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ABSTRACT6

A number of previous observational studies have found that the waters of the deep Pacific7

Ocean have an age, or elapsed time since contact with the surface, of 700 to 1,000 years.8

Numerical models suggest ages twice as old. Here we present an inverse framework to9

determine the mean age and its upper and lower bounds given Global Ocean Data Analysis10

Project (GLODAP) radiocarbon observations, and we show that the potential range of ages11

increases with the number of constituents or sources that are included in the analysis. The12

inversion requires decomposing the world ocean into source waters, here obtained using the13

Total Matrix Intercomparison (TMI) method at up to 2◦ × 2◦ horizontal resolution with14

11,113 surface sources. We find that the North Pacific at 2,500 meters depth can be no15

younger than 1,100 years old, which is older than some previous observational estimates.16

Accounting for the broadness of surface regions where waters originate leads to a reservoir-17

age correction almost 100 years smaller than would be estimated with a 2 or 3 water-mass18

decomposition and explaining some of the discrepancy with previous observational studies.19

A best estimate of mean age is also presented using the mixing history along circulation20

pathways. Subject to the caveats that inference of the mixing history would benefit from21

further observations and that radiocarbon cannot rule out the presence of extremely old22

waters from exotic sources, the deep North Pacific waters are 1,200 to 1,500 years old, which23

is more in line with existing numerical model results.24
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1. Introduction25

A useful, but simple, bulk indicator of the circulation is the time since water was last at26

the surface, commonly known as the “age” of seawater. Radiocarbon observations are helpful27

for determining age, because radiocarbon is not produced in the ocean, the radioactive decay28

rate is known, and its half-life is in the right range. The age of the deep Pacific has been29

estimated from radiocarbon observations to be generally less than 1,000 years (Stuiver et al.30

1983; Intergovernmental Panel on Climate Change (IPCC) 2005; Matsumoto 2007) and is31

sometimes described as a centennial rather than millennial timescale. General circulation32

models (GCMs) have also been used to estimate ocean age, but while the concentration of33

radiocarbon produced by the models is consistent with the observational studies, the inferred34

ages are not. Modeling studies report a maximum age for the deep North Pacific between35

1,500 and 2,000 years (England 1995; Deleersnijder et al. 2001; Primeau 2005; Peacock and36

Maltrud 2006), such that the discrepancy in age estimates from different methods approaches37

100%.38

Is the ocean age discrepancy due to model errors, data errors, or some error in interpreta-39

tion? The error in the Global Ocean Data Analysis Project (GLODAP) gridded radiocarbon40

values is no larger than 30h (Key et al. 2004), enough to make a difference of 400 years for41

the age of the deep Pacific, but this is unlikely to represent a systematic error in the entire42

basin and it is still too small to explain the entire model-data discrepancy. The accuracy of43

the model results can always be questioned—for example, due to inadequate resolution—but44

the fact that the modeled radiocarbon concentrations are consistent with the observations45

instead suggests some issue in the interpretation of age.46

Any subsurface location may be accessed by multiple pathways that trace back to the47

surface. These pathways are a combination of advective and diffusive effects, and generally48

have a wide distribution of transit times from the surface to any particular interior point49

(Holzer and Hall 2000; Deleersnijder et al. 2001; Waugh et al. 2003). The focus of this50

work is the mass-weighted average age of ocean waters, or the “mean age”: here defined to51

2



be the mean of the pathway transit times from the mixed layer to the interior. The total52

amount of remineralized nutrient (or utilized oxygen) along a pathway is related to mean53

age, making this quantity particularly relevant. Due to the spectrum of transit times, any54

one scalar cannot convey all transport information, but the mean age represents the centered55

first moment of the distribution, a natural quantity on which to focus. Previous measures56

of the timescale of circulation, such as replacement times (Stuiver et al. 1983; Primeau and57

Holzer 2006; Broecker et al. 2007) or equilibration times (Wunsch and Heimbach 2008), may58

be rather different than the mean age of the ocean and their relationship is usually not59

trivial.60

Accurate inference of age from radiocarbon requires accounting for the pathways that61

link the interior and surface for two distinct reasons. First, although the atmosphere is62

relatively well-mixed in radiocarbon activity, the surface ocean can maintain a significant63

and spatially variable disequilibrium (e.g. Broecker and Peng 1982; Broecker et al. 1991).64

Indeed, the range of surface radiocarbon concentrations is about 70h, whereas the deep65

ocean range is 200h, making the range of surface concentrations a significant proportion66

of the total. Second, the exponential decay of radiocarbon gives young waters a dispropor-67

tionate influence on radiocarbon concentration and this tends to bias age estimates toward68

younger values (e.g., Deleersnijder et al. 2001). This bias (hereafter called the radiocarbon-69

age bias) arises because radiocarbon age is not conserved under mixing processes as it is a70

nonlinear function of radiocarbon concentration (e.g., Wunsch 2002). We hypothesize that71

an incomplete accounting of the multitude of ocean pathways is responsible for errors in the72

interpretation of the radiocarbon observations, leading to the discrepancy between modeled73

and observation-based estimates of ocean age.74

Our approach involves first applying the recently developed TMI method to a suite75

of modern-day observations, including temperature, salinity, δ18O of seawater, phosphate,76

nitrate, and dissolved oxygen (e.g. Gouretski and Koltermann 2004; Legrande and Schmidt77

2006). The data is at 2◦ by 2◦ degreee horizontal resolution, giving a total of 11,113 surface78
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origination sites (Gebbie and Huybers 2010). The use of six tracers along with the accounting79

for their inherent geographical relationships by TMI has been shown to be sufficient to80

provide a unique and well-constrained solution to the water-mass decomposition problem81

in three dimensions. Here we extend the TMI method to also incorporate radiocarbon82

observations (Section 2). We then discuss the observations and inputs for the global problem83

(Section 3) and show that estimates of mean age depend upon the the number of constituents84

included in the analysis, explaining the aforementioned differences between observational and85

modeling estimates of age (Section 4). We also provide a best estimate of the mean age that86

specifically accounts for the mixing histories of waters (Section 5), and then discuss these87

results relative to previous estimates in the conclusion (Section 6).88

2. Formulation of radiocarbon inverse model89

We begin with a general formulation for calculating age from radiocarbon observations.

