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Chapter 11. Spatial instability, absolute  and convective instability 

 

 
11.1 Spatial Instability 

 

Thus far, we have considered problems in which the instability manifests itself as a 

growth in time, For the normal modes we found exponential increases with time. 

However, there are cases in which we might expect the instability to appear as a spatial 

growth of a meander pattern produced in response to a forcing with a real frequency 

located at, say, x=0 as shown in figure  11.1, . 

 

 

x=0  
 

 

Figure 11.1 A meandering streamline increasing exponentially in amplitude in 

space. 

 

From the simplest point of view such problems merely requiring examining the 

same dispersion relation for any problem fixing ω as real and examining the solutions for 

k (if the growth is expected in the x direction) to see if there are complex k the go along 

with a real frequency. A little further thought shows that the  situation is considerably 

more obscure. Namely, how do we know when we find an imaginary  k for a real  ω  
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whether this represents a physically meaningful  spatial growth. An example may be 

helpful. Consider the simple  example of barotropic Rossby waves in two dimensions. 

The  (dimensional)  dispersion relation for the Rossby wave is : 

 

ω = −
β k

k 2 + l2   (11.1.1) 

As we know, these Rossby waves, existing in a resting fluid are stable. There  are no 

energy sources and ω  is real for all real k and l. Now let�s solve the problem for k  as a 

function of frequency for real l, There are two roots, 

 

 

 k = −
β

2ω
±

β 2

4ω2 − l2
 

 
 
 

 

 
 
 

1/2

  (11.1.2) 

The maximum (in size)  of frequency   corresponding to real wavenumbers is -β /2l  for 

which k=l. From  the waves course you will recall that for a given ω the long wave 

corresponds to energy propagation to the west (negative x) and the  short wave has it 

group velocity to the east (positive x). Indeed, if there is forcing at x=0 at a given 

frequency one uses  the radiation condition to determine which real root of (11.1.2) is 

appropriate for the solution in either x>0 or x<0. 

Now suppose that  ω, exceeds the maximum frequency, i.e. that −ω >
β
2 l

. The 

radicand in (11.1.2) is negative and the solutions are 

 

k = −
β

2ω
± i l2 −

β 2

4ω 2
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  (11.1.3) 

If the solutions are of the form expi(kx + ly −ωt), solutions for k which  have a 

negative imaginary part will be exponentially increasing with increasing x while the 

solutions with a positive imaginary part for k will be exponentially decreasing. Now we 

�know� in this case that for x >0 the physically meaningful solution is the one that 

exponentially decreases from the origin. The solution that is exponentially increasing is 

part of the solution because we must be able to represent a forcing at large x whose 
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response for smaller x is exponentially decreasing as x decreases. But we know this in 

this problem only because  the physical  situation is so clear. There are no energy sources 

and there is no way forcing with real frequency should produce an exponential growth of 

amplitude with x. In more complicated problems in which there is an energy source, e.g. 

a shear, it may not be so clear. For example, in the case just discussed we could add a 

very tiny amount of shear. Clearly we would still have, roughly speaking, the same 

solutions (11.1.2). Should we reject the spatial growth then? How do we generally 

decide? If we reject such spatially growing solutions are we rejecting possibly spatial 

instabilities? This is a serious issue. 

One way to distinguish real from  spurious growing solutions  in x is to do the 

initial value  problem in time. For all finite t the  physical solution originating near x =0 

should vanish as x! infinity. If we then reject solutions that violate that causality 

condition, and then let t! infinity we can be assured that a spatially growing solution, so  

obtained, is physically  meaningful.  However, that is a rather lot of work to do if all we 

want to do is to decide on the physical relevance of a modal solution that has ki  < 0. This 

is similar to the prescription for the wave radiation problem for which we substitute a 

radiation condition for the complete solution of the initial value problem to decide 

whether one or another steady solution is the relevant one. Is there a similar criterion 

here?  There is one. The successful alternative to the complete initial value problem is 

also based on the notion of causality but avoids the full complexity of the initial value 

problem. Unfortunately, the method to be described is, as one author has put it, �simple 

to state but devilishly complicated to carry out�. Hence, in this chapter we will discuss 

only an equivalent heuristic approach which contains the essence of the method. The 

classical paper on the subject comes from the literature on plasma instability, [Briggs, 

R.J. 1964 Electron-stream interaction with plasmas, Chap. 2. 8-46, MIT  Press] . 

