
Nature, 2006

»23. Magma chamber of the Cleft segment, Juan de Fuca Ridge
EPSL, 2006

»22. Topography and magmatism at the Juan de Fuca Ridge
Geology, 2006

»21. Structure of the southern Juan de Fuca Ridge
JGR, 2005

»20. Sub-crustal magma lenses
Nature, 2005

»19. Constructing the crust at the Galapagos Spreading Center
JGR, 2004

»18. Atlantis core complex
EPSL, 2004

»17. Morphology of the Galapagos Spreading Center
G-cubed, 2003

»16. Crustal structure of the East Pacific Rise
GJI, 2003

»15. Plume-ridge interaction along the Galapagos Spreading Center
G-cubed, 2002

»14. Compensation of the Galapagos swell
EPSL, 2002

»13. Structure of Tenerife, Canary Islands
JVGR, 2000

»12. Underplating in the Canary Islands
JVGR, 2000

»11. Structure of the Mid-Atlantic Ridge (MARK, 23?20'N)
JGR, 2000

»10. Structure of the Mid-Atlantic Ridge (35?N)
JGR, 2000

»9. Structure of Gran Canaria, Canary Islands
J. Geodyn., 1999

»8. Structure of overlapping spreading centers in the MELT area
GRL, 1998

»7. Crustal thickness in the MELT area
Science, 1998

»6. The MELT experiment
Science, 1998

»5. The Canary Islands swell
GJI, 1998

»4. Morphology of the Galapagos Spreading Center
JGR, 1997

»3. Faulting of slow-spreading oceanic crust
Geology, 1997

»2. Flexure beneath Tenerife, Canary Islands
EPSL, 1997

»1. Elastic thickness in the Canary Islands
GRL, 1994

Canales, J.P., R.A. Dunn, G. Ito, R.S. Detrick, and V. Sallarès, Effect of variations in magma supply on the crustal structure of mid-ocean ridges: Insights from the western Galapagos Spreading Center, "The Galapagos: A Natural Laboratory for the Earth Sciences", edited by N. d'Ozouville, D. Graham, K. Harpp, and E. Mittelstaedt, AGU Geophysical Monograph, pp. 363-391, John Wiley & Sons, 2014

We report results from a seismic refraction experiment across three sections of the Western Galapagos Spreading Center with contrasting axial morphology. Tomography models show the presence of an axial low velocity zone at the three study areas.  After correcting for thermal effects, we estimate the melt content within these regions.  At each of the three sites, the largest melt reservoir is located at or just below the Moho, which is 5.25 km deep at site GALA-1 within an axial-valley morphological domain, 6 km deep at GALA-2 in a morphological transitional domain, and 7.5 km deep at GALA-3 within the axial-high domain.  At GALA-1 the tomography model does not require melt above the Moho, and at site GALA-2 neither we find evidence for crustal melt between the Moho and a melt lens previously imaged at 2.8 km depth.  In contrast, at GALA-3 the low velocity anomaly requires the presence of a few percentage of melt throughout the crust, with two distinct crustal reservoirs: one at the level of the seismically imaged melt lens reflector (1.6 km deep), and a deeper one at 3-4 km depth. The differences in axial melt content and distribution between the three sites are consequences of variations in magma supply, with lower magma supply resulting in less frequent upward migration of melt from the main Moho reservoir to crustal levels.  At higher melt supply, transfer of melt to the crust above the main Moho reservoir becomes more frequent, resulting in the formation of distinct crustal melt reservoirs.


© Woods Hole Oceanographic Institution
All rights reserved