Radiocarbon concentration at an interior ocean point, C, is due to contributions from mul-

tiple constituents (e.g., Holzer and Hall 2000; Khatiwala et al. 2001; Haine and Hall 2002),

with the individual contributions decaying according to an age distribution, Gi(t):

C =
N∑
i=1

mi Ci

∫ ∞
0

Gi(t)e
−λt dt, (1)

where N is the number of constituents, mi is the mass fraction of the ith constituent, Ci

is the initial radiocarbon concentration for that constituent, and λ is set by the radioactive

decay rate (λ =log(2)/5730 years). Each constituent refers to waters with a particular initial

radiocarbon value, whether it be a water mass, a water type, or waters identified by their

surface origin. The mass fractions are bounded by 0 and 1, and their sum must equal one

for mass conservation. All age distributions must satisfy,
∫∞
0
Gi(t) dt = 1, which makes our

Gi(t) functions similar to the boundary propagator Green function of Haine and Hall (2002)

but with a different normalization. The function, Gi(t), is also the distribution of transit

times from the source region of constituent i to the particular interior location, though note
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that the related term “transit time distribution” is usually reserved for the case where the

source region is the global sea surface. We seek the “mean age”:

T =
N∑
i=1

mi

∫ ∞
0

t Gi(t) dt, (2)

and note that the age of each constituent can also be individually defined as T i =
∫∞
0
t Gi(t) dt.90

Radiocarbon values are expressed as a ratio with carbon-12 and we have not explicitly rep-91

resented the latter, given its large and constant distribution relative to radiocarbon, though92

Fiadeiro (1982) calculated that this may lead to as much as 10% error and this assumption93

should be revisited in future work.94

Inference of mean age depends upon three uncertain quantities: the observations of radio-95

carbon concentration, affecting both C and Ci in equation (1); the water-mass decomposition96

given by the m values; and the age distribution of the constituents, Gi(t). The uncertainty97

in radiocarbon arises from observational errors, the need to map those observations onto a98

regular grid, and the separation of radiocarbon into background and bomb components, to99

be discussed in Section 3. Holzer et al. (2010) discuss the sensitivity of age to uncertainties100

in water-mass decomposition, albeit using a different technique, and which we also address101

in Section 4. Even in the case that the water-mass decomposition and source radiocarbon102

values are well known, a radiocarbon observation provides only one constraint on N unknown103

Gi(t) functions, making for a highly underdetermined problem. The net effect of advection104

and diffusion determines the form of Gi(t), and below we develop an inverse framework to105

explore the importance of these transport characteristics by finding upper and lower bounds106

on mean age under the assumption of known mi and Ci values.107

a. Lower bound108

To find the youngest mean age possible with a given radiocarbon observation, we minimize

the left hand side of equation (2) subject to the constraint of equation (1), solved using an

extended Lagrange multipliers method (see the Appendix for the detailed derivation). If
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radiocarbon source values and contributions are known, the lower bound on mean age occurs

when Gi(t) = δ(t− Ti), where δ is the Dirac delta function and

Ti =
1

λ
log

(
Ci

C

)
, (3)

indicating purely advective transport of the i-th constituent with an age, Ti. Back substi-

tuting into equation (2) we obtain the lower bound on mean age:

Tmin =
N∑
i=1

mi

λ
log

(
Ci

C

)
. (4)

This solution is only feasible, however, if Ci ≥ C, otherwise some transit times would be109

unphysically negative. This data constraint does not always hold, but equation (4) can be110

extended for the more general case (also see the Appendix).111

The lower bound on mean age is similar to the age that is often inferred from ra-112

diocarbon (e.g., Broecker et al. 1991), here referred to as “standard” radiocarbon age,113

Tλ = (1/λ)log(Co/C), where Co is the amount of radiocarbon that would be present with-114

out any radioactive decay (i.e., the preformed radiocarbon content, Co =
∑N

i=1miCi). The115

standard radiocarbon age scenario corresponds to a solution of equations (1) and (2) with116

Gi(t) = δ(t−Tλ) for all i, corresponding to purely advective transport with an identical age117

for all constituents, a situation that is unlikely to be realistic. In the lower bound case, the118

Gi(t) functions also correspond to a purely advective transport, but the age of the different119

constituents need not be equal. Thus, the implied Gi(t) functions in the standard radio-120

carbon age calculation are different from the lower bound solution so long as the surface121

radiocarbon content is not uniform, showing that the standard radiocarbon age is generally122

older than the lower bound, contrary to previous derivations (e.g. Deleersnijder et al. 2001).123

For reference later in this work, we rewrite the radiocarbon age formula in the customary124

way: Tλ = −(1/λ) log(C)−Tres, where the apparent radiocarbon age due to the deficit from125

atmospheric radiocarbon levels is corrected by the reservoir age, Tres = −(1/λ)log(Co), due126

to surface disequilibrium effects (e.g., Broecker et al. 1991). Thus, the reservoir age is defined127

at the surface based upon the surface radiocarbon values, and a reservoir-age correction can128
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be diagnosed for all interior locations so long as the constituents of that location can be129

tracked back to the surface.130

b. Upper bound131

There are two scenarios where oceanic transport characteristics lead to a mean age that132

is much older than the lower bound calculated above, even when the observed radiocarbon133

concentration is unchanged. One scenario occurs when the individual Gi(t) functions are134

very wide due to diffusive transport, and the long tail of Gi(t) gives a large mean age when135

integrating equation (2) across the full range of times from zero to infinity. As is well known,136

the form of Gi(t) is weakly constrained for large t because old waters no longer contain137

much radiocarbon due to decay. Another lesser-discussed scenario occurs when there is a138

wide range in the relative age of the individual constituents. We give an example of this effect139

next, where the mean age is much larger than the lower bound, even though the individual140

constituents have delta functions for Gi(t), and show the dependence on the number of141

constituents considered in the analysis.142

Consider a simple case where an interior location is composed of N constituents with

the same initial radiocarbon concentration, Ci = Co, and equal mass contributions, mi =

1/N . The interior radiocarbon content is set such that the standard radiocarbon age is

exactly 1,000 years (C/Co = 0.88). From equation (4), the lower bound is the same for

any number of constituents, N , and it is identical to the standard radiocarbon age (flat

solid line, Figure 1). The theoretically-oldest mean age is obtained when N − 1 constituents

have zero age and the Nth constituent is maximally old, as follows from the radiocarbon

constraint being weakest upon the oldest contributions and can be shown rigorously using

linear programming methods. Therefore, under the simplifications that we have imposed on

this problem, GN(t) = δ(t− TN) and equation (1) reduces to

C

Co

=
N − 1

N
+
e−λTN

N
. (5)
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Solving for TN , and noting that the mean age is TN/N , gives an upper bound on mean age:

