spacer
Woods Hole Oceanographic Institution

Elizabeth B. Kujawinski

spacer
Publications
»Using stable isotope probing to characterize differences between free-living and sediment-associated microorganisms in the subsurface.
»DOM in Lake Superior
»Deepwater Horizon hydrocarbons in the marine environment
»Microbes and marine DOM, Ann. Rev. Mar. Sci. 2011
»Greenland ice sheet outlet glacier: Insights from a new isotope-mixing model
»Groundwater DOM, GCA 2011
»Dispersants & DWH, ES&T 2011
»FT-MS variability in DOM, Org Geochem 2010
»Predatory Flavobacteria, FEMS Microb Ecol 2010
»Greenland Ice Sheet DOM, GCA 2010
»Protozoa and bacteria in aquifers, FEMS Microb Ecol, 2009
»Source markers in DOM, GCA 2009
»Automated data analysis, Anal. Chem. 2006
»Marine DOM and ESI FT-ICR MS; Marine Chem 2004
»DOM extraction by C18; Org. Geochem. 2003
»Black carbon by ESI FT-ICR MS; ES&T 2004
»ESI FT-ICR MS review; Env. Forensics 2002
»Marine protozoan surfactants; Marine Chem. 2002
»ESI MS and NOM; Org. Geochem. 2002
»ESI FT-ICR MS & humic acids; Anal. Chem. 2002
»Protozoan DOM & PCBs; ES&T 2001
»Protozoa & Fe, Th, C; Aquat. Microb. Ecol. 2001
»PCB uptake by protozoa; AEM 2000


spacer
Ryerson, T. B., R. Camilli, J. D. Kessler, E. B. Kujawinski, C. M. Reddy, D. L. Valentine, E. L. Atlas, D. R. Blake, J. A. de Gouw, S. Meinardi, D. D. Parrish, J. Peischl, J. S. Seewald and C. Warneke., Chemical composition measurements quantify Deepwater Horizon hydrocarbons in the marine environment., Proceedings of the National Academy of Sciences, USA, 2012

Detailed airborne, surface, and subsurface chemical measurements, primarily obtained in May and June 2010, are used to quantify initial hydrocarbon compositions along different transport pathways (i.e., in deep subsurface plumes, in the initial surface slick, and in the atmosphere) during the Deepwater Horizon oil spill. Atmospheric measurements are consistent with a limited area of surfacing oil, with implications for leaked hydrocarbon mass transport and oil drop size distributions. The chemical data further suggest relatively little variation in leaking hydrocarbon composition over time. Although readily soluble hydrocarbons made up ∼25% of the leaking mixture by mass, subsurface chemical data show these compounds made up ∼69% of the deep plume mass; only ∼31% of the deep plume mass was initially transported in the form of trapped oil droplets. Mass flows along individual transport pathways are also derived from atmospheric and subsurface chemical data. Subsurface hydrocarbon composition, dissolved oxygen, and dispersant data are used to assess release of hydrocarbons from the leaking well. We use the chemical measurements to estimate that (7.8 ± 1.9) × 106 kg of hydrocarbons leaked on June 10, 2010, directly accounting for roughly three-quarters of the total leaked mass on that day. The average environmental release rate of (10.1 ± 2.0) × 106 kg/d derived using atmospheric and subsurface chemical data agrees within uncertainties with the official average leak rate of (10.2 ± 1.0) × 106 kg/d derived using physical and optical methods. Full text from the Proceedings of the National Academy of Sciences can be found Here

© Woods Hole Oceanographic Institution
All rights reserved