Applications of Briggs� method to GFD stability problems are few. In particular, 

Pierre-Humbert, R. T. 1984 Local and global baroclinic instability of zonally varying 

flow. J.Atmos. Sci. 41, 2141-2162. 

and, 

Pierre-Humbert, R.T. 1986, Spatially amplifying modes of the Charney  baroclinic-

instability problem. J. Fluid Mech. 170, 293-317, 

and, 
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Merkine, L.O. 1977, Convective and absolute instability of baroclinic eddies. Geophys. 

and Astrophys. Fluid Dyn. 9, 129-157. 

 

The essence of the method requires the joint use of Fourier analysis in x and a Laplace 

transform in t. The former is used to allow initial conditions that are initially  spatially 

localized and the Laplace transform introduces the causality condition by careful 

consideration of the position of the singularities of the transform solution in the Laplace 

transform plane. It requires the explicit or numerical solution of the equation for k as a 

function of ω . If we note that even for the two layer model this involves the  solution of 

an 8th order equation for k and the need to follow the roots as the real and imaginary parts 

of ω are altered according to Briggs� recipe, the horrendous nature of the procedure 

becomes only too clear. In the next section we discuss a heuristic alternative and apply it 

to an artificial but plausible dispersion relation to illustrate the basic idea. The application 

to actual meteorological or oceanic problems can be found in the above references. 

 

11.2 A heuristic approach to the criterion. 

 

Instead of considering the initial value problem consider instead adding an artificial 

damping to the potential vorticity equation of the form, 
dq
dt

= −σq    (11.2.1) 

where  σ is a damping constant. As in the wave radiation problems the introduction of 

such  a damping allows us to avoid the initial value approach.  One way to think of it is 

that σ  takes the place of the real part of the Laplace transform variable on the Laplace 

inversion contour. 

Now, suppose we have been able to derive the dispersion relation (this may be very 

implicit and require a numerical approach�think of the Charney problem), i.e. suppose 

we have, 

 

F(ω,k,σ ) = 0    (11.2.2) 

where we have suppressed the dependence on other physical parameters of the problem.  

For a given  ω and σ  this yields roots (finding the roots is the hard  part�usually 
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requires  numerical  work)  in the complex  k plane, i.e. k = k(ω,σ ). If the roots are in the 

lower  half plane  they  would yield solutions  exponentially  increasing with  x. They 

represent either spatially increasing solutions for x>0 or spatially decreasing solutions for 

<0. Which? 

Similarly, solutions  in the upper  half plane give growth for x decreasing  with positive x 

from zero or amplifying solutions for x<0. How do  we decide? . The  trick is to find a 

situation where it is physically clear which is which. 

 

 

 

 

 

 

 

 

 

                             ki 

 

                                                   k1 

 

                             kr 

 

                                                                         k2 

 

Figure 11.2.1 The roots for k in the complex plane  for given  frequency  and damping. 

 

For very large values of σ we expect all roots to have an imaginary part different from 

zero and to definitely represent decay away from a source region. This is the frictional 

equivalent of the causality condition. It assures us that the exponential behavior we 

observe for large σ is physical and identifies the proper direction. That  is, a root for large 

damping in the upper half plane must represent decay of the solution for increasing x and 

ki 
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not exponential  growth for negative x. Consider such a root that for fixed ω and large σ  

is in the upper half plane. 

 

                                                           kn 

 

 

 

 

 

 

Figure 11.2.2 A root crossing the real k  axis representing spatial growth for x > 0. 

 

If, as σ  decreases to zero  Im(k)  crosses the real axis and ends up  in the  lower  half 

plane (ki < 0) that root would correspond to real spatial growth for x>0. The basic idea 

being that we can associate this root with one that  is decaying away from  x=0 if there is 

sufficient friction in the system to overpower the natural instability. Allowing σ!0 then 

uncovers that instability. The  same holds true for roots that start in the lower half plane 

for large damping. If the root does  not cross the real axis the exponential behavior  

continues to represent decay  from  the appropriate direction. 