Tmax = − 1

Nλ
log[N(

C

Co

− 1) + 1], (6)

which holds while N is small enough that the argument of the logarithm is positive. The143

upper bound increases rapidly as N increases (solid curved line, Figure 1), and when N144

is greater than 1/(Co − C), the Nth constituent need not deliver any radiocarbon to the145

observational site, allowing TN and Tmax to be formally infinite.146

There are cases where very small or large ages for the individual constituents will not be147

realistic, but the general tendency for the upper bound to increase with N will nonetheless148

hold even if the range of admissable ages is limited. For instance, limiting the mean age of149

each constituent to be between 100 and 10,000 years gives an upper bound of more than 1,500150

years as N increases, and thus the range of possible mean ages is 50% of the radiocarbon151

age (Figure 1). Furthermore, an upper bound of 10,000 years for any one contribution is152

somewhat conservative, given that extremely old waters can be derived from meltwater fluxed153

directly from the cryosphere to the ocean (e.g. Straneo et al. 2011), groundwater seepage,154

and waters derived from the Earth’s interior (e.g. Kadko et al. 1995).155

This exercise of exploring upper and lower age bounds given uncertainty in the con-156

stituent age distributions thus provides three indications of why observational age estimates157

tend to be younger than those inferred by general circulation models. First, the standard ra-158

diocarbon age computed from observations is expected to be similar to the youngest possible159

age, up to differences in initial radiocarbon values. Second, many of the previous observa-160

tional estimates considered just a few water-mass constituents, which excludes many of the161

scenarios that have much older ages, as seen in the sensitivity of the upper bound with162

number of constituents. Finally, although we have focused on purely advective solutions,163

the inclusion of the broadening effects of diffusion upon the age distributions will also tend164

to increase the age of waters for a given radiocarbon observation in a manner similar to165

increasing the number of constituents. It should also be noted that placing bounds on the166

age is complementary to standard error or quartile error (e.g. Holzer and Primeau 2010),167
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especially in the case of distributions that can have long tails. We now turn toward applying168

these insights to the actual data.169

3. Decompositions and data170

a. Total Matrix Intercomparison decompositions171

Given the apparent dependence of the range of admissable ages upon the number of172

constituents, we seek a range of solutions at different resolutions. The highest resolution173

solutions come from the Total Matrix Intercomparison (TMI) method, and are available at174

4◦×4◦ and 2◦×2◦ gridding for a total of 2,806 and 11,113 different constituents, respectively175

(Gebbie and Huybers 2010, 2011). This solution method can be viewed as an extension of176

water-mass decompositions to having many more waters, all defined by the particular surface177

region of origin. The chief insight that TMI calls upon is that six pieces of tracer information178

at each location (θ, S, δ18Osw,PO4,NO3,O2) are sufficient to provide a unique solution to the179

ocean pathways interconnecting every grid box because there are, at most, six neighbors to180

any grid box.181

The uncertainies inherent to the TMI solution have been explored in several ways. A182

twin data assimilation experiment with a general circulation model and an experiment with183

artificial noise added to the observations both indicated that the TMI reconstructions had184

less than 5% error (Gebbie and Huybers 2010). Other potential sources of error may be185

due to the steady-state structure of the model, but over 2 million tracer observations can186

be explained as being in equilibrium with the flow field, lending confidence that the model187

formulation is adequate for our purposes and that uncertainties in the contributions from188

different constituents are a minor source of error in the present study. The TMI results were189

also shown to be consistent with δ13C observations from the Geochemical Ocean Section190

Study (GEOSECS, Kroopnick 1985), even though these observations were not used to de-191

velop the pathways model (Gebbie and Huybers 2011). Similarly, radiocarbon observations192

9



have not been used to constrain the ocean decomposition, as done elsewhere (e.g. Holzer193

et al. 2010), though later we show that these data too are consistent with the present solu-194

tion, supporting its accuracy and demonstrating that radiocarbon does not provide a major195

new water-mass constraint over the tracers already used.196

The TMI results also provide a self-consistent way to decompose the ocean into a smaller197

number of constituents. We divide the ocean surface into seven major regions (see Figure 2),198

where all waters originating from a region are grouped together as a common constituent.199

The tracer source value or “effective endmember” for each region is defined as the weighted200

average of the surface tracer values where the weights are set according to the volume con-201

tribution of each surface location to the interior (Gebbie and Huybers 2011). We then202

apply a standard water-mass decomposition to these endmember values (Mackas et al. 1987;203

Tomczak and Large 1989), not including the geographic constraints contained in TMI, to204

simultaneously satisfy the six tracer conservation equations and conservation of mass, while205

also using stochiometric ratios to model nonconservative effects in nutrients and oxygen (An-206

derson and Sarmiento 1994; Karstensen and Tomczak 1998). In particular, an independent207

non-negative least-squares problem is solved at every interior location (Lawson and Hanson208

1974).209

The low-resolution TMI solution of the previous paragraph uses all seven major surface210

regions, but we also obtain solutions with just the Antarctic, North Atlantic, and Sub-211

antarctic regions, and just the Antarctic and North Atlantic regions. Thus we have ocean212

decompositions at five different resolutions, with N equaling 2, 3, 7, 2806, and 11113. Addi-213

tional errors are present in the decompositions with a small number of constituents because214

they underestimate the variety of different waters that fill the ocean’s interior and ignore215

the geographic constraints of the more complete solution, but we depend upon these less for216

accuracy than as a means of illustrating how the solution will depend upon N .217
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b. Radiocarbon observations218

The GLODAP gridded dataset of preanthropogenic (or, equivalently, natural or back-219

ground) radiocarbon is reported in terms of ∆14C by measuring the total modern-day radio-220

carbon from a number of hydrographic sections and subtracting the bomb-produced compo-221

nent (Key et al. 2004). The bomb component has been determined from the strong linear222

correlation between natural radiocarbon and potential alkalinity (Rubin and Key 2002), a223

step that introduces uncertainties that we take into account using the published error esti-224

mates, but we do not attempt to recalculate the bomb component. Note that ∆14C values225

have also been corrected for fractionation effects using δ13C. The standard measurement226

error in radiocarbon has been reported to be 5h, but in the gridded dataset, the published227

errors are 20h or larger in some regions due to the sparsity of measurements and the type228

of gridding scheme employed.229

The dataset is box averaged onto a resolution of 2◦ by 2◦ in the horizontal with 33 vertical230

levels, but it does not cover the full globe due to limitations in regions such as the Arctic231

