spacer
Woods Hole Oceanographic Institution

Tim Verslycke

spacer
Publications
»Copepod diapause
»Lobster Shell Disease
»Crustacean molting receptor
»Lobster Shell Disease
»Mysids as test models for endocrine disruption testing
»Chlorotriazines in the Scheldt estuary
»Energy allocation in grasshopper
»Estrogens in Scheldt estuary
»Marsupial development in mysids to evaluate endocrine disruption
»B[a]P effects on steroid metabolism in mysid
»Ciona CYP3 genes
»Methoprene, nonylphenol, and estrone effects on mysid vitellogenesis
»Methoprene effects on mysid molting
»Mysid growth
»Mysid vitellin ELISA
»Mysid vitellin
»An analytical method to detect estrogens in water
»High levels of endocrine disruptors in wild mysid populations
»Energy allocation in wild mysid populations
»Cellular energy allocation validation with scope for growth
»Dolphin delivery prediction
»PhD thesis
»Endocrine disruptor effects on steroid and energy metabolism in mysid
»Mysid review
»TBT effects on steroid metabolism in mysid
»Metal mixture toxicity to mysid
»TBT effects on energy metabolism in mysid
»dichlorobenzene effects in zebrafish
»Ethinylestradiol effects on amphipod sexual development
»Metabolic studies with mysids
»Abiotic stress and energy metabolism in mysid
»Induced vitellogenesis in rainbow trout
»Steroid metabolism in mysid
»Endocrine disruption in freshwater snails
»Invasive mysid in Belgium


spacer
Sofie Poelmans, Tim Verslycke, Els Monteyne, Herlinde Noppe, Karolien Verheyden, Colin Janssen and Hubert De Brabander, Testosterone metabolism in Neomysis integer following exposure to benzo(a)pyrene, Comparative Biochemistry and Physiology B 144(4): 405-412, 2006

Cytochromes P450 (CYPs) are important enzymes involved in the regulation of hormone synthesis and in the detoxification and/or activation of xenobiotics. CYPs are found in virtually all organisms, from archae, and eubacteria to eukaryota. A number of endocrine disruptors are suspected of exerting their effects through disruption of normal CYP function. Consequently, alterations in steroid hormone metabolism through changes in CYP could provide an important tool to evaluate potential effects of endocrine disruptors. The aim of this study was to investigate the potential effects of the known CYP modulator, benzo(a)pyrene (B(a)P), on the testosterone metabolism in the invertebrate Neomysis integer (Crustacea; Mysidacea). N. integer were exposed for 96 h to 0.43, 2.39, 28.83, 339.00 and 1682.86 μg B(a)P L− 1 and a solvent control, and subsequently their ability to metabolize testosterone was assessed. Identification and quantification of the produced phase I and phase II testosterone metabolites was performed using liquid chromatography coupled with multiple mass spectrometry (LC–MS2). Significant changes were observed in the overall ability of N. integer to metabolize testosterone when exposed to 2.39, 28.83, 339.00 and 1682.86 μg B(a)P L− 1 as compared to the control animals. http://dx.doi.org/10.1016/j.cbpb.2006.04.001

© Woods Hole Oceanographic Institution
All rights reserved