There is an important and comforting corollary to this condition. As the root (if it 

does) crosses the real k  axis it corresponds at that point  to a wave with a real 

wavenumber, a non zero damping, σ,  but a real frequency. With the form of damping we 

have introduced in (11.2.1) this is equivalent to a solution with no friction growing in 

time with a growth rate equal to the value  of σ  at the point where the  root crosses the 

axis. This implies that  to have  the  root cross  the axis, i.e. to have the possibility of 

spatial growth, the flow must be unstable in time for a real wavenumber. That is, spatial 

growth can only occur  for flows that  are  subject to temporal instability. If you have  a 

flow that is stable according to the treatment of our  earlier work in the time domain you 

can be assured it can  not have real spatial growth. Any such growth is guaranteed to be 

spurious. We will discuss later the relationship between growth in x and t. 

kr 
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Roots which start in the lower half plane for large σ and remain there as σ !0 do 

not represent spatial growth for positive x but represent decay in the negative x direction. 

Let�s see how  this works for the Rossby wave example we started with. In order to add 

the damping term implied by (11.2.1) we need only make the transformation ω → ω + iσ  

in (11.1.2), 

 

k = −
β

2(ω + iσ )
±

β 2

4(ω + iσ)2 − l2
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   (11.2.3) 

 

 

For very large σ the roots are, 

 

 

k1 = iβ
2σ

+ i β 2

4σ 2 + l2
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,

k2 =
iβ
2σ

− i
β 2

4σ 2 + l2
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   (11.2.4 a,b) 

As σ ! 0 the two roots move in the complex plane to the points, 

 

 

k1 = − β
2ω

+ i l2 − β 2

4ω 2
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,

k2 = −
β
2ω

− i l2 −
β 2

4ω 2
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   (11.2.5 a,b) 

 

and ,as shown in the figure, neither root crosses the real axis. 

                                                     k1 
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                                                      k2 

 

 

figure 11.2.3   Trajectory of the roots for k for the Rossby wave as the  friction is 

diminished to zero. Note that neither root crosses the real axis. 

 

This verifies our physical  intuition that neither  root can represent real spatial instability. 

 

In some exceptional cases roots from opposite sides of the real axis will cross as σ 

! 0 and coalesce at some complex value of k, e.g. ko. In that case we have a double root 

in k. This implies that for σ =0  and k near ko the dispersion relation must be, 

 

  

F(ω,k,0) ≈ F (ω(ko),ko ,0)
=0" # $ $ % $ $ 

+
∂F
∂ω

(ω −ω(ko)) +
∂F
∂k

(k − ko)

=0
& ' $ ( $ 

+
∂2F
∂k 2

(k − ko)2

2
+ ...= 0 (11.2.6) 

 

so that locally, 

 

 
ω −ω(ko) = const.(k − ko)2,

⇒ ∂ω
∂k

(ko) = 0

   (11.2.7) 
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Figure 11.2.4 The coalescence of two roots. 

 

This is the generalized form of the statement that the group velocity is zero (both 

frequency and wavenumber are generally complex at ko. If (emphasized if) the imaginary 

part of ω is positive at this coalescence point it yields a disturbance growing with time 

and not propagating. Any spatial growth would then be overwhelmed by the local growth 

with time and spatial instability, even if it exists would be irrelevant. Such perturbations 

which satisfy (11.2.7) with ωi (ko) > 0  yield what are called absolute instability. These 

are disturbances that grow such at fixed x the disturbance amplitude grows exponentially. 

There are other modes, as we shall see, in which the flow is temporally unstable but  the 

disturbance moves away from its initial position rapidly enough so  that at fixed x the 

disturbance decays with time; such instabilities are called convective  instabilities. (It has 

nothing to do with  thermal convection; it signifies that the disturbance rapidly convects 

away from its origin). We can contrast the two types as: σ ! 0,  

 

i) 
∂ω
∂k

= 0,k = ko, ωi(ko) >0 (absolute instability) 

ii) 
∂ω
∂k

≠ 0, ωi (k) > 0, for x /t = Re(ωk ) (convective instability) 

 

We can distinguish the two types in the figures below.  Each figure  shows the amplitude 

as a function of x as t increases. 