Ocean. Here, we confine our internal estimates to locations where GLODAP data is available232

and extrapolate surface data where necessary. Missing points in the Arctic, for example, have233

been assumed to be −55h based on a few transects (Jones et al. 1994; Schlosser et al. 1997),234

and we later check our results with different values for the Arctic. For all calculations, ∆14C235

is transferred into terms of C ≡14C/ 14Catm, so that a ∆14C value of 0h is equivalent to236

C= 1.237

4. Age and resolution of ocean constituents238

In this section, we test the hypothesis that differences between age estimates in the deep239

North Pacific can be traced back to the number of constituents, N , used in the analysis.240

Specifically we focus on the average properties of a box containing some of the oldest ocean241

waters (hereafter called the NEPAC box, 160◦W to 110◦W, 20◦N to 50◦N, and 2000 to 4000242
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meters depth). We proceed by solving the inverse problem of Section 2 according to the243

Appendix, with the same data used by previous investigators and the only difference being244

the addition of a more complete set of N sources. This analysis aims to be more than245

pedagogical as other studies have used very small N values (i.e., N ≤ 7) and we wish to246

provide a context to compare these against the higher resolution results presented here. As247

shown in Section 2, the upper bound depends strongly upon the a priori limitations imposed248

on the age of individual constituents, and here we take 100 and 20,000 years as the limits on249

any constituent, under the reasoning that we don’t want to rule out any possibilities without250

good cause. The results of this section show that the lower values of previous age estimates251

are partially due to the small number of water masses used.252

a. Range of solutions as a function of N253

The range of possible ages that satisfy the observed radiocarbon content of the NEPAC254

box increases from 68 years at N = 2 to many thousands of years at N = 11113, al-255

most exclusively because of an increase in the upper bound (Figure 3). In the N = 2256

case, the solution is represented by just two timescales, TANT and TNATL, the mean age257

of Antarctic and North Atlantic waters, respectively. Using inputs for the NEPAC box258

(CANT = 0.863,CNATL = 0.943,mANT = 0.69,mNATL = 0.31) and plugging into equa-259

tion (3), the minimum mean age is 1,191 years with TANT = 963 years and TNATL = 1691260

years (triangle, Figure 4). Although neither TANT nor TNATL is well constrained individu-261

ally, the mean age appears bounded to a range of 68 years when only two endmembers are262

present. The apparent strong constraint is geometrically seen to be due to the background263

contours of mean age roughly following the curve of the radiocarbon constraint in the figure.264

With N = 2, the range of possible solutions to the radiocarbon equation was limited to a265

line in {T1, T2} space, but for N = 3, there are many more feasible solutions, constituting a266

surface in {T1, T2, T3} space. Given a best estimate of the North Pacific decomposition where267

Subantarctic source waters are now included (mANT = 0.62,mNATL = 0.26,mSUBANT =268
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0.12), the solution space can be represented as a two-dimensional slice where TSUBANT is not269

shown but has a value that satisfies the radiocarbon constraint (Figure 5). The lower limit270

on mean age for N = 3 is unchanged at 1,191 years, with an implied Subantarctic transit271

time of 1,299 years (triangle, Figure 5), but the upper limit for mean age given N = 3 is272

2,235 years (inverted triangle, Figure 5), much larger than for N = 2.273

The uncertainty found in the mean age is greatly increased going from two to three274

constituents and a similar pattern is found as the number of constituents increases. As the275

model of the ocean decomposition becomes more complete, it reveals a potential for older276

ages that is otherwise hidden by oversimplified diagnostic frameworks.277

b. Reservoir-age correction as a function of N278

The inferred reservoir-age correction also depends upon the number of constituents, and279

decreases by 75 years as N goes from 2 to 11,113 (Figure 6). A decrease in the reservoir-280

age correction leads to a compensating increase in the radiocarbon age, as is evident in281

the standard radiocarbon age equation. Understanding the radiocarbon age is important282

because it is almost identical to the lower bound, with a difference of no more than 7 years283

(recall Figure 3). Changes in the reservoir-age correction are traced back to differences in284

the fraction of water originating from each surface source (mi) and the surface radiocarbon285

concentration assocated with that source (Ci).286

The inferred composition of the deep northeast Pacific strongly depends upon N , as287

seen in Table 1. No solution exists with N = 2 that simultaneously fits all conservation288

equations, as could have been anticipated from the hydrographic census of Worthington289

(1981), but if we restrict the data to phosphate and oxygen (e.g. Broecker et al. 1985, 1998),290

an apparent solution exists, yielding a NEPAC box filled with 69% Antarctic waters. For291

N = 3, a solution exists when the analysis is limited to only phosphate, oxygen, and salinity292

data, yielding 62% Antarctic waters, though other solutions could be obtained from other293

combinations of data types. Using 7 regions gives 53% Antarctic water. For N = 2806 and294
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N = 11113, the composition appears to converge with the smallest fraction of Antarctic295

water (48%), and 21% North Atlantic water.296

The effective source values for radiocarbon calculated by TMI differ from point values297

used in previous studies (Figure 2). The center of the surface of the Weddell Sea has298

a radiocarbon concentration of −140h, as used previously to represent Antarctic Bottom299

Water (Broecker et al. 1998), but the periphery of the Weddell Sea has higher concentrations300

and these waters contribute to the Antarctic water in lesser but still significant amounts. The301

effective endmember for Antarctic water is therefore somewhat altered to a value of −137h.302

The discrepancy is larger for the North Atlantic, where twice as much North Atlantic water is303

derived from the Nordic Seas as the Labrador Sea (Gebbie and Huybers 2010), and the often-304

used value of −67h only represents the latter. We find that the effective initial radiocarbon305

concentration of the North Atlantic is −57h, although radiocarbon data is sparse in the306

Nordic Seas, making this estimate relatively uncertain.307

The changes in the reservoir-age correction as a function of N are explained by putting308

ocean waters into three categories: waters with reservoir ages that are large (ANT), medium309

(SUBANT, NPAC), and small (NATL, ARC, MED, TROP). The major change between310

N = 2 and N = 11113 cases is that about 20% of the large category is more correctly311

categorized as having medium reservoir ages. As the difference in the reservoir age correction312

between these two classes is approximately 400 years, this reclassification changes the overall313

reservoir age correction by about 80 years (0.2 × 400yr). If −67h is used as the North314

