Woods Hole Oceanographic Institution

Marco Coolen

»Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw
»7000 years of virus-host molecular dynamics in the Black Sea
»Preservation potential of ancient DNA in Pleistocene marine sediments: Implications for paleoenvironmental reconstructions
»Source-specific variability in post-depositional DNA preservation with potential implications for DNA-based paleecological records
»Exploring preserved ancient dinoflagellalte and haptophyte DNA signatures to infer ecological and environmental conditions during sapropel S1 formation in the eastern Mediterranean
»Ancient DNA in lake sediment records
»Vertical distribution of metabolically active eukaryotes in the water column and sediments of the Black Sea
»DNA and lipid molecular stratigraphic records of haptophyte succession in the Black Sea during the Holocene
»Diversity of Archaea and potential for crenarchaeotal nitrification of group 1.1a in the rivers Rhine and TĂȘt
»Holocene sources of fossil BHPs
»An unusual 17[α],21[β](H)-bacteriohopanetetrol in Holocene sediments from Ace Lake (Antarctica)
»Holocene sources of organic matter in Antarctic fjord
»Variations in spatial and temporal distribution of Archaea in the North Sea
»Archaeal nitrifiers in the Black Sea
»Pleistocene Mediterranean sapropel DNA
»Rapid sulfurisation of highly branched isoprenoid (HBI) alkenes in sulfidic Holocene sediments
»Aerobic and anaerobic methanotrophs in the Black Sea water column
»Fossil DNA in Cretaceous Black Shales: Myth or Reality?
»Sulfur and methane cycling during the Holocene in Ace Lake (Antarctica)
»Ancient algal DNA in the Black Sea
»Archaeal nitrification in the ocean
»Characterization of microbial communities found in the human vagina by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes
»Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea
»Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry
»Paleoecology of algae in Ace Lake
»Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: Response of methanogens and methanotrophs to environmental change
»Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes.
»Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania basin, Mediterranean Sea)
»Functional exoenzymes as indicators of metabolically active bacteria in 124,000-year-old sapropel layers of the Eastern Mediterranean Sea
»Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments
»Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment
»Effects of nitrate availability and the presence of Glyceria maxima the composition and activity of the dissimilatory nitrate-reducing bacterial community
»Microbial activities and populations in upper sediment and sapropel layers

Herfort, L., J.-H. Kim, M. J. L. Coolen, B. Abbas, S. Schouten, G. J. Herndl and J. S. Sinninghe Damsté, Diversity of Archaea and detection of crenarchaeotal amoA genes in the rivers Rhine and Têt, Aquat Microb Ecol 55: 189-201, 2009

Pelagic archaeal phylogenetic diversity and the potential for crenarchaeotal nitrification of Group 1.1a were determined in the rivers Rhine and Tet by 16S rRNA sequencing, catalyzed reported deposition-fluorescence in situ hybridization (CARD-FISH) and quantification of 16S rRNA and functional genes. Euryarchaeota were, for the first time, detected in temperate river water even though a net predominance of crenarchaeotal phylotypes was found. Differences in phylogenic distribution were observed between rivers and seasons. Our data suggest that a few archaeal phylotypes (Euryarchaeota Groups RC-V and LDS, Crenarchaeota Group 1.1a) are widely distributed in pelagic riverine environments whilst others (Euryarchaeota Cluster Sagma-1) may only occur seasonally in river water. Crenarchaeota Group 1.1a has recently been identified as a major nitrifier in the marine environment and phylotypes of this group were also present in both rivers, where they represented 0.3% of the total pelagic microbial community. Interestingly, a generally higher abundance of Crenarchaeota Group 1.1a was found in the Rhine than in the Tet, and crenarchaeotal ammonia monooxygenase gene (amoA) was also detected in the Rhine, with higher amoA copy numbers measured in February than in September. This suggests that some of the Crenarchaeota present in river waters have the ability to oxidize ammonia and that riverine crenarchaeotal nitrification of Group 1.1a may vary seasonally. Full text of article can be found here.

© Woods Hole Oceanographic Institution
All rights reserved