 

 

                              increasing t                                                                        increasing t 

 

 

 

                                                     x                                                                 x 
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Figure11.2.5 a,b  a) absolute instability, b) convective instability. 

 

To examine this further, consider the instability which occurs in the vicinity of the 

minimum critical shear  of, say, the two layer model. The  imaginary part of ω is non zero 

for a small range of k around ko the wavenumber of minimum critical  shear. 

 

          ∆U 

 

 

                                    dk 

                                       k=ko 

 

If the dispersion relation is approximately, where U is a constant advective velocity, 

 

ω = Uk + ωr(k) + iωi (k)   (11.2.8) 

and suppose that that the growth rate has a maximum at k=ko. The wave phase is 

 

θ = kx −ωt = k(x −Ut) −ωr t − iωi t    (11.2.9) 

 

The  phase will have a stationary point at the real wavenumber ko , 

                                                       =0 
dθ
dk

= x −Ut −
∂ωr
∂k

(ko) t − i
∂ωi
∂k

(ko)t =0   (11.2.10) 

 

for x /t = U +
∂ωr
∂k

(ko)  since ko is the wavenumber which maximizes the growth rate. In 

the vicinity of ko  we can expand the phase and phase gradient, 
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θ ≈ kox −ω(ko) t + (k − ko)[x − t(U + cg)]

− (k − ko)2

2
ωr

'' + iωi
''[ ]t + ...

dθ
dk

= [x − t(U + cg )]− i(k − ko) ωi
'' − iωr

''[ ]t + ...

  (11.2.11a,b) 

 

where cg = ∂ωr ∂k , 

 and so for  k  in the vicinity of ko , the stationary point of the phase is at , 

 

k − ko = −i
x / t − (U + cg )[ ]

ωi
'' − iωr

''[ ]    (11.2.12) 

 

Now reconsider the phase (11.2.11a) at the wavenumbers given by (1.2.12) near the point 

ko,. A little algebra shows that, 

 

  

θ ≈ kox −ω(ko)t
growth and propagation of plane wave" # $ $ % $ $ 

−
i
2

x − (U + cg) t{ }2

t ωi
'' − iωr

''( )   (11.2.13) 

 

The form of the wave is therefore, 

 

 φ = Aei (kox−ω (ko )t)e

x−[U+cg ]t( )2
t[ω

i ''
2+ωr '' 2]

 
 
 

  

 
 
 

  
ωi ''

e

x−[U+cg ]t( )2
t[ω

i ''
2+ωr ''2 ]

 
 
 

  

 
 
 

  
iωr ''

 (11.2.14) 

 

Since ωi ' '(ko) <0 (  the growth  rate is a maximum at ko) the second exponential factor 

represents a Gaussian envelope moving with the  group  velocity associated with the  real 

wavenumber  of the  maximum growth rate. Note also that the width  of the envelope 

increases like t1/2 but that the  sharper the peak of the growth rate curve the broader the 

Gaussian becomes.  As time goes on this packet moves away from the origin   as long as 
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the total group velocity U + cg ≠ 0 . This is the convective instability and it is important 

to note that  at the center of the traveling packet the amplitude is growing with the 

maximum growth rate ωi (ko). As (and if) the packet moves off, it leaves a tail behind 

that can be interpreted as a spatially developing instability. In general, to find the growth 

rate at a fixed and arbitrary x for large t one has to consider the points where ∂ω ∂k = 0 

and these, in general will be complex. Only the particular x moving with the group  

velocity will see real k and growth at the normal mode frequency at that k.  

So, in addition to checking whether the spatial instability in real by examining the 

movement of the roots as σ  goes to zero, one also has to determine that there are no root 

coalescence points that have imaginary ω > 0. 

 

 

 

11.3 An example 

 

The hard and annoying but absolutely essential part of the process is the finding of 

the roots and tracking  their positions as σ  is  altered. For the actual stability problems 

this is a big task and you are referred to the references to see the process at work for the 

two-layer (Merkine) and Charney (Pierrehumbert) problems. To illustrate the  process 

more simply we will discuss an example taken from the paper of Briggs. Let�s suppose 

the dispersion  relation for real wavenumbers is, 

 

ω2 − k(V1 +V2)ω +V1V2(k2 − ko
2) = 0   (11.3.1) 

where V1,V2,ko  are parameters of the problem. (11.3.1) is an example of (11.2.2). If we 

consider k to be real, we can solve for ω  in terms of k. 