Atlantic endmember instead of −57h, the effective reservoir age for that endmember is315

about 100 years older, which would offset about 20 years of the difference, but not change316

the overall trend with N . Thus, the more detailed identification of the mixture of waters is317

ultimately responsible for the changes in the lower bound as a function of N .318
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c. Comparison with a previous observational estimate319

In the NEPAC box, we estimate 1,264 years for the N = 11113 lower bound, however,320

Matsumoto (2007) used the same GLODAP data and an N = 2 solution and obtained321

a best estimate that is 200 years younger, raising the question of how their value could322

be below our lower bound. In fact, their estimate is lower than all of our lower bounds323

computed with any N . Two factors appear to account for the difference. First, the reservoir-324

age correction applied by Matsumoto (2007) is several decades larger, as is consistent with325

using a N = 2 decomposition as shown in the previous subsection. The more important326

discrepancy, however, is that Matsumoto (2007) applied the reservoir-age correction in terms327

of the radiocarbon content, rather than an age correction, which leads to an error toward328

younger ages of about 150 years. Indeed, if we subtract our initial radiocarbon value from our329

estimate of the NEPAC radiocarbon value (following paragraph 15, Matsumoto (2007)) and330

determine an age using the radiocarbon decay equation, we get a value of 1,055 years (square,331

Figure 3), similar to that of Matsumoto (2007) up to differences in the initial radiocarbon332

value applied. Such a method, however, is equivalent to performing the decay from too high333

an initial radiocarbon content and is incorrect.334

5. Using mixing histories to estimate mean age335

So far we have focused on the range of possible ages, which rules out some previous336

observational estimates as being too young, but no definitive statements could be made337

about the older model-based estimates. To obtain bounds, we used TMI to decompose338

interior ocean waters directly in terms of surface values, but TMI also permits the tracking339

of continuous pathways and the detailed mixing histories of interior waters. Thus, we proceed340

to make an estimate of the mean age consistent with the radiocarbon data and the pathways341

information contained in the WOCE hydrographic climatology as extracted by TMI. Just as342

with the TMI solution for pathways (Gebbie and Huybers 2010), there is a local and global343
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part to the solution. At the local level we determine a residence time for each grid box and344

then use these residence times in a global inversion along with the pathway information to345

determine the distribution of aging.346

a. Local residence time347

In steady state, the radiocarbon concentration in an interior box is a sum of contributions

from 6 neighboring boxes, less some amount of radioactive decay,

C =
6∑
i=1

mi Ci − Csink, (7)

where mi is now defined as the mass fraction of water contributed by each neighboring

box as determined by TMI, Ci is the observed radiocarbon concentration of each neighbor,

and Csink is the sink of radiocarbon due to radioactive decay. In terms of the steady-state

advective-diffusive balance, the input from neighboring boxes must balance the export and

radioactive decay,

dC

dt
=

6∑
i=1

Fi Ci − FoC− λC = 0, (8)

where Fi is the volume flux from neighboring box i, and Fo is the total volume flux out of

all faces. All fluxes are divided by the volume of the interior box and have units of s−1.

Multiplying the flux equation by the local residence time, τ = 1/Fo, and enforcing a steady

state leads to an equation similar to (7), but with different coefficients for the Ci terms,

C =
6∑
i=1

Fi
Fo

Ci −
λC

Fo
. (9)

Comparing like terms, we find that mi = Fi/Fo and Csink = τλC. In our case, the values348

of C are known from GLODAP and Csink can be computed for every interior box using the349

mass-weighted radiocarbon contributions from the neighboring boxes, yielding a value for350

the residence time of every interior box, τ =Csink/λ C. Note that a direct application to the351

GLODAP dataset yields some residence times that are unphysically negative, and thus, our352

solution method must add an additional constraint (to be discussed in section 5c).353
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b. Age as a global tracer354

Residence times of individual gridboxes are combined with the pathway information to

determine the age in a manner similar to how TMI has been used to calculate the interior

distribution of tracers (Gebbie and Huybers 2011). In this case, mean age is treated as

a tracer, a, sometimes identified as the ideal age tracer (c.f. England 1995; Peacock and

Maltrud 2006). Mean age is specified to be zero at the surface boundary and is subject to

aging at a rate of one unit per unit of time in the interior,

da

dt
=

6∑
i=1

Fi ai − Fo a+ 1 = 0. (10)

Multiplying by τ and using the findings from equation (9) permits the age tracer in each

box to be represented as a sum of contributions from neighbors, plus a source, τ , equal to

the local residence time,

a =
6∑
i=1

mi ai + τ. (11)

To calculate mean age globally, a matrix equation is formed with each row being the local355

mean age equation (11) at a particular location. To solve, we invert the matrix, a = A−1da,356

where a is a vector of the age tracer, A is the TMI pathways matrix, and da contains the357

zero-age boundary condition and internal sources in the form of local residence times. This358

methodology permits observational inference of mean age in a global framework.359

c. Application to radiocarbon observations360

Given that the GLODAP radiocarbon observations have relatively large uncertainties, we361

search for the smallest variations in the radiocarbon field that bring it into consistency with362

the steady-state circulation of TMI for both N = 2806 and N = 11113 (using the quadratic363

programming method from Appendix C of Gebbie and Huybers (2010) that requires all364

residence times to be non-negative). We find that adjustments to the gridded radiocarbon365

field with a standard deviation of 6h are needed in both cases, consistent with the published366
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error estimates of 5-10h near the WOCE transects. We proceed with this solution, but367

note that additional pieces of rate information, such as associated with geostrophy, nutrient368

remineralization, carbon cycle changes, or other transient tracers (e.g., Haine et al. 1995;369

Khatiwala et al. 2009; Holzer and Primeau 2010), could profitably be incorporated in the370

future.371

The N = 11113 case is presented in greater detail because it represents our best estimate372

of mean age. Because it is globally self-consistent with the TMI pathways, this estimate is373

spatially smooth, like GCM estimates (e.g. Peacock and Maltrud 2006), but is constrained374

at all locations by observations (upper left panel, Figure 7). Note that internal local age375

minima are not allowed, but local maxima appear because of internal sources of the age376

tracer: for example, the 1,500 year maximum in the North Pacific and the deep North377

Indian maximum of 1,400 years. Some other notable features of the solution are mean ages378

greater than 1,000 years everywhere north of the equator in the Pacific and Indian Oceans.379

