spacer
Woods Hole Oceanographic Institution

Tim Verslycke

spacer
Publications
»Copepod diapause
»Lobster Shell Disease
»Crustacean molting receptor
»Lobster Shell Disease
»Mysids as test models for endocrine disruption testing
»Chlorotriazines in the Scheldt estuary
»Energy allocation in grasshopper
»Estrogens in Scheldt estuary
»Marsupial development in mysids to evaluate endocrine disruption
»B[a]P effects on steroid metabolism in mysid
»Ciona CYP3 genes
»Methoprene, nonylphenol, and estrone effects on mysid vitellogenesis
»Methoprene effects on mysid molting
»Mysid growth
»Mysid vitellin ELISA
»Mysid vitellin
»An analytical method to detect estrogens in water
»High levels of endocrine disruptors in wild mysid populations
»Energy allocation in wild mysid populations
»Cellular energy allocation validation with scope for growth
»Dolphin delivery prediction
»PhD thesis
»Endocrine disruptor effects on steroid and energy metabolism in mysid
»Mysid review
»TBT effects on steroid metabolism in mysid
»Metal mixture toxicity to mysid
»TBT effects on energy metabolism in mysid
»dichlorobenzene effects in zebrafish
»Ethinylestradiol effects on amphipod sexual development
»Metabolic studies with mysids
»Abiotic stress and energy metabolism in mysid
»Induced vitellogenesis in rainbow trout
»Steroid metabolism in mysid
»Endocrine disruption in freshwater snails
»Invasive mysid in Belgium


spacer
Bram Versonnen, Katrien Arijs, Tim Verslycke, Wouter Lema, Colin Janssen, In vitro and in vivo toxicity of o-, m- and p-dichlorobenzene, Environmental Toxicology and Chemistry 22(2): 329-335 , 2003

The estrogenicity of o-, m-, and p-dichlorobenzene (DCB) was evaluated with a yeast estrogen screen (YES) and zebrafish (Danio rerio) vitellogenin (VTG) assays.With the YES, p-DCB and m-DCB were found to be estrogenic in a concentration-responsive manner. The relative potency measured with the YES (relative to 17b-estradiol) was 2.2E-27 for p-DCB and 1.04E-28 for m-DCB. Following acute toxicity tests with the zebrafish, plasma VTG production was measured to examine the in vivo estrogenic activity of the three compounds after a 14-d exposure. Adult zebrafish were exposed to different concentrations of o-, m- and p-DCB, ranging from 0.1 to 32 mg/L; ethynylestradiol ([EE2]; 5 ng/L, 10 ng/L, 50 ng/L, and 100 ng/L) was used as a positive control. After exposure, blood samples were taken and protein electrophoresis was performed to determine the relative VTG content. Gonadosomatic indices (GSI) and condition factors (CF) were also calculated. Elevated VTG levels and decreased female GSIs were found in fish exposed to >5 ng EE2/L and in fish exposed to >10 mg p-DCB/L. Low GSIs coincided with high levels of VTG in the blood of female zebrafish. This relation was not only found in fish exposed to EE2 but also in controls and fish exposed to DCB. Therefore, a direct or indirect effect of VTG on the GSI is suggested rather than a direct toxic effect of the tested compounds on the gonads. http://dx.doi.org/10.1897/1551-5028(2003)022<0329:IVAIVE>2.0.CO;2

© Woods Hole Oceanographic Institution
All rights reserved