 

ω =
V1 + V2

2
k ±

1
2

k 2(V1 −V2)2 + 4V1V2ko
2{ }1/2

 (11.3.2a) 

 

while we can also solve for k in terms of ω, 
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k =
ω(V1 + V2)

2V1V2
±

1
2

ω 2(V1 −V2)2

V1
2V2

2 + 4ko
2

 
 
 

  

 
 
 

  

1/2

 (11.3.2 b) 

 

We now examine some particular cases. 

A) Suppose   V1 > 0, V2 > 0, ko
2 > 0.  

 

Then ω is real for all real wavenumber.  Similarly k is real for all real ω. There is clearly 

neither temporal or spatial instability. 

 

B) V1 > 0, V2 < 0, ko
2 < 0. 

 

Again, ω is real for all real wavenumber so there is no temporal instability. There is 

apparent spatial instability for small ω  but our previous results tell us that the apparent 

spatial instability is illusory. There is no spatial instability. You may check the trajectory 

of the roots to verify  this. 

C) V1 > 0, V2 > 0, ko
2 < 0 

 

Here there is both temporal instability for  

 

k2 <
4V1V2(−ko

2)
(V1 −V2)2   (11.3.3a ) 

and spatial instability for real frequencies if 

 

ω2 <
4(−ko

2)(V1V2)2

(V1 −V2)2   (11.3.3b) 

 

To check whether the apparent spatial instability  is physically meaningful add the 

damping term and so shift ω according to the rule, ω → ω + iσ . For very large σ  the two 

roots of (11.3.2b) become, 
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k+ =
iσ
V2

, k− =
iσ
V1

  (11.3.4 a,b) 

 

so that both  roots start in the upper half plane. As σ ! 0 the plus root becomes, 

 

k+ =
ω(V1 +V2)

2V1V2
+

i
2

4 ko
2 −

ω2(V1 −V2)2

V1
2V2

2

 

 
 
 

 

 
 
 

1/2

 (11.3.5a) 

 

so that this root remains in the upper half plane. The other root crosses the real axis and 

is, 

 

 

k− =
ω(V1 +V2)

2V1V2
−

i
2

4 ko
2 −

ω 2(V1 −V2)2

V1
2V2

2
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 (11.3.5b) 

 

and so ends in the lower half plane. This root therefore represents spatially growing 

solutions for x >0. It is important to note that k+ represents a decaying solution in x >0 

and does not represent a spatial instability to negative x. 

D) V1 > 0, V2 < 0, ko
2 > 0 

 

In this case temporal instability is possible and with the oppositely directed velocities  we 

might wonder whether absolute instability occurs. Spatial instability is clearly not 

possible for real frequencies. To check for absolute instability  we calculate ∂ω ∂k  and 

see if it vanishes.  It is easier to take the k derivative of (11.3.1) and set ∂ω ∂k  =0, to 

obtain, 

 

ω =
2V1V2

(V1 +V2)
k, ⇔ k =

(V1 + V2)ω
2V1V2

 at ωk = 0 (11.3.6 a,b) 
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Further, using (11.3.4 a,b) we see that for large σ the roots start in opposite half planes, 

one above  and one below  the real axis. As σ   ! 0  they coalesce at the point obtained 

by using (11.3.6b) in (11.3.1)  to obtain, 

 

ω2 = −4ko
2V1

2V2
2 (V1 −V2)2,

ω = 2iko
V1V2

(V1 −V2)

  (11.3.7 a,b) 

 

so that absolute  instability occurs  at the complex wavenumber, (from  (11.3.6 b) 

 

k = 2iko
V1V2

(V1V2)
(V1 +V2)
(V1 −V2)

  (11.3.7b) 

 

so that locally, near x=0 where the absolute instability occurs, the amplitude also grows 

spatially. 

 

 

 

 

 

 

 

 

 

 

 

 