Relatively young waters emanate from the North Atlantic and are preferentially transported380

along the western boundary, and a similarly young plume leaves the Weddell Sea and is381

entrained into the Antarctic Circumpolar Current.382

These results can be compared against standard radiocarbon ages, where the reservoir-383

age correction is calculated with the unadjusted GLODAP data and the mixing fractions of384

N = 11113 constituents, but all other information is ignored (upper right panel, Figure 7).385

Our best age estimate has a similar spatial pattern to the standard radiocarbon age, but386

is generally 50-200 years older. For example, the standard radiocarbon age in the NEPAC387

box is 1,269 years, whereas our best estimate is 1,427 years (stars, Figure 3). The lower388

bound, given a known water-mass composition, is solved by an independent inverse problem389

at every gridpoint. As was found in the analysis of the NEPAC box, the difference between390

the standard radiocarbon age and the lower bound is very small, with a maximum difference391

of 8 years, demonstrating that the standard radiocarbon age is nearly, but not exactly, equal392

to the lower bound.393
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The difference between the standard radiocarbon age and the best estimate is due to two394

effects. First, adjustments in the radiocarbon distribution are necessary to find consistency395

with the steady-state circulation. While these changes are not typically larger than 10h at396

any location, a reasonable magnitude given the gaps between the WOCE transects and the397

difficulties of measuring in polar regions, this has an effect of up to 200 years on inferred398

radiocarbon age (lower left panel, Figure 7). In the boundary of the Weddell Sea, for example,399

the surface radiocarbon is adjusted to have 10h more radiocarbon, leading to the inference400

that waters at the bottom of the Weddell Sea are more than 100 years older on average.401

Second, a whole distribution of ages has been accounted for in our best estimate, unlike402

the standard radiocarbon-age calculation. The influence of these effects is diagnosed by403

taking the difference between our best age estimate and the standard radiocarbon age,404

after recalculating the latter using the TMI-adjusted radiocarbon values (bottom right panel,405

Figure 7). The difference is the radiocarbon-age bias, and is everywhere less than 50 years, a406

smaller factor than the TMI adjustments to the radiocarbon observations. Adding together407

the two effects quantified in the lower panels of Figure 7 explains the difference between the408

upper panels of the figure.409

These results can be compared against other observational and model studies of the mean410

age. Although the overall pattern is similar, the GCM estimate of Peacock and Maltrud411

(2006) found the North Pacific age maximum to be closer to 1,700 years at a depth of412

2,000 meters, about 200 years older and 1,000 meters shallower than this work (Figure 8).413

The inverse solution of Holzer and Primeau (2010) with 39Ar observations found that the414

North Pacific is 1, 300+200
−50 years old and the pattern appears to be more in line with the415

TMI estimate. In the North Atlantic, the TMI estimate shows similarities to the western416

Atlantic observational estimate of Holzer et al. (2010). In both estimates, age increases with417

depth and towards the south, with 300 to 400 year old water at the seafloor at 30◦N. TMI418

indicates a South Atlantic maximum age of almost 800 years at 40◦S, and although Holzer419

and Primeau (2010) do not produce an estimate at this latitude and depth, they show other420
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bottom waters in the Atlantic as old as 600 years.421

d. Transit time distributions422

The constraint of the mixing histories in the foregoing sections can also be cast in terms423

of estimating the Gi(t) in equation (1). To explicitly calculate these functions, the non-424

steady version of equation (8) is used to infer the transient behavior of the mean age tracer425

following the same methodology as used in general circulation models (e.g., Khatiwala et al.426

2001; Peacock and Maltrud 2006; Maltrud et al. 2010). Although all 11,113 Gi(t) functions427

can be recovered at each location, here we focus on interpreting the global transit time428

distribution (TTD) from the sea surface to the NEPAC box, defined as Ĝ(t) =
∑N

i=1miGi(t).429

In this case, the TMI-constrained circulation is formulated as a forward advective-diffusive430

model, the entire sea surface is dyed, and the TTD is diagnosed from the movement of431

the dye tracer over a 10,000 year integration. The centered first moment of the TTD is432

at 1,429 years for 2◦ horizontal resolution, and at 1,363 years for 4◦ horizontal resolution433

(Figure 9), nearly the same as the previously-identified best estimates of mean age calculated434

by the equilibrium method of Section 5c. The width of the distribution, calculated as435

∆ =
√

(1/2
∫∞
0

(t − T )2)Ĝ(t)dt) (Hall and Plumb 1994), is 558 and 553 years for 2◦ and436

4◦, respectively. As a check on this width, we note that the 2◦ TMI-estimated TTD would437

lead to an inferred radiocarbon age of 1,375 years and a radiocarbon-age bias of 54 years,438

consistent with our earlier estimate although there are minor differences owing to details of439

the reservoir-age corrections and mixing histories.440

These results can be compared against GCM and other observationally constrained esti-441

mates of TTDs. A GCM study (Peacock and Maltrud 2006) found that TTDs in the North442

Pacific at 2,000 meters depth were somewhat wider at 650 to 700 years. The TTD mean-443

to-width ratio (T/∆) is about 2.5 for TMI at both resolutions, whereas the GCM estimate444

appears to be smaller at 2.0 to 2.3, indicating that the GCM is more diffusive than the TMI445

circulation (relative to advective processes, see Mouchet and Deleersnijder 2008). Both the446
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GCM and TMI TTDs have a mean-to-width ratio generally consistent with a North Pacific447

observational estimate (Holzer and Primeau 2010) that found a range of possible ratios from448

1 to 6. We note that Khatiwala et al. (2009) also empirically constrained TTDs but using449

a maximum entropy methodology to regularize an otherwise underdetermined formulation450

of the problem, and in future work it would be useful to compare the relative merits and451

constraints provided by the TMI and maximum entropy methodologies.452

e. Uncertainties in the age estimate453

There are several perspectives that we can offer on the uncertainty in the mean age454

estimates presented here. First, we note that the effect of including the mixing history, as455

encapsulated in the form of the Gi(t) functions, is to alter the standard radiocarbon age by456

no more than 50 years (e.g., Figure 7). Thus, although the Gi(t) functions may be uncertain,457

we expect their shape to introduce errors in the mean age of no more than 50 years. We also458

note, however, that the age estimates presented here, along with previous observational and459

modeling studies, do not account for the influence of exotic waters such as from groundwater460

seepage, hydrothermal vents, or icesheets. These exotic waters could have extremely old461

ages and although their exclusion has the practical utility of making our estimates easier to462

compare with GCM results, it would nonetheless be of interest to investigate their influence463

in future work.464

To explore the uncertainty due to the water-mass decomposition, we compare the 2◦465

and 4◦ reservoir-age corrections as computed with the gridded GLODAP data (top panels,466

Figure 10). The differences are generally less than 50 years, especially in the regions of the467

oldest ocean waters. The reservoir-age correction at mid-depth in the Ross Sea, however, is468

100 years smaller in the 2◦ estimate. As mentioned in previous work (Gebbie and Huybers469

2011), the major difference between the two estimates is the ratio of Weddell to Ross Sea470

contributions in AABW. In the 2◦ estimate, a smaller amount of deep water originates from471

the Ross Sea, giving a smaller influx of young waters to depth and accounting for the smaller472

21



reservoir-age correction. Although these local errors can reach 100 years, the uncertainties473

in the water-mass decomposition have a smaller influence on basin scale age estimates, such474

as for the deep North Pacific, where the difference between the 2◦ and 4◦ reservoir-age475

corrections is only 19 years in the NEPAC box.476

The largest uncertainties that we identify have to do with surface source radiocarbon val-477

ues. For example, when the reservoir-age correction is recalculated with the 2◦ TMI-adjusted478

radiocarbon distribution, the deep Pacific reservoir-age correction is 100 years smaller than479

when the raw GLODAP gridded data is used (bottom panels, Figure 10). Overall, uncer-480

tainties in the surface radiocarbon values lead to age uncertainties roughly twice as large481

as those due to the water-mass decomposition. The differences in source radiocarbon are482

consistent with the reported measurement errors, though also arise from errors in the TMI483

estimates, possibly because of violations of the steady-state assumption. Errors in removing484

the influence of bomb radiocarbon could also be important (e.g., Rubin and Key 2002).485

6. Conclusion486

Previous observational estimates of ocean age from radiocarbon included a number of487

hidden uncertainties, especially due to the use of a small number of constituents to describe488

water sources. In this study we use a comprehensive pathways and mixing model with an489

inverse method to estimate the age of the ocean and its upper and lower bounds, while inves-490

tigating the sensitivity to the number of constituents from 2 to 11,113. There are three major491

considerations in the determination of ocean age: the ambiguous decomposition of waters492

into the constituents necessary for calculation of the reservoir-age correction, the influence493

of multiple transit times in interpretation of the radiocarbon constraint, and observational494

errors in radiocarbon. To address the first issue, we use the TMI-derived ocean decomposi-495

tion that is trained with a full suite of tracers, including δ18O, nutrients, temperature and496

salinity. Extending the analysis to include radiocarbon, we find that the range of possible497
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ages strongly depends on the number of constituents, because radiocarbon observations have498

difficulty ruling out the presence of small amounts of very old water. In addressing the sec-499

ond issue, we quantify the bias in radiocarbon age without reliance on numerical models or500

imposed mixing parameters by using the mixing history implicit in TMI. Observational esti-501

mates that do not differentiate between the transit times of different water masses are biased502

very near to the lower limit of all possible ages. The third issue involves the uncertainties503

associated with measurement errors, data sparsity, and the difficulty in distinguishing bomb504

and natural radiocarbon, which is partially addressed by adjusting the radiocarbon dataset505

into consistency with a steady-state circulation field. Taking these factors into account, we506

find that radiocarbon data constrain the deep North Pacific to be more than 1,100 years old,507

with the full mixing history suggesting ages of 1,200 to 1,500 years over the region.508

The lower limit of the mean age of the North Pacific is higher than the best estimates509

of some previous observational studies (Stuiver et al. 1983; Matsumoto 2007). Using up to510

11,113 surface sources, the reservoir-age correction is diagnosed to be 100 years younger than511

previously thought. It is the broadness of surface regions contributing to the deep (Gebbie512

and Huybers 2011) that influences the needed reservoir correction and age estimates. Model513

estimates, on the other hand, are 100-400 years older than our current best estimate of the514

mean age of the deep North Pacific (Primeau 2005; Peacock and Maltrud 2006). We suspect515

that some models have older ages because of increased mixing associated with their coarse516

resolution, consistent with the finding that the transit time distributions of a GCM have517

a smaller mean-to-width ratio than the TMI estimate, although this can likely explain no518

more than 50 years of the additional aging through the enhancement of the radiocarbon-519

age bias. It will be of great interest to see estimates of age from numerical models with520

higher resolution (e.g., Maltrud et al. 2010), as well as further analysis including additional521

observational constraints.522
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APPENDIX527

528

Lower bound on mean age529

a. Lagrange multiplier method for advective-diffusive transport530

Finding the minimum value of the mean age subject to a radiocarbon observation is

equivalent to finding the stationary point of a Lagrangian function, L, where generalized La-

grange multipliers, µ, π, and ρ, are appended for equality and inequality constraints (Fiacco

and McCormick 1968). The Lagrangian is:

L =
N∑
i=1

mi

∫ ∞
t=0

tGi(t)dt−µ(C−
N∑
i=1

miCi

∫ ∞
0

Gi(t)e
−λtdt)+

N∑
i=1

πi(t)Gi(t)+
N∑
i=1

ρi(

∫ ∞
t=0

Gi(t)dt−1),

(A1)

where the first term is the mean age, the µ term enforces the data constraint, the πi(t) terms531

enforce Gi(t) ≥ 0, and the ρi terms enforce
∫∞
t=0

Gi(t) dt = 1. The solution, Gi(t) = δ(t−Ti),532

Ti = (1/λ) log(Ci/C), µ = 1/(λC), πi(t) = mit + miµ exp(−λt) + ρi, ρi = −mi[(1/λ) + Ti],533

satisfies the Karush-Kuhn-Tucker conditions (Fiacco and McCormick 1968; Strang 1988),534

and therefore is a stationary point. By substitution, this stationary point is a minimum.535

The case where one or more Ci <C is discussed below.536

b. Lagrange multiplier method for advective transport537

Here, we illustrate a simpler way to understand the lower bound solution. As found

above, all minimum-age solutions are obtained when the Gi(t) functions are delta functions,

and thus the expression for the mean age and the radiocarbon constraint can be simplified.

Now, the Lagrangian function is:

L =
N∑
i=1

miTi − µ(C−
N∑
i=1

mi Ci e
−λTi). (A2)
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The stationary point satisfies ∂L/∂µ = 0 and ∂L/∂Ti = 0 for i = 1→ N , thus:

∂L
∂Ti

= mi − µ(mi Ci λ e
−λTi) = 0, (A3)

which is solved for all of the transit times, Ti = (1/λ) log(µλCi). Note that there is one

equation for each Ti, for a total of N equations. The only unknown term is the scalar

Lagrange multiplier, µ. One way to solve for µ is to multiply both sides of the equation for

Ti by mi, then sum the N equations and substitute in the radiocarbon constraint, leading

to: µ = 1/(λC). Now we can back substitute to solve for Ti. All Ti have the same form,

namely:

Ti =
1

λ
log

(
Ci

C

)
. (A4)

By substitution into the definition of the mean age, the stationary point is a minimum:

Tmin =
N∑
i=1

mi

λ
log

(
Ci

C

)
. (A5)

This stationary point only holds if it is in the feasible range, i.e., Ti ≥ 0, which implies a538

bound on the radiocarbon concentrations, Ci ≥ C. The next section shows how the problem539

can be solved in the case that the radiocarbon bounds do not hold.540

c. Recursive method to handle non-negative constraints541

If the method outlined above produces a solution with negative age components, those

Ti values are set to zero by the Karush-Kuhn-Tucker conditions (e.g., Wunsch 1996). Re-

solving for the partial derivatives of the objective function with the added constraints, we

find that:

Ti =
1

λ
log

(∑N
j=Q+1mjCi

C

)
, for i = Q+ 1→ N, (A6)

and Ti is set to zero for i = 1→ Q. In the case that there are Ti terms that are less than zero,542

this process is repeated interatively until the solution is in the feasible range. By comparison543

with the results of nonlinear programming algorithms, we find the same result but with a544

substantial reduction of computational cost.545
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N ANT NATL SUBANT NPAC ARC MED TROP
2 69 31 - - - - -
3 62 26 12 - - - -
7 53 18 27 0 0 2 0

2806 49 20 19 2 5 1 4
11113 48 21 19 2 6 1 4

Table 1. Decomposition of the deep North Pacific according to number of constituents,
N , and the percentage of water from each surface region. Dashes denote values that are
not applicable. The regions are the Antarctic (ANT), North Atlantic (NATL), Subantarctic
(SUBANT), North Pacific (NPAC), Arctic (ARC), Mediterranean (MED), and subtropics
and tropics (TROP).
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Fig. 1. Bounds on the mean age of a hypothetical water parcel with a fixed radiocarbon
concentration as a function of the number of equal-sized constituents, N . The theoretical
upper bound (solid curved line) increases with N , while the lower bound is unchanging at
1,000 years and is equivalent with the standard radiocarbon age. The upper bound decreases
as the maximum age of each constituent is lowered (see legend). Note the change in scale
along the x-axis and that the variability in the bounds comes from the restriction to integer
numbers of constituents. Beyond N = 512, the age bounds are nearly unchanging.
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Fig. 2. Effective endmembers for ∆14C. Bold values indicate the endmember values for
the seven major surface regions delineated by bold lines. Numerical values in smaller font
are given for sub-regions marked by dashed lines. All boundaries are chosen by locations of
oceanographic or geographic relevance following Gebbie and Huybers (2010).
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Fig. 3. Inferred mean age and bounds of the deep North Pacific as a function of the number
of constituents, N . Shown are the upper bound (diamonds), the best estimate of mean age
(stars, discussed in Section 5), the standard radiocarbon age (plusses connected by dashed
line), the lower limit (circles), and an age estimate using the method of Matsumoto (2007)
(square). Note that the age scale becomes logarithmic above 1,500 years.
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Fig. 4. Possible ages of the deep North Pacific given only two constituents. All solutions that
satisfy the observed radiocarbon concentration are represented by the bold line, where mean
age is indicated by the contours. The lower limit of mean age is 1,191 years (triangle) and the
upper limit is 1,259 years, assuming that TANT ≥ 300, TNATL ≥ 300 (inverted triangle). If
the two transit times are equal (dashed line) only one solution exists (intersection of dashed
and bold lines), which is the standard radiocarbon age of 1,198 years, illustrating that the
lower bound can be less than the standard radiocarbon age, although the difference is only
7 years.
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Fig. 5. Similar to Figure 4 but now with three constituents coming from the North Atlantic,
Antarctic, and Subantarctic. To project the solution onto two dimensions, the Subantarctic
contribution is selected so as to satisfy the radiocarbon observation, given the North Atlantic
and Antarctic ages. Bold lines delineate the range of solutions, outside of which the Sub-
antarctic age would have to be negative (upper right) or greater than 20,000 years (towards
the origin). The lower limit of mean age is unchanged from the two constituent solution
(triangle), but the upper limit is almost 1,000 years older at 2,235 years (inverted triangle),
where the same constraint that all constituents must be older than 300 years is applied. The
dashed line TANT = TNATL is plotted for reference.
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Fig. 6. Inferred reservoir-age correction for the NEPAC box as a function of the number of
constituents, N .
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Fig. 7. Age estimates at 2,500 meters depth for N = 11113 (2◦ by 2◦ resolution): best
estimate (top left) and standard radiocarbon age (top right). The top two panels are on
the same colorscale with a contour interval of 100 years. The difference between the upper
two panels is due to TMI adjustments to radiocarbon concentration (bottom left) and the
radiocarbon-age bias (bottom right). The bottom panels have their own colorscales.
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Fig. 9. Transit time distributions for the deep North Pacific (volume averaged over the
NEPAC box) for the 2◦ horizontal resolution solution (black lines) and 4◦ horizontal reso-
lution solution (gray lines). The vertical lines represent, from left to right, the 10% signal
arrival time (485 and 535 years for 4◦ and 2◦, respectively), the mean age (1,363 and 1,429
years, respectively), and the 90% equilibrium time (2,387 and 2,452 years, c.f. Wunsch and
Heimbach (2008)). The behavior at short lags (small t) is dominated by the uppermost wa-
ters in the NEPAC box (2000 meters depth), where the 2◦ case has fast vertical transmission
of waters by numerical diffusion, but in quantities small enough that the mean age is not
significantly affected.
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Fig. 10. Reservoir-age correction at 2,500 meters depth for four different solutions: the
GLODAP data at 2◦ resolution (top left) and 4◦ resolution (top right), and for the TMI-
adjusted steady-state radiocarbon fields at at 2◦ resolution (bottom left) and 4◦ resolution
(bottom right). The contour interval is 50